The 3D Rasterization Pipeline

COS 426

3D Rendering Scenarios

(ST WURE

e Batch

o One iImage generated with as much quality as possible
for a particular set of rendering parameters

» Take as much time as is needed (minutes)
» Useful for photorealistism, movies, etc.

> Interactive

o Images generated in fraction of a second (<1/10)
with user input, animation, varying camera, etc.

» Achieve highest quality possible in given time
* Visualization, games, etc.

-

3D Polygon Rendering

« Many applications use rendering of 3D polygons
with direct illumination

Bungie

3D Polygon Rendering

 Many applications use rendering of 3D polygons
with direct illumination

meshview

-
Ray Casting Revisited

e For each sample ...
o Construct ray from eye position through view plane
o Find first surface intersected by ray through pixel
o Compute color of sample based on illumination

)

.\O

O —0)\O

o

-
3D Polygon Rendering

 We can render polygons faster if we take
advantage of spatial coherence

o o O @ 0 O

o o o o (o o

o o o o o o

o o o (] ((]
O X i

o (o] o (o] (o} o

-

3D Polygon Rendering

e How?

-

3D Polygon Rendering

e How?

-

3D Polygon Rendering

e How?

/

~N
3D Rendering Pipeline (for direct illumination)

3D Primitives

!

Modeling
Transformation I
Lighting
I This Is a pipelined

Viewing

Transformation sequence of operations
to draw 3D primitives
Into a 2D image

Projection
Transformation

Clipping

Viewport
Transformation

Scan
Conversion

Image)

-
3D Rendering Pipeline (for direct illumination)

3D Primitives
Modtling/\
Transformation
I glBegin(GL_POLYGON) ;
Lighting glVertex3f(0.0, 0.0, 0.0);
glVertex3f(1.0, 0.0, 0.0);

nggﬂgmm glVertex3f(1.0, 1.0, 1.0);
glVertex3f(0.0, 1.0, 1.0);
Projection g 1End () s

Transformation

Clipping
OpenGL executes steps

Viewport of 3D rendering pipeline
for each polygon

Transformation

Scan
Conversion

Image

/

3D Rendering Pipeline (for direct illumination)

~N

3D Primitives

T endon | Transform into 3D world coordinate system

Lighting

Viewing
Transformation

LI

Projection
Transformation

Clipping

Viewport
Transformation

Scan
Conversion

i

Image

/
3D Rendering Pipeline (for direct illumination)

3D Primitives

!

T o I Transform into 3D world coordinate system
Lighting I llluminate according to lighting and reflectance

Viewing
Transformation

Projection
Transformation

Clipping

Viewport
Transformation

Scan
Conversion

Image

/
3D Rendering Pipeline (for direct illumination)

3D Primitives

!

T o I Transform into 3D world coordinate system
Lighting I llluminate according to lighting and reflectance

Viewi . :
Transformation Transform into 3D camera coordinate system

Projection
Transformation

Clipping

Viewport
Transformation

Scan
Conversion

Image

-
3D Rendering Pipeline (for direct illumination)

3D Primitives

!

T o I Transform into 3D world coordinate system
Lighting I llluminate according to lighting and reflectance

T | |
Transformation Transform into 3D camera coordinate system

Projecti . .
Transformation Transform into 2D camera coordinate system

Clipping

Viewport
Transformation

Scan
Conversion

Image

-

3D Rendering Pipeline (for direct illumination)

~

3D Primitives

!

Modeling
Transformation
Lighting I

Viewing
Transformation

Projection
Transformation

Clipping

Viewport
Transformation

Scan
Conversion

Image

Transform into 3D world coordinate system
llluminate according to lighting and reflectance
Transform into 3D camera coordinate system
Transform into 2D camera coordinate system

Clip primitives outside camera’s view

-

3D Rendering Pipeline (for direct illumination)

®

3D Primitives

!

Modeling
Transformation
Lighting I

Viewing
Transformation

Projection
Transformation

Clipping

Viewport
Transformation

Scan
Conversion

Image

Transform into 3D world coordinate system
llluminate according to lighting and reflectance
Transform into 3D camera coordinate system
Transform into 2D camera coordinate system
Clip primitives outside camera’s view

Transform into image coordinate system

-

3D Rendering Pipeline (for direct illumination)

®

3D Primitives

!

