

Global Illumination

COS 426

Overview

- Direct Illumination
 - Emission at light sources
 - Scattering at surfaces
- Global illumination
 - Shadows
 - Inter-object reflections
 - Rendering equation
 - Recursive ray tracing
 - More advanced ray tracing
 - Radiosity

Kajiya 1986

Direct Illumination (last lecture)

- For each ray traced from camera
 - Sum radiance reflected from each light

Example

Red's Dream (Pixar Animation Studios)

Overview

- Direct Illumination
 - Emission at light sources
 - Scattering at surfaces

Global illumination

- Shadows
- Inter-object reflections
- Rendering equation
- Recursive ray tracing
- More advanced ray tracing
- Radiosity

Overview

- Direct Illumination
 - Emission at light sources
 - Scattering at surfaces
- Global illumination
 Shadows
 - Inter-object reflections
 - Rendering equation
 - Recursive ray tracing
 - More advanced ray tracing
 - Radiosity

Greg Ward

• Hard shadows from point light sources

• Hard shadows from point light sources

Hard shadows from point light sources
 Cast ray towards light; S₁=0 if blocked, S₁=1 otherwise

- Soft shadows from area light sources
 - Umbra = fully shadowed
 - Penumbra = partially shadowed

 Soft shadows from circular area light sources Average illumination for M sample rays per light $\frac{\mathrm{I}_{0}(D \bullet L)}{\mathrm{c}a + \mathrm{l}a \cdot d + \mathrm{q}a \cdot d^{2}}$ $I_L =$ Camera у2 sb Sa Shadow Sc Term $I = \dots + \sum_{AreaLights} \sum_{M samples} \frac{1}{M} (K_D(N \bullet L) + K_S(V \bullet R)^n) S_L I_L$

- Soft shadows from circular area light sources
 - Average illumination for M sample rays per light
 - Generate M random sample points on area light (e.g., with rejection sampling)
 - Compute illumination for every sample
 - Average

Direct Illumination

Illumination from polygonal area light sources
 Average illumination for M sample rays per light

Overview

- Direct Illumination
 - Emission at light sources
 - Scattering at surfaces
- Global illumination
 - Shadows
 - Inter-object reflections
 - Rendering equation
 - Recursive ray tracing
 - More advanced ray tracing
 - Radiosity

Greg Ward

Inter-Object Reflection

Inter-Object Reflection

- EET SUB NUTINE
- Radiance leaving point x on surface is sum of reflected irradiance arriving from other surfaces

Rendering Equation

• Compute radiance in outgoing direction by integrating reflections over all incoming directions

Rendering Equation

• Compute radiance in outgoing direction by integrating reflections over all incoming directions

Rendering Equation

• Compute radiance in outgoing direction by integrating reflections over all incoming directions

 $L_o(x',\bar{\omega}') = L_e(x',\bar{\omega}') + \int_{\Omega} f_r(x',\bar{\omega},\bar{\omega}')(\bar{\omega}\bullet\bar{n})L_i(x',\bar{\omega})d\bar{\omega}$

Overview

- Direct Illumination
 - Emission at light sources
 - Scattering at surfaces
- Global illumination
 - Shadows
 - Inter-object reflections
 - Rendering equation
 - Recursive ray tracing
 - More advanced ray tracing
 - Radiosity

Greg Ward

• Assume only significant irradiance is in directions of light sources, specular reflection, and refraction

 Compute radiance in outgoing direction by summing reflections from directions of lights specular reflections, and refractions

 Same as ray casting, but trace secondary rays for specular (mirror) reflection and refraction

 $I = I_{E} + K_{A}I_{A} + \sum_{L}(K_{D}(N \bullet L) + K_{S}(V \bullet R)^{n})S_{L}I_{L} + K_{S}I_{R} + K_{T}I_{T}$

Specular Reflection

- Trace secondary ray in direction of mirror reflection
 - Evaluate radiance along secondary ray and include it into illumination model

Refraction

 Trace secondary ray in direction of refraction
 Evaluate radiance along secondary ray and include it into illumination model

 $I = I_E + K_A I_A + \sum_{L} (K_D (N \bullet L) + K_S (V \bullet R)^n) S_L I_L + K_T I_T$

Refraction

- Transparency coefficient is fraction transmitted
 - \circ K_T = 1 for translucent object, K_T = 0 for opaque
 - \circ 0 < K_T < 1 for object that is semi-translucent

$$I = I_E + K_A I_A + \sum_L (K_D (N \bullet L) + K_S (V \bullet R)^n) S_L I_L + \mathbf{K_T} I_T$$

Refraction Direction

For thin surfaces, can ignore change in direction
 Assume light travels straight through surface

