

Image Processing

COS 426

What is a Digital Image?

A digital image is a discrete array of samples representing a continuous 2D function

Continuous function

Discrete samples

Limitations on Digital Images

- Spatial discretization
- Quantized intensity
- Approximate color (RGB)
- (Temporally discretized frames for digital video)

Image Processing

- Changing intensity/color Moving image locations
 - Linear: scale, offset, etc.
 - Nonlinear: gamma, saturation, etc.
 - Add random noise
- Filtering over neighborhoods
 - Blur
 - Detect edges
 - Sharpen
 - Emboss
 - Median

- Scale
- Rotate
- Warp
- Combining images
 - Composite
 - Morph

Digital Image Processing: Very Similar to Analog

- Changing intensity/color Moving image locations
 - Linear: scale, offset, etc.
 - Nonlinear: gamma, saturation, etc.
 - Add random noise
- Filtering over neighborhoods
 - Blur
 - Detect edges
 - Sharpen
 - Emboss
 - Median

- Scale
- Rotate
- Warp
- Combining images
 - Composite
 - Morph

Digital Image Processing: Account for Limitations

- Changing intensity/color Moving image locations
 - Linear: scale, offset, etc.
 - Nonlinear: gamma, saturation, etc.
 - Add random noise
- Filtering over neighborhoods
 - Blur
 - Detect edges
 - Sharpen
 - Emboss
 - Median

- Scale
- Rotate
- Warp
- Combining images
 - Composite
 - Morph

Digital Image Processing: Inherently new Operations

- Changing intensity/color Moving image locations
 - Linear: scale, offset, etc.
 - Nonlinear: gamma, saturation, etc.
 - Add random noise
- Filtering over neighborhoods
 - Blur
 - Detect edges
 - Sharpen
 - Emboss
 - Median

- Scale
- Rotate
- Warp
- Combining images
 - Composite
 - Morph
- Quantization
- Spatial / intensity tradeoff
 - Dithering

Digital Image Processing

- Changing intensity/color Moving image locations
 - Linear: scale, offset, etc.
 - Nonlinear: gamma, saturation, etc.
 - Add random noise
- Filtering over neighborhoods
 - Blur
 - Detect edges
 - Sharpen
 - Emboss
 - Median

- Scale
- Rotate
- Warp
- Combining images
 - Composite
 - Morph
- Quantization
- Spatial / intensity tradeoff
 - Dithering

Adjusting Brightness

• Simply scale pixel components o Must clamp to range (e.g., 0 to 1)

Original

Brighter

Note: this is "contrast" on your monitor! "Brightness" adjusts black level (offset)

Adjusting Contrast

- Compute mean luminance L for all pixels
 o luminance = 0.30*r + 0.59*g + 0.11*b
- Scale deviation from L for each pixel component o Must clamp to range (e.g., 0 to 1)

Original

More Contrast

Digression: Perception of Intensity

Perception of intensity is nonlinear

Modeling Nonlinear Intensity Response

 Brightness (B) usually modeled as a logarithm or power law of intensity (I)

B

$$B = k \log I$$
$$B = I^{1/3}$$

 Exact curve varies with ambient light, adaptation of eye

Cameras

 Original cameras based on Vidicon obey power law for Voltage (V) vs. Intensity (I):

$$V = I^{\gamma}$$
$$\gamma \approx 0.45$$

CRT Response

• Power law for Intensity (*I*) vs. applied voltage (*V*)

$$I = V^{\gamma}$$
$$\gamma \approx 2.5$$

- Vidicon + CRT = almost linear!
- Other displays (e.g. LCDs) contain electronics to emulate this law

CCD Cameras

- Camera gamma codified in NTSC standard
- CCDs have linear response to incident light
- Electronics to apply required power law

- So, pictures from most cameras (including digital still cameras) will have $\gamma = 0.45$
 - sRGB standard: partly-linear, partly power-law curve well approximated by $\gamma = 1 / 2.2$

Digital Image Processing

- Changing intensity/color Moving image locations
 - Linear: scale, offset, etc.
 - Nonlinear: gamma, saturation, etc.
 - Add random noise
- Filtering over neighborhoods
 - Blur
 - Detect edges
 - Sharpen
 - Emboss
 - Median

- Scale
- Rotate
- Warp
- Combining images
 - Composite
 - Morph
- Quantization
- Spatial / intensity tradeoff
 - Dithering

Basic Operation: Convolution

Output value is weighted sum of values in neighborhood of input image

Pattern of weights is the "filter" or "kernel"

What if the filter runs off the end?

