

Character Animation

COS 426

Syllabus

I. Image processing

- II. Modeling
- III. Rendering

IV. Animation

Image Processing (Rusty Coleman, CS426, Fall99)

Modeling

Rendering (Michael Bostock, CS426, Fall99)

Computer Animation

 Describing how 3D objects move over time

Computer Animation

- Challenge is balancing between ...
 - Animator control
 - Physical realism

Computer Animation

Character Animation

• Articulated figure:

Rose et al. `96

Character Animation Methods

- Kinematics
- Dynamics
- Motion capture

Character Animation Methods

- Kinematics
- Dynamics
- Motion capture

Kinematics

• Describe motion of articulated character

Forward Kinematics

- Animator specifies joint angles: Θ_1 and Θ_2
- Computer finds positions of end-effector: X

 $X = (l_1 \cos \Theta_1 + l_2 \cos(\Theta_1 + \Theta_2), l_1 \sin \Theta_1 + l_2 \sin(\Theta_1 + \Theta_2))$

Forward Kinematics

• Joint motions can be specified by spline curves

• Articulated figure:

• Hip joint orientation:

• Knee joint orientation:

Example: Robot

Mihai Parparita, COS 426, Princeton University, 2003

Example: Ice Skating

(Mao Chen, Zaijin Guan, Zhiyan Liu, Xiaohu Qie, CS426, Fall98, Princeton University)

• What if animator knows position of "end-effector"

- Animator specifies end-effector positions: X
- Computer finds joint angles: Θ_1 and Θ_2 :

 End-effector postions can be specified by spline curves

- Problem for more complex structures
 - System of equations is usually under-defined
 - Multiple solutions

- Solution for more complex structures:
 - Find best solution (e.g., minimize energy in motion)
 - Non-linear optimization

Example: Ball Boy

Kinematics

- Advantages
 - Simple to implement
 - Complete animator control
- Disadvantages
 - Motions may not follow physical laws
 - Tedious for animator

Keyframe Animation

- Advantages
 - Simple to implement
 - Complete animator control
- Disadvantages
 - Motions may not follow physical laws
 - Tedious for animator

Outline

- Kinematics
- Dynamics
- Motion capture

Angel Plate 1

Dynamics

Simulation of physics insures realism of motion

Lasseter `87

- Animator specifies constraints:
 - What the character's physical structure is
 » e.g., articulated figure
 - What the character has to do (keyframes)
 » e.g., jump from here to there within time t
 - What other physical structures are present
 » e.g., floor to push off and land
 - How the motion should be performed
 - » e.g., minimize energy

- Computer finds the "best" physical motion satisfying constraints
- Example: particle with jet propulsion
 - **x**(t) is position of particle at time t
 - f(t) is force of jet propulsion at time t
 - Particle's equation of motion is:

$$mx''-f-mg=0$$

 Suppose we want to move from a to b within t₀ to t₁ with minimum jet fuel:

Minimize $\int_{t_0}^{t_1} |f(t)|^2 dt$ subject to $x(t_0) = a$ and $x(t_1) = b$ Witkin & Kass `88

Witkin & Kass `88

 Solve with iterative optimization methods

- Advantages:
 - Free animator from having to specify details of physically realistic motion with spline curves
 - Easy to vary motions due to new parameters and/or new constraints

Challenges:

- Specifying constraints and objective functions
- Avoiding local minima during optimization

Original Jump

Heavier Base

Witkin & Kass `88

• Adapting motion:

Witkin & Kass `88

• Adapting motion:

Witkin & Kass `88

- Advantages:
 - Free animator from having to specify details of physically realistic motion with spline curves
 - Easy to vary motions due to new parameters and/or new constraints

Challenges:

- Specifying constraints and objective functions
- Avoiding local minima during optimization

Outline

- Kinematics
- Dynamics
- Motion capture

Angel Plate 1

 Measure motion of real characters and then simply "play it back" with kinematics

 Measure motion of real characters and then simply "play it back" with kinematics

Captured Motion

Gleicher

- Advantage:
 Physical realism
- Challenge:
 - Animator control

• Editing motion:

Gleicher

• Motion graphs:

Kovacs & Gleicher

• Retargeting motion:

Original motion data + constraints:

New character:

New motion data:

Gleicher

• Retargeting motion:

• Morphing motion:

Summary

- Kinematics
 - Animator specifies poses (joint angles or positions) at keyframes and computer determines motion by kinematics and interpolation
- Dynamics
 - Animator specifies physical attributes, constraints, and starting conditions and computer determines motion by physical simulation
- Motion capture
 - Compute captures motion of real character and provides tools for animator to edit it