

Character Skinning

COS 426

Kinematic Skeletons

- Hierarchy of transformations ("bones")
 - Changes to parent affect all descendent bones
- So far: bones affect objects in scene or parts of a mesh
 - Equivalently, each point on a mesh acted upon by one bone
 - Leads to discontinuities when parts of mesh animated
- Extension: each point on a mesh acted upon by more than one bone

Linear Blend Skinning

- Each vertex of skin potentially influenced by all bones
 - Normalized weight vector $w^{(v)}$ gives influence of each bone transform
 - When bones move, influenced vertices also move
- Computing a transformation T_v for a skinned vertex
 - For each bone
 - » Compute global bone transformation T_b from transformation hierarchy
 - For each vertex
 - » Take a linear combination of bone transforms
 - » Apply transformation to vertex in original pose

$$T_v = \sum_{b \in B} w_b^{(v)} T_b$$

• Equivalently, transformed vertex position is weighted combination of positions transformed by bones

$$W_{transformed} = \sum_{b \in B} W_b^{(v)} (T_b v)$$

Assigning Weights

- Painted by hand
- Automatic: function of relative distances to nearest bones

 Smoothness of skinned surface depends on smoothness of weights!