Image Processing

COS 426
What is a Digital Image?

A digital image is a discrete array of samples representing a continuous 2D function.

Continuous function

Discrete samples
Limitations on Digital Images

- Spatial discretization
- Quantized intensity
- Approximate color (RGB)
- (Temporally discretized frames for digital video)
Image Processing

- Changing intensity/color
 - Linear: scale, offset, etc.
 - Nonlinear: gamma, saturation, etc.
 - Add random noise

- Filtering over neighborhoods
 - Blur
 - Detect edges
 - Sharpen
 - Emboss
 - Median

- Moving image locations
 - Scale
 - Rotate
 - Warp

- Combining images
 - Composite
 - Morph
Digital Image Processing: Very Similar to Analog

- **Changing intensity/color**
 - Linear: scale, offset, etc.
 - Nonlinear: gamma, saturation, etc.
 - Add random noise

- **Filtering over neighborhoods**
 - Blur
 - Detect edges
 - Sharpen
 - Emboss
 - Median

- **Moving image locations**
 - Scale
 - Rotate
 - Warp

- **Combining images**
 - Composite
 - Morph
Digital Image Processing:
Account for Limitations

• Changing intensity/color
 ▪ Linear: scale, offset, etc.
 ▪ Nonlinear: gamma, saturation, etc.
 ▪ Add random noise

• Filtering over neighborhoods
 ▪ Blur
 ▪ Detect edges
 ▪ Sharpen
 ▪ Emboss
 ▪ Median

• Moving image locations
 ▪ Scale
 ▪ Rotate
 ▪ Warp

• Combining images
 ▪ Composite
 ▪ Morph
Digital Image Processing: Inherently new Operations

- Changing intensity/color
 - Linear: scale, offset, etc.
 - Nonlinear: gamma, saturation, etc.
 - Add random noise

- Filtering over neighborhoods
 - Blur
 - Detect edges
 - Sharpen
 - Emboss
 - Median

- Moving image locations
 - Scale
 - Rotate
 - Warp

- Combining images
 - Composite
 - Morph

- Quantization

- Spatial / intensity tradeoff
 - Dithering
Digital Image Processing

- Changing intensity/color
 - Linear: scale, offset, etc.
 - Nonlinear: gamma, saturation, etc.
 - Add random noise

- Filtering over neighborhoods
 - Blur
 - Detect edges
 - Sharpen
 - Emboss
 - Median

- Moving image locations
 - Scale
 - Rotate
 - Warp

- Combining images
 - Composite
 - Morph

- Quantization
- Spatial / intensity tradeoff
 - Dithering
Adjusting Brightness

• Simply scale pixel components
 o Must clamp to range (e.g., 0 to 1)

Note: this is “contrast” on your monitor!
“Brightness” adjusts black level (offset)
Adjusting Contrast

• Compute mean luminance L for all pixels
 $\text{luminance} = 0.30*r + 0.59*g + 0.11*b$

• Scale deviation from L for each pixel component
 - Must clamp to range (e.g., 0 to 1)

Original

More Contrast
Digression: Perception of Intensity

- Perception of intensity is nonlinear

![Graph showing the relationship between perceived brightness and amount of light. The graph is nonlinear, indicating that perceived brightness increases at a slower rate as the amount of light increases.]
Modeling Nonlinear Intensity Response

- Brightness \((B)\) usually modeled as a logarithm or power law of intensity \((I)\)

\[
B = k \log I
\]

\[
B = I^{1/3}
\]

- Exact curve varies with ambient light, adaptation of eye
Cameras

• Original cameras based on Vidicon obey power law for Voltage (V) vs. Intensity (I):

\[V = I^\gamma \]

\[\gamma \approx 0.45 \]
CRT Response

- Power law for Intensity (I) vs. applied voltage (V)

\[I = V^\gamma \]

\[\gamma \approx 2.5 \]

- Vidicon + CRT = almost linear!

- Other displays (e.g. LCDs) contain electronics to emulate this law
CCD Cameras

• Camera gamma codified in NTSC standard
• CCDs have linear response to incident light
• Electronics to apply required power law

• So, pictures from most cameras (including digital still cameras) will have $\gamma = 0.45$

 ▪ sRGB standard: partly-linear, partly power-law curve well approximated by $\gamma = 1 / 2.2$
Digital Image Processing

- Changing intensity/color
 - Linear: scale, offset, etc.
 - Nonlinear: gamma, saturation, etc.
 - Add random noise

- Filtering over neighborhoods
 - Blur
 - Detect edges
 - Sharpen
 - Emboss
 - Median

- Moving image locations
 - Scale
 - Rotate
 - Warp

- Combining images
 - Composite
 - Morph

- Quantization
- Spatial / intensity tradeoff
 - Dithering
Basic Operation: Convolution

Output value is weighted sum of values in neighborhood of input image

- Pattern of weights is the “filter” or “kernel”
Convolution with a Triangle Filter

Input

Output

Filter

0.5
0.25 0.25

Convolution with a Triangle Filter

Input Output

Filter

Input

Output
Convolution with a Triangle Filter

What if the filter runs off the end?