Refraction Direction

• ComputeRadiance is called recursively

• Ray tree represents recursion

• Ray tree represents illumination expression

Specular reflection and refraction -- LD(S|R)*E

Overview

- Direct Illumination
 - Emission at light sources
 - Scattering at surfaces
- Global illumination
 - Shadows
 - Inter-object reflections
 - Rendering equation
 - Recursive ray tracing
 - More advanced ray tracing
 - Radiosity

Beyond Recursive Ray Tracing

Distributed Ray Tracing

• Estimate integral for each reflection by sampling incoming directions

 $L_o(x',\bar{\omega}') = L_e(x',\bar{\omega}') + \sum_{nsamples} f_r(x',\bar{\omega},\bar{\omega}')(\bar{\omega}\bullet\bar{n})L_i(x',\bar{\omega})d\bar{\omega}$

Monte Carlo Path Tracing

- Estimate integral for each pixel by sampling paths from camera

Ray Tracing vs. Path Tracing يتخلق ළු ordinary surfaces light D surfaces Path tracing Ray tracing Kajiya

Overview

- Direct Illumination
 - Emission at light sources
 - Scattering at surfaces
- Global illumination
 - Shadows
 - Inter-object reflections
 - Rendering equation
 - Recursive ray tracing
 - More advanced ray tracing
 - ➢ Radiosity

Radiosity

Indirect diffuse illumination – LD*E

Radiosity Equation

$$L(x' \to x'') = L_e(x' \to x'') + \int_S f_r(x \to x' \to x'') L(x \to x') V(x, x') G(x, x') dA$$

Assume everything is Lambertian

$$\rho(x') = f_r(x \to x' \to x'')\pi$$

$$L(x') = L_e(x') + \frac{\rho(x')}{\pi} \int_{S} L(x)V(x, x')G(x, x')dA$$

Convert to
Radiosities
$$B = \int_{\Omega} L_o \cos\theta d\omega \qquad L = \frac{B}{\pi}$$

$$B(x') = B_e(x') + \frac{\rho(x')}{\pi} \int_{S} B(x) V(x, x') G(x, x') dA$$

Radiosity Approximation

$$B(x') = B_e(x') + \frac{\rho(x')}{\pi} \int_{S} B(x) V(x, x') G(x, x') dA$$

Discretize the surfaces into "elements"

$$B_{i} = E_{i} + \rho_{i} \sum_{j=1}^{N} B_{j} F_{ij}$$

where $F_{ij} = \frac{1}{A_{i}} \int_{A_{i}} \int_{A_{j}} \frac{V_{ij} \cos \Theta_{i}' \cos \Theta_{o}}{\pi r^{2}} dA_{j} dA_{i}$

Radiosity Approximation

System of Equations

$$B_{i} = E_{i} + \rho_{i} \sum_{j=1}^{N} B_{j} F_{ij}$$

$$E_{i} = B_{i} - \rho_{i} \sum_{j=1}^{N} B_{j} F_{ij}$$

$$B_{i} - \rho_{i} \sum_{j=1}^{N} B_{j} F_{ij} = E_{i}$$

$$\begin{bmatrix} 1 - \rho_{1} F_{1,1} \\ - \rho_{2} F_{2,1} \\ \vdots \\ - \rho_{n-1} F_{n-1,1} \\ - \rho_{n} F_{n,1} \end{bmatrix}$$

$$\begin{bmatrix} 1 - \rho_{1}F_{1,1} & \cdot & \cdot & \cdot & -\rho_{1}F_{1,n} \\ -\rho_{2}F_{2,1} & 1 - \rho_{2}F_{2,2} & \cdot & -\rho_{2}F_{2,n} \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ -\rho_{n-1}F_{n-1,1} & \cdot & \cdot & -\rho_{n-1}F_{n-1,n} \\ -\rho_{n}F_{n,1} & \cdot & \cdot & 1 - \rho_{n}F_{n,n} \end{bmatrix} \begin{bmatrix} B_{1} \\ B_{2} \\ \cdot \\ \cdot \\ B_{n} \end{bmatrix} = \begin{bmatrix} E_{1} \\ E_{2} \\ \cdot \\ \cdot \\ B_{n} \end{bmatrix}$$

$$(1 - \rho_i \sum_{j=1}^N F_{ii}) B_i - \rho_i \sum_{j=1}^N F_{ij} B_j = E_i$$

$$B_i A_i = E_i A_i + \rho_i \sum_{j=1}^N F_{ji} B_j A_j$$

This is an ← energy balance equation

Radiosity

- Application
 - Interior lighting design
 - LD*E
- Issues
 - Computing form factors
 - Selecting basis functions for radiosities
 - Solving large linear system of equations
 - Meshing surfaces into elements
 - Rendering images

Summary

- Global illumination
 Rendering equation
- Solution methods
 - Sampling
 - Ray tracing
 - Distributed ray tracing
 - Monte Carlo path tracing
 - Discretization
 - Radiosity

Photorealistic rendering with global illumination is an integration problem