Common option: normalize the filter

2D Convolution

2D Convolution

2D Convolution

2D Convolution

2D Convolution

Blur

Convolve with a filter whose entries sum to one o Each pixel becomes a weighted average of its neighbors

Convolve with a filter that finds differences between neighbor pixels

Original

Filter =
$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & +8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Sharpen

Sum detected edges with original image

Original

I

Filter =
$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & +9 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Emboss

Convolve with a filter that highlights gradients in particular directions

Original

Filter =
$$\begin{bmatrix} -1 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

Non-Linear Filtering

Each output pixel is a non-linear function of input pixels in neighborhood (filter depends on input)

Original

Stain Glass

Digital Image Processing

- Changing intensity/color Moving image locations
 - Linear: scale, offset, etc.
 - Nonlinear: gamma, saturation, etc.
 - Add random noise
- Filtering over neighborhoods
 - Blur
 - Detect edges
 - Sharpen
 - Emboss
 - Median

- Scale
- Rotate
- Warp
- Combining images
 - Composite
 - Morph
- Quantization
- Spatial / intensity tradeoff
 - Dithering

Quantization

Reduce intensity resolution

- o Frame buffers have limited number of bits per pixel
- o Physical devices have limited dynamic range

Uniform Quantization

P(x, y) = round(I(x, y)) where round() chooses nearest value that can be represented.

Uniform Quantization

Images with decreasing bits per pixel:

Notice contouring.
Reducing Effects of Quantization

- Intensity resolution / spatial resolution tradeoff
- Dithering
 - o Random dither
 - o Ordered dither
 - o Error diffusion dither
- Halftoning

 O Classical halftoning

Dithering

Distribute errors among pixels

- o Exploit spatial integration in our eye
- o Display greater range of perceptible intensities

Original (8 bits)

Uniform Quantization (1 bit)

Floyd-Steinberg Dither (1 bit)

Random Dither

Randomize quantization errors o Errors appear as noise

P(x, y) = round(I(x, y) + noise(x, y))

Random Dither

Original (8 bits)

Uniform Quantization (1 bit)

Random Dither (1 bit)

Ordered Dither

Pseudo-random quantization errors o Matrix stores pattern of threshholds

 $i = x \mod n$ $D_2 = \begin{bmatrix} 5 & 1 \\ 0 & 2 \end{bmatrix}$ $j = y \mod n$ e = I(x,y) - trunc(I(x,y))threshold = $(D(i,j)+1)/(n^2+1)$ if (e > threshold) 1/5 2/5 3/5 4/5 1 P(x,y) = ceil(I(x, y))else P(x,y) = floor(I(x,y))thresholds

Ordered Dither

Bayer's ordered dither matrices

$$D_{n} = \begin{bmatrix} 4D_{n/2} + D_{2}(1,1)U_{n/2} & 4D_{n/2} + D_{2}(1,2)U_{n/2} \\ 4D_{n/2} + D_{2}(2,1)U_{n/2} & 4D_{n/2} + D_{2}(2,2)U_{n/2} \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix} \qquad D_4 = \begin{bmatrix} 15 & 7 & 13 & 5 \\ 3 & 11 & 1 & 9 \\ 12 & 4 & 14 & 6 \\ 0 & 8 & 2 & 10 \end{bmatrix}$$

Error Diffusion Dither

Spread quantization error over neighbor pixels o Error dispersed to pixels right and below o Floyd-Steinberg weights:

3/16 + 5/16 + 1/16 + 7/16 = 1.0

Figure 14.42 from H&B

Error Diffusion Dither

Reducing Effects of Quantization

- Dithering

 Random dither
 Ordered dither
 Error diffusion dither
- Halftoning o Classical halftoning

Classical Halftoning

Use dots of varying size to represent intensities o Area of dots proportional to intensity in image

Classical Halftoning

From Town Topics, Princeton

Digital Halftone Patterns

Use cluster of pixels to represent intensity

Q: In this case, would we use four "halftoned" pixels in place of one original pixel?