Input

Output

Filter
Convolution with a Triangle Filter

Common option: normalize the filter

Modified Filter

Input

Output
Convolution with a Gaussian Filter

Input

Filter

Output

Figure 2.4 Wolberg
Linear Filtering

2D Convolution

- Each output pixel is a linear combination of input pixels in neighborhood with weights prescribed by a filter
Linear Filtering

2D Convolution

- Each output pixel is a linear combination of input pixels in neighborhood with weights prescribed by a filter.
Linear Filtering

2D Convolution

- Each output pixel is a linear combination of input pixels in neighborhood with weights prescribed by a filter.

Input Image \(\otimes \) Filter = Output Image
Linear Filtering

2D Convolution

- Each output pixel is a linear combination of input pixels in neighborhood with weights prescribed by a filter.
Linear Filtering

2D Convolution

- Each output pixel is a linear combination of input pixels in neighborhood with weights prescribed by a filter.

![Diagram showing 2D convolution process](image)
Blur

Convolve with a filter whose entries sum to one

- Each pixel becomes a weighted average of its neighbors

Original

Blur

Filter =
\[
\begin{bmatrix}
\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\
\frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\
\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\
\end{bmatrix}
\]
Edge Detection

Convolve with a filter that finds differences between neighbor pixels

Original

Detect edges

Filter = \[
\begin{bmatrix}
-1 & -1 & -1 \\
-1 & +8 & -1 \\
-1 & -1 & -1 \\
\end{bmatrix}
\]
Sharpen

Sum detected edges with original image

Original

Sharpened

Filter = \[
\begin{bmatrix}
-1 & -1 & -1 \\
-1 & +9 & -1 \\
-1 & -1 & -1 \\
\end{bmatrix}
\]
Convolve with a filter that highlights gradients in particular directions

Original

Embosed

Filter =

\[
\begin{bmatrix}
-1 & -1 & 0 \\
-1 & 0 & 1 \\
0 & 1 & 1
\end{bmatrix}
\]
Non-Linear Filtering

Each output pixel is a non-linear function of input pixels in neighborhood (filter depends on input)

Original

Oil

Stain Glass
Digital Image Processing

- Changing intensity/color
 - Linear: scale, offset, etc.
 - Nonlinear: gamma, saturation, etc.
 - Add random noise

- Filtering over neighborhoods
 - Blur
 - Detect edges
 - Sharpen
 - Emboss
 - Median

- Moving image locations
 - Scale
 - Rotate
 - Warp

- Combining images
 - Composite
 - Morph

- Quantization

- Spatial / intensity tradeoff
 - Dithering
Quantization

Reduce intensity resolution

- Frame buffers have limited number of bits per pixel
- Physical devices have limited dynamic range
Uniform Quantization

\[P(x, y) = \text{round}(I(x, y)) \]
where \(\text{round}() \) chooses nearest value that can be represented.

\(I(x,y) \)

\(P(x,y) \)

(2 bits per pixel)
Uniform Quantization

Images with decreasing bits per pixel:

- 8 bits
- 4 bits
- 2 bits
- 1 bit

Notice contouring.
Reducing Effects of Quantization

• Intensity resolution / spatial resolution tradeoff

• Dithering
 o Random dither
 o Ordered dither
 o Error diffusion dither

• Halftoning
 o Classical halftoning
Dithering

Distribute errors among pixels
 - Exploit spatial integration in our eye
 - Display greater range of perceptible intensities

Original (8 bits) Uniform Quantization (1 bit) Floyd-Steinberg Dither (1 bit)
Random Dither

Randomize quantization errors

- Errors appear as noise

\[P(x, y) = \text{round}(I(x, y) + \text{noise}(x, y)) \]
Random Dither

Original
(8 bits)

Uniform
Quantization
(1 bit)