Modeling
Transformation
Lighting I

Viewing
Transformation

Projection
Transformation

Clipping

Viewport
Transformation

Scan
Conversion

Image

Transform into 3D world coordinate system
llluminate according to lighting and reflectance
Transform into 3D camera coordinate system
Transform into 2D camera coordinate system
Clip primitives outside camera’s view
Transform into image coordinate system

Draw pixels (includes texturing, hidden surface, ...)

-
3D Rendering Pipeline (for direct illumination)

®

3D Primitives

Trangendon | Transform into 3D world coordinate system

Lighting llluminate according to lighting and reflectance

YT | |
Transformation Transform into 3D camera coordinate system

LI

Projecti - -
Transformation Transform into 2D camera coordinate system

Clipping Clip primitives outside camera’s view

Vi t . . :
Transformation Transform into image coordinate system

Comnon Draw pixels (includes texturing, hidden surface, ...)

Image)

i

/

Transformations
p(X,y,2)
l 3D Object Coordinates Transformations map points from
: one coordinate system to another
Modeling
Transformation

3D World Coordinates

3D Camera
Coordinates

Y =

Viewing
Transformation

Y

3D Camera Coordinates 3D Object

Coordinates

Prog'ectiory
Transtormation

2D Screen Coordinates

Viewport
Transformation

3D World

2D Image Coordinates Coordinates

p'(X.Y’)

[

Viewing Transformations

pP(X,y,2)

l 3D Object Coordinates

Modeling
Transformation

3D World Coordinates

Viewing
Transformation

3D Camera Coordinates

Prog'ection
Transtormation

2D Screen Coordinates

Viewport
Transformation

2D Image Coordinates

p'(X.Y’)

Viewing Transformations

[

Viewing Transformation

« Mapping from world to camera coordinates
o Eye position maps to origin
o Right vector maps to X axis

o Up vector maps to Y axis back
o . up
Back vector maps to Z axis right

Z .

View

plane

Camera
y i

X
World

-
Camera Coordinates

e Canonical coordinate system
o Convention is right-handed (looking down -z axis)
o Convenient for projection, clipping, etc.

Camera up vector
A

y { mapstoY axis
Camera right vector

Camera back vector maps to X axis

maps to Z axis S R
(pointing out of page) z X
J

Finding the viewing transformation

 We have the camera (in world coordinates)

 We want T taking objects from world to camera
o =T pW

« Trick: find T- taking objects in camera to world

pW :T—lpC

E_ N < X

O xX©QO
S N < X

'a b d
e f h
| I

m n P

Pr

REAC

Finding the Viewing Transformatio

* Trick: map from camera coordinates to world
o Qrigin maps to eye position
o Z axis maps to Back vector
o Y axis maps to Up vector
o X axis maps to Right vector

U

X X

S N < X

o 0 O
<

S N < X

Uy
Uz
U

oo
m

W W W W_IL "

e This matrix is Tt so we invertitto getT ... easy!

/

Viewing Transformations

pP(X,y,2)

l 3D Object Coordinates

Modeling
Transformation

3D World Coordinates

Viewing
Transformation

3D Camera Coordinates

Prog'ection
Transtormation

2D Screen Coordinates

Viewport
Transformation

2D Image Coordinates

p'(X.Y’)

Viewing Transformations

-

Projection

e General definition:
o Transform points in n-space to m-space (m<n)

e In computer graphics:
o Map 3D camera coordinates to 2D screen coordinates

/

Taxonomy of Projections

Planar geometric
projections

T

Parallel

Pt <4

Orthographic

Oblique

(gg%) Cabinet

Front Axonometric

elevation
Side
elevation

Cavalier

Isometric
Other

One-point

Perspective

Two-point

Three-point

Other

FVFHP Figure 6.10
J

/

Taxonomy of Projections

Planar geometric
projections

Parallel

Orthographic

Oblique

(gg%) Cabinet

Front Axonometric

elevation
Side
elevation

Cavalier

Isometric
Other

One-point

Perspective

Two-point

Three-point

Other

FVFHP Figure 6.10
J

/

Parallel Projection

e Center of projection is at infinity

o Direction of projection (DOP) same for all points

VievN

Plane

Angel Figure 5.4

J

/

Orthographic Projections

 DOP perpendicular to view plane

Front

Top Side

Angel Figure 5.5

-

Parallel Projection Matrix

* General parallel projection transformation:

-

Parallel Projection View Volume '«

Parallelpiped
View Volume

H&B Figure 12.30
J

/

Taxonomy of Projections

Planar geometric
projections

Parallel
Orthographic Oblique ~ One-point
Top Cabinet
(plan)
Front Axonometric Cavalier
elevation
Side
elevation Other

Isometric

Other

Perspective

Two-point

Three-point

FVFHP Figure 6.10
J

-

Perspective Projection

« Map points onto “view plane” along “projectors”
emanating from “center of projection” (COP)

Angel Figure 5.9
J

-

Perspective Projection

 Compute 2D coordinates from 3D coordinates

with similar triangles

(x,Y,2) 2

‘\‘D\
-Z
) (0,0,0)

What are the coordinates
of the point resulting from
projection of (X,y,z) onto
the view plane?

DA
View

Plane

-
Perspective Projection

 Compute 2D coordinates from 3D coordinates
with similar triangles

(x,Y,2) 2

D
(xD/z, yD/z) View

Plane

-

Perspective Projection Matrix

e 4x4 matrix representation?

X, =X.D/z,

ys =Y.D/z,

z.=D

w, =1
X | 2 2 2 2%
Yo [_[? 2 2 2|V,
2. |17 ? 2?2 ?|z
wl 1222 2|1

-

Perspective Projection Matrix

e 4x4 matrix representation?

X, =X.D/z, X, =X'TWwW
Ys=Y.Dlz, y;=y/w
z.=D Z,=2'1w
w, =1
X | 2 2 2 2] %
Yo [_[? 2 2 2|V,
2. |17 ? 2?2 ?|z
wl 1222 2|1

X'= X,
f=yc
2'=1,
w=z/D

-

Perspective Projection Matrix

e 4x4 matrix representation?

X, =X.D/z, X, =X'TWwW X'= X,
ys=Y.Dlz. y.=ylw y=y
z.=D Z,=7'1w 2'=1,

w, =1 w=2z1/D

/

Perspective Projection View Volume:

Frustum
View Volume

View
Plane

Back . \\ \ Broi -
Plane --__:9’ rojection
Reference

Point

H&B Figure 12.30
/

-

Perspective vs. Parallel

e Perspective projection
+ Size varies inversely with distance - looks realistic
— Distance and angles are not (in general) preserved
— Parallel lines do not (in general) remain parallel

« Parallel projection ;
+ Good for exact measurements ~N
+ Parallel lines remain parallel
— Angles are not (in general) preserved
— Less realistic looking

/

Transformations
p(X,y,2)
l 3D Object Coordinates Transformations map points from
: one coordinate system to another
Modeling
Transformation

3D World Coordinates

3D Camera
Coordinates

Y =

Viewing
Transformation

3D Camera Coordinates 3D Object

Coordinates

Prog'ectiory
Transtormation

2D Screen Coordinates

Viewport
Transformation

2D Image Coordinates

p'(X.Y’)

3D World
Coordinates

(

Viewport Transformation

e Transform 2D geometric primitives from
screen coordinate system (normalized device
coordinates) to image coordinate system (pixels)

_% __Screen | Image
= < _ S

s

Viewport

Window

/

Viewport Transformation

* Window-to-viewport mapping

Window Viewpor
(@) @,
(wx,wy) (VX,Vy)
wyl vyl
WX« > WX2 VX1« » VX2
Screen Coordinates Image Coordinates

vx = vx1 + (wx - wx1l) * (vx2 - vx1) /7 (wx2 - wx1l);

vyl + (wy - wyl) * (vy2 - vyl) /7 (wy2 - wyl);

[

Summary of Transformations

pP(X,y,2)

l 3D Object Coordinates

Modeling Modeling transformation

Transformation

3D World Coordinates

Viewing
Transformation

3D Camera Coordinates Viewing transformations

Prog'ection
Transtormation

2D Screen Coordinates

Viewport

Transformation Viewport transformation

2D Image Coordinates

p'(X.Y’)

-

3D Rendering Pipeline (for direct illumination)

3D Primitives
| 3D Modeling Coordinates

Modeling
Transformation

3D World Coordinates

Lighting

3D World Coordinates

Viewing
Transformation

3D Camera Coordinates

Projection
Transformation

2D Screen Coordinates

Clipping

2D Screen Coordinates

Viewport
Transformation

2D Image Coordinates

Scan
Conversion
2D Image Coordinates

Image

4)

Clipping

TR)

« Avoid drawing parts of primitives outside window
o Window defines part of scene being viewed
o Must draw geometric primitives only inside window

Viewing
Window

/

Clipping

s‘..‘e
(Berp " et

TR)

~N

o Points

o Lines
Polygons
Circles

o efc.

