

Active Dynamics

COS 426

Computer Animation

Animation

 Make objects change over time according to scripted actions

Pixar

Simulation

 Predict how objects change over time according to physical laws

University of Illinois

Simulation

- Kinematics
 - Considers only motion
 - Determined by positions, velocities, accelerations
 - **Dynamics**
 - Considers underlying forces
 - Compute motion from initial conditions and physics

Active Dynamics

and the second sec

- Motions
 - Physics
 - Controllers
 - Learning
- Behaviors

 States
- Cognition

 Planning

Funge99

Motion

• Example 1: how do worms move?

Snake Motion

Grzeszczuk95

Worm Biomechanical Model

Grzeszczuk95

... plus forces due to friction with ground.

Miller88

Her Majesty's Secret Serpent

Fish Motion

• Example 2: how do fish move?

Spring-Mass Model for Fish

Hydrodynamic Locomotion

Swimming

Animating Human Athletics

Hodgins

Animating Human Athletics

Learning Muscle Controllers

Grzeszczuk95

Learning to Swim

Evolved Virtual Creatures

Sims94

Evolved Virtual Creatures

Sims94

Multi-Level Controllers

BASIC ABSTRACTED CONTROLLERS

HIGHER ORDER CONTROLLER USED FOR JUMPING OUT OF WATER

Grzeszczuk95

Learning Complex Motions

Grzeszczuk95

Active Dynamics

- Motions
 - Physics
 - Controllers
 - Learning
- Behaviors
 States
- Cognition

 Planning

Funge99

Behavior

Fish Behavior Controller

Tu94

Intention Generator collision detection danger of collision? No avoid Predator detection $F \ge \mathbf{f} \circ ?$ if I^{t-1} 🛪 avoid No push the memory pop the memory $F^{m} \leq f_{1} ?$ No Yes and likes schooling? empty ? No Yes hungry? = school = escape Yes likes schooling ? $I^{t} = eat$ Generate new intention I $I^{s} = eat \text{ or } mate?$ or $I^{s} = school?$ by checking the mental state and the habit string Yes $T^{t} = wander$ $I^{T} = school$ go to the focusser go to the next layer

Underwater World of JC

Multi-Level Control

Blumberg95

Active Dynamics

DET SUB NUMBET

- Motions
 - Physics
 - Controllers
 - Learning
- Behaviors
 States
- CognitionPlanning

Funge99

Motion Planning

Summary

- Motions
 - Physics
 - Controllers
- Behaviors

 Learning
- Cognition

 Planning