Random
Dither
(1 bit)
Ordered Dither

Pseudo-random quantization errors

- Matrix stores pattern of thresholds

\[
i = x \mod n \\
j = y \mod n \\
e = I(x,y) - \text{trunc}(I(x,y)) \\
\text{threshold} = (D(i,j)+1)/(n^2+1) \\
\begin{align*}
\text{if (e > threshold)} & \\
P(x,y) &= \text{ceil}(I(x, y)) \\
\text{else} & \\
P(x,y) &= \text{floor}(I(x,y))
\end{align*}
\]
Ordered Dither

Bayer’s ordered dither matrices

\[D_n = \begin{bmatrix} 4D_{n/2} + D_2(1,1)U_{n/2} \\ 4D_{n/2} + D_2(2,1)U_{n/2} \\ 4D_{n/2} + D_2(1,2)U_{n/2} \\ 4D_{n/2} + D_2(2,2)U_{n/2} \end{bmatrix} \]

\[D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix} \]

\[D_4 = \begin{bmatrix} 15 & 7 & 13 & 5 \\ 3 & 11 & 1 & 9 \\ 12 & 4 & 14 & 6 \\ 0 & 8 & 2 & 10 \end{bmatrix} \]
Ordered Dither

Original
(8 bits)

Random Dither
(1 bit)

Ordered Dither
(1 bit)
Error Diffusion Dither

Spread quantization error over neighbor pixels

- Error dispersed to pixels right and below
- Floyd-Steinberg weights:

\[
\frac{3}{16} + \frac{5}{16} + \frac{1}{16} + \frac{7}{16} = 1.0
\]

Figure 14.42 from H&B
Error Diffusion Dither

Original (8 bits)
Random Dither (1 bit)
Ordered Dither (1 bit)
Floyd-Steinberg Dither (1 bit)
Reducing Effects of Quantization

• Dithering
 o Random dither
 o Ordered dither
 o Error diffusion dither

➤ Halftoning
 o Classical halftoning
Classical Halftoning

Use dots of varying size to represent intensities

- Area of dots proportional to intensity in image

$I(x,y)$

$P(x,y)$
Classical Halftoning

From *Town Topics*, Princeton
Digital Halftone Patterns

Use cluster of pixels to represent intensity

Q: In this case, would we use four “halftoned” pixels in place of one original pixel?
Digital Image Processing

- Changing intensity/color
 - Linear: scale, offset, etc.
 - Nonlinear: gamma, saturation, etc.
 - Add random noise

- Filtering over neighborhoods
 - Blur
 - Detect edges
 - Sharpen
 - Emboss
 - Median

- Moving image locations
 - Scale
 - Rotate
 - Warp

- Combining images
 - Composite
 - Morph

- Quantization

- Spatial / intensity tradeoff
 - Dithering
When implementing operations that move pixels, must account for the fact that digital images are sampled versions of continuous ones.
Sampling and Reconstruction

Continuous function

Discrete samples

Sampling
Sampling and Reconstruction

Sampling

Discrete samples

Continuous function

Reconstruction

Continuous function
Sampling and Reconstruction

Figure 19.9 FvDFH
Sampling Theory

How many samples are enough?

- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?
Sampling Theory

What happens when use too few samples?

- Aliasing

Figure 14.17 FvDFH
Sampling Theory

What happens when use too few samples?

- Aliasing
Sampling Theory

How many samples are enough to avoid aliasing?

- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?
Sampling Theory

How many samples are enough to avoid aliasing?

- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?
Sampling Theory

How many samples are enough to avoid aliasing?

- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?
Sampling Theory

How many samples are enough to avoid aliasing?

- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?
Sampling Theory

How many samples are enough to avoid aliasing?

- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?
Spectral Analysis

- **Spatial domain:**
 - Function: $f(x)$
 - Filtering: convolution

- **Frequency domain:**
 - Function: $F(u)$
 - Filtering: multiplication

Any signal can be written as a sum of periodic functions.
Fourier Transform

\[f(x) \]

\[|F(u)| \]

Figure 2.6 Wolberg
Fourier Transform

- Fourier transform:

\[F(u) = \int_{-\infty}^{\infty} f(x) e^{-i2\pi xu} \, dx \]

- Inverse Fourier transform:

\[f(x) = \int_{-\infty}^{\infty} F(u) e^{+i2\pi ux} \, du \]
Sampling Theorem

• A signal can be reconstructed from its samples, if the original signal has no frequencies above 1/2 the sampling frequency - Shannon

• The minimum sampling rate for bandlimited function is called “Nyquist rate”

A signal is bandlimited if its highest frequency is bounded. The frequency is called the bandwidth.
Image Processing