@)

@)

Viewing
Window

« Avoid drawing parts of primitives outside window

-
Polygon Clipping

~

s‘..‘e
(Berp " et

TR)

* Find the part of a polygon inside the clip window?

VAN

Before Clipping

-
Polygon Clipping

~N

s‘..‘e
(Berp " et

TR)

* Find the part of a polygon inside the clip window?

/\

After Clipping

-

Sutherland Hodgeman Clipping

e Clip to each window boundary one at a time

VAN

-

Sutherland Hodgeman Clipping

e Clip to each window boundary one at a time

VAN

-

Sutherland Hodgeman Clipping

=

e Clip to each window boundary one at a time

VAN

-

Sutherland Hodgeman Clipping

e Clip to each window boundary one at a time

A

-

Sutherland Hodgeman Clipping

e Clip to each window boundary one at a time

/\

-

Clipping to a Boundary

TR)

* Do inside test for each point in sequence,
nsert new points when cross window boundary,
Remove points outside window boundary

P,

Window
Boundary Inside

Outside

Clipping to a Boundary

TR)

* Do inside test for each point in sequence,
nsert new points when cross window boundary,
Remove points outside window boundary

P,

Window
Boundary Inside

Outside

Clipping to a Boundary

TR)

* Do inside test for each point in sequence,
nsert new points when cross window boundary,
Remove points outside window boundary

Window
Boundary Inside

Outside

Clipping to a Boundary

TR)

* Do inside test for each point in sequence,
nsert new points when cross window boundary,
Remove points outside window boundary

Window
Boundary Inside

Outside

Clipping to a Boundary

TR)

* Do inside test for each point in sequence,
nsert new points when cross window boundary,
Remove points outside window boundary

P2
P,

Window
Boundary P’ Inside
Outside

P

Ps

Clipping to a Boundary

TR)

* Do inside test for each point in sequence,
nsert new points when cross window boundary,
Remove points outside window boundary

P2
P,

Window
Boundary P’ Inside
Outside

P

Ps

Clipping to a Boundary

TR)

* Do inside test for each point in sequence,
nsert new points when cross window boundary,
Remove points outside window boundary

P2
P,

Window
Boundary P’ Inside
Outside

P

Ps

Clipping to a Boundary

TR)

* Do inside test for each point in sequence,
nsert new points when cross window boundary,
Remove points outside window boundary

P2
P,

Window
Boundary P’ pr Inside

Outside

Ps

Clipping to a Boundary

TR)

* Do inside test for each point in sequence,
nsert new points when cross window boundary,
Remove points outside window boundary

P2
P,

Window
Boundary P’ pr Inside

Outside

-

S0 HUFTHE

3D Rendering Pipeline (for direct illumination) £€Y2

3D Primitives
| 3D Modeling Coordinates

Modeling
Transformation
3D World Coordinates
Lighting
3D World Coordinates

Viewing
Transformation

3D Camera Coordinates

Projection
Transformation

2D Screen Coordinates

Clipping
2D Screen Coordinates

Viewport
Transformation

2D Image Coordinates VIeWIng

Window
Conversion

2D Image Coordinates

Image)

/

3D Rendering Pipeline (for direct illumination)

3D Primitives
| 3D Modeling Coordinates

Modeling
Transformation
3D World Coordinates
Lighting
3D World Coordinates

Viewing
Transformation

3D Camera Coordinates

Projection
Transformation

2D Screen Coordinates

Clipping
2D Screen Coordinates

Viewport

Transformation Standard (aliased)
2D Image Coordinates Scan COnverSion
Con\%lrgion

2D Image Coordinates
Image

/

3D Rendering Pipeline (for direct illumination)

3D Primitives
| 3D Modeling Coordinates

Modeling
Transformation
3D World Coordinates
Lighting
3D World Coordinates

Viewing
Transformation

3D Camera Coordinates

Projection
Transformation

2D Screen Coordinates

Clipping
2D Screen Coordinates

Viewport

Transformation Antialiased
2D Image Coordinates Scan Conversion

can
Conversion

2D Image Coordinates

Image

-
Scan Conversion

 Render an image of a geometric primitive
by setting pixel colors

void SetPixel(int x, int y, Color rgba)

« Example: Filling the inside of a triangle

Py

/

Triangle Scan Conversion

* Properties of a good algorithm
o Symmetric
o Straight edges
o No cracks between adjacent primitives
o (Antialiased edges)
o FAST!