Figure 14.37 from H&B

Digital Image Processing

- Changing intensity/color
 Moving image locations
 - Linear: scale, offset, etc.
 - Nonlinear: gamma, saturation, etc.
 - Add random noise
- Filtering over neighborhoods
 - Blur
 - Detect edges
 - Sharpen
 - Emboss
 - Median

- - Scale
 - Rotate
 - Warp
 - Combining images
 - Composite
 - Morph
 - Quantization
 - Spatial / intensity tradeoff
 - Dithering

When implementing operations that move pixels, must account for the fact that digital images are sampled versions of continuous ones

Sampling and Reconstruction

Sampling and Reconstruction

Sampling and Reconstruction

How many samples are enough?

- o How many samples are required to represent a given signal without loss of information?
- o What signals can be reconstructed without loss for a given sampling rate?

What happens when use too few samples? o Aliasing

What happens when use too few samples? o Aliasing

- o How many samples are required to represent a given signal without loss of information?
- o What signals can be reconstructed without loss for a given sampling rate?

- o How many samples are required to represent a given signal without loss of information?
- o What signals can be reconstructed without loss for a given sampling rate?

- o How many samples are required to represent a given signal without loss of information?
- o What signals can be reconstructed without loss for a given sampling rate?

- o How many samples are required to represent a given signal without loss of information?
- o What signals can be reconstructed without loss for a given sampling rate?

- o How many samples are required to represent a given signal without loss of information?
- o What signals can be reconstructed without loss for a given sampling rate?

Spectral Analysis

- Spatial domain:
 o Function: f(x)
 o Filtering: convolution
- Frequency domain:
- o Function: F(u)
- o Filtering: multiplication

Any signal can be written as a sum of periodic functions.

Fourier Transform

Figure 2.6 Wolberg

Fourier Transform

• Fourier transform:

$$F(u) = \int_{-\infty}^{\infty} f(x) e^{-i2\pi x u} dx$$

• Inverse Fourier transform:

$$f(x) = \int_{-\infty}^{\infty} F(u) e^{+i2\pi u x} du$$

- A signal can be reconstructed from its samples, if the original signal has no frequencies above 1/2 the sampling frequency - Shannon
- The minimum sampling rate for bandlimited function is called "Nyquist rate"

A signal is bandlimited if its highest frequency is bounded. The frequency is called the bandwidth.

Image Processing

• Consider reducing the image resolution

Original image

1/4 resolution

Image Processing

• Image processing is a resampling problem

 A signal can be reconstructed from its samples, if the original signal has no frequencies above 1/2 the sampling frequency - Shannon

Aliasing will occur if the signal is under-sampled

Under-sampling

Figure 14.17 FvDFH

Aliasing

• In general:

o Artifacts due to under-sampling or poor reconstruction

- Specifically, in graphics:
 - o Spatial aliasing
 - o Temporal aliasing

Under-sampling

Figure 14.17 FvDFH

Spatial Aliasing

Artifacts due to limited spatial resolution

Spatial Aliasing

Artifacts due to limited spatial resolution

Artifacts due to limited temporal resolution

- o Strobing
- o Flickering

Artifacts due to limited temporal resolution

o Strobing o Flickering

Artifacts due to limited temporal resolution

- o Strobing
- o Flickering

Artifacts due to limited temporal resolution

- o Strobing
- o Flickering

Antialiasing

- Sample at higher rate

 Not always possible
 Doesn't always solve problem
- Pre-filter to form bandlimited signal

 o Form bandlimited function using low-pass filter
 o Trades aliasing for blurring

Image Processing

Bandlimited Function

Image Processing

Image Processing

Ideal Bandlimiting Filter

• Frequency domain

• Spatial domain

 $\sin \pi x$

 πx

Practical Image Processing

Scaling

• Resample with triangle or Gaussian filter

Original

1/4X resolution

Summary

• Image filtering

o Compute new values for image pixels based on function of old values

- Halftoning and dithering

 Reduce visual artifacts due to quantization
 Distribute errors among pixels
 » Exploit spatial integration in our eye
- Sampling and reconstruction

 Reduce visual artifacts due to aliasing
 Filter to avoid undersampling
 Blurring is better than aliasing