- Consider reducing the image resolution

Original image

1/4 resolution
Image Processing

- Image processing is a resampling problem
Sampling Theorem

- A signal can be reconstructed from its samples, if the original signal has no frequencies above 1/2 the sampling frequency - Shannon

Aliasing will occur if the signal is under-sampled

Figure 14.17 FvDFH
Aliasing

- In general:
 - Artifacts due to under-sampling or poor reconstruction

- Specifically, in graphics:
 - Spatial aliasing
 - Temporal aliasing

Under-sampling

Figure 14.17 FvDFH
Spatial Aliasing

Artifacts due to limited spatial resolution
Spatial Aliasing

Artifacts due to limited spatial resolution

“Jaggies”
Temporal Aliasing

Artifacts due to limited temporal resolution
- Strobing
- Flickering
Temporal Aliasing

Artifacts due to limited temporal resolution

- Strobing
- Flickering
Temporal Aliasing

Artifacts due to limited temporal resolution
- Strobing
- Flickering
Temporal Aliasing

Artifacts due to limited temporal resolution

- Strobing
- Flickering
Antialiasing

- Sample at higher rate
 - Not always possible
 - Doesn’t always solve problem

- **Pre-filter** to form bandlimited signal
 - Form bandlimited function using low-pass filter
 - Trades aliasing for blurring
Image Processing

Real world

Sample

Discrete samples (pixels)

Reconstruct

Reconstructed function

Transform

Transformed function

Filter

Bandlimited function

Sample

Discrete samples (pixels)

Reconstruct

Display
Image Processing

Real world

Sample
Discrete samples (pixels)

Reconstruct
Reconstructed function

Transform
Transformed function

Filter
Bandlimited function

Sample
Discrete samples (pixels)

Reconstruct

Display

Continuous Function
Image Processing

- Real world
- Sample → Discrete samples (pixels)
- Reconstruct → Reconstructed function
- Transform → Transformed function
- Filter → Bandlimited function
- Sample → Discrete samples (pixels)
- Reconstruct → Display

Discrete Samples
Image Processing

Real world

Sample
Discrete samples (pixels)

Reconstruct
Reconstructed function

Transform
Transformed function

Filter
Bandlimited function

Sample
Discrete samples (pixels)

Reconstruct
Display

Reconstructed Function
Image Processing

Real world

Sample

Discrete samples (pixels)

Reconstruct

Reconstructed function

Transform

Transformed function

Filter

Bandlimited function

Sample

Discrete samples (pixels)

Reconstruct

Display

Transformed Function
Image Processing

- Real world
 - Sample
 - Discrete samples (pixels)
 - Reconstruct
 - Reconstructed function
 - Transform
 - Transformed function
 - Filter
 - Bandlimited function
 - Sample
 - Discrete samples (pixels)
 - Reconstruct
 - Display

Bandlimited Function
Image Processing

Real world

Sample

Discrete samples (pixels)

Reconstruct

Reconstructed function

Transform

Transformed function

Filter

Bandlimited function

Sample

Discrete samples (pixels)

Reconstruct

Display
Image Processing

Real world

Sample

Discrete samples (pixels)

Reconstruct

Reconstructed function

Transform

Transformed function

Filter

Bandlimited function

Sample

Discrete samples (pixels)

Reconstruct

Display
Ideal Bandlimiting Filter

- Frequency domain

- Spatial domain

\[Sinc(x) = \frac{\sin \pi x}{\pi x} \]

Figure 4.5 Wolberg
Practical Image Processing

- Finite low-pass filters
 - Point sampling (bad)
 - Box filter
 - Triangle filter
 - Gaussian filter

Diagram:

```
Real world
    ↓
Sample
    ↓
Discrete samples (pixels)
    ↓
Reconstruct
    ↓
Reconstructed function
    ↓
Transform
    ↓
Transformed function
    ↓
Filter
    ↓
Bandlimited function
    ↓
Sample
    ↓
Discrete samples (pixels)
    ↓
Reconstruct
    ↓
Display
```

Convolution
Scaling

- Resample with triangle or Gaussian filter

Original

1/4X resolution

4X resolution
Summary

• Image filtering
 o Compute new values for image pixels based on function of old values

• Halftoning and dithering
 o Reduce visual artifacts due to quantization
 o Distribute errors among pixels
 » Exploit spatial integration in our eye

• Sampling and reconstruction
 o Reduce visual artifacts due to aliasing
 o Filter to avoid undersampling
 » Blurring is better than aliasing