-
Simple Algorithm

e Color all pixels inside triangle

void ScanTriangle(Triangle T, Color rgba){
for each pixel P 1n bbox(T){
iIT (Inside(T, P))
SetPixel(P.x, P.y, rgba);
+

}

4)

Triangle Sweep-Line Algorithm

 Take advantage of spatial coherence
o Compute which pixels are inside using horizontal spans
o Process horizontal spans in scan-line order

« Take advantage of edge linearity
o Use edge slopes to update coordinates incrementally

dx
dy |

-
Triangle Sweep-Line Algorithm

void ScanTriangle(Triangle T, Color rgba){
for each edge pair {
initialize X, Xg;
compute de/dy and dxz/dyg;
for each scanline at y
for (Int X = X ; X <= Xgz; X++)
SetPixel(x, y, rgba);
X, += dx /dy,;
Xp += dXx/dyg;

-
GPU Architecture

| Host
I
[2 Y Y
Vertex Processing I ‘ ” ‘ ” | ‘ |
1 * 1 | | 1
Cull / Clip / Setup
A
~ Z.Cull =~ Rasterization
Texture and — -
Fragment Processing T E D Texture Cache
¥
l Fragment Crossbar ‘
1
Y ¥
Z-Compare
and Blend
[} [}
Y Y
Memory Momniy Hlmory Memory
Partition Parﬂﬁun Pil‘ﬂﬁt‘lll Partition

o

GeForce 6 Series Architecture GPU Gems 2, NVIDIA)

	The 3D Rasterization Pipeline
	3D Rendering Scenarios
	3D Polygon Rendering
	3D Polygon Rendering
	Ray Casting Revisited
	3D Polygon Rendering
	3D Polygon Rendering
	3D Polygon Rendering
	3D Polygon Rendering
	3D Rendering Pipeline (for direct illumination)
	3D Rendering Pipeline (for direct illumination)
	3D Rendering Pipeline (for direct illumination)
	3D Rendering Pipeline (for direct illumination)
	3D Rendering Pipeline (for direct illumination)
	3D Rendering Pipeline (for direct illumination)
	3D Rendering Pipeline (for direct illumination)
	3D Rendering Pipeline (for direct illumination)
	3D Rendering Pipeline (for direct illumination)
	3D Rendering Pipeline (for direct illumination)
	Transformations
	Viewing Transformations
	Viewing Transformation
	Camera Coordinates
	Finding the viewing transformation
	Finding the Viewing Transformation
	Viewing Transformations
	Projection
	Taxonomy of Projections
	Taxonomy of Projections
	Parallel Projection
	Orthographic Projections
	Parallel Projection Matrix
	Parallel Projection View Volume
	Taxonomy of Projections
	Perspective Projection
	Perspective Projection
	Perspective Projection
	Perspective Projection Matrix
	Perspective Projection Matrix
	Perspective Projection Matrix
	Perspective Projection View Volume
	Perspective vs. Parallel
	Transformations
	Viewport Transformation
	Viewport Transformation
	Summary of Transformations
	3D Rendering Pipeline (for direct illumination)
	Clipping
	Clipping
	Polygon Clipping
	Polygon Clipping
	Sutherland Hodgeman Clipping
	Sutherland Hodgeman Clipping
	Sutherland Hodgeman Clipping
	Sutherland Hodgeman Clipping
	Sutherland Hodgeman Clipping
	Clipping to a Boundary
	Clipping to a Boundary
	Clipping to a Boundary
	Clipping to a Boundary
	Clipping to a Boundary
	Clipping to a Boundary
	Clipping to a Boundary
	Clipping to a Boundary
	Clipping to a Boundary
	3D Rendering Pipeline (for direct illumination)
	3D Rendering Pipeline (for direct illumination)
	3D Rendering Pipeline (for direct illumination)
	Scan Conversion
	Triangle Scan Conversion
	Simple Algorithm
	Triangle Sweep-Line Algorithm
	Triangle Sweep-Line Algorithm
	GPU Architecture

