
COS 423 Problem Set 5 Due Wednesday April 13 11AM

Spring 2011

Tarjan

No collaboration on Problems 1 and 4; collaboration allowed on 2 and 3.

1. The following “proof” of correctness of the two-way strong components algorithm (Lecture

15) appears in at least two textbooks. The proof is not correct. Find the error: give a graph, and

a run of the algorithm on the graph, for which some statement in the proof is false. Brackets are

my added clarifications. Double brackets provide a missing explanation; this is not where the

bug in the proof is.

“We have claimed that the vertices of a strongly connected component correspond precisely to

the vertices of a tree in the spanning forest of the second depth-first search [the backward

search]. To see why, observe that if v and w are vertices in the same strongly connected

component, then there are paths in G from v to w and from w to v…

Suppose that in the [second] depth-first search of G, we begin a search at some root x and reach

either v or w. Since v and w are reachable from each other, both v and w will end up in the

spanning tree with root x. [[This argument is incomplete. Here is the missing part. Suppose v or

w is visited during the search backward from x. If any vertex on the cycle consisting of the path

from v to w followed by the path from w to v is visited during an earlier backward search from a

different root, then both v and w would have been visited during that search (or even earlier) as

well. Thus all vertices on the cycle are unvisited when the search from x starts, and they will all

be visited during the search from x, including both v and w.]]

Now suppose v and w are in the same spanning tree of the depth-first spanning forest [generated

by the backward search]. We must show that v and w are in the same strongly connected

component. Let x be the root of the [backward] spanning tree containing v and w. Since v is a

descendant of x, there exists…a path from v to x.

In the construction of the [backward] spanning forest, vertex v was still unvisited when the

depth-first search at x was initiated. Thus x has a higher [postorder] number than v, so in the

[forward] depth-first search of G, the recursive call at v terminated before the recursive call at x

did. But in the [forward]… search…, the search [from] v could not have started before [the

search from] x, since the path in G from v to x would then imply that the search [from] x would

start and end before the search [from] v ended.

We conclude that in the [forward] search, v is visited during the search [from] x and hence v is a

descendant of x in the [forward] depth-first spanning forest… Thus there exists a path from x to

v in G. Therefore x and v are in the same strongly connected component. An identical argument

shows that x and w are in the same strongly connected component and hence v and w are in the

same strongly connected component, as shown by the path from v to x to w and the path from w

to x to v.”

2. We can define the blocks of an undirected graph without reference to cut vertices, as follows:

The blocks are the subgraphs whose edge sets are the finest partition of the edges such that two

edges on a common simple cycle (no repeated vertices) are in the same block of the partition.

(a) Prove that if edges (u, v) and (w, x) are on a simple cycle, and edges (w, x) and (y, z) are on a

(possibly different) simple cycle, then there is a simple cycle containing (u, v) and (y, z). Use

this to show that two edges are in the same block if and only if they are on a common simple

cycle.

In the remaining parts of the problem, assume we are given a connected graph G and we do a

depth-first search of G, generating a DFS tree T and directing each edge along the direction of

the first advance during the search.

(b) Show that each block has a unique tree arc (x, y) which is the first arc traversed in the block

and is such that (i) every vertex in the block other than x is a descendant of y; and (ii) if a vertex

v other than x is in the block, then every tree arc on the tree path from y to v is in the block.

(c) Prove that the DFS algorithm for computing blocks presented in lecture is correct. That is,

each block receives a distinct number greater than n, and an edge (v, w) is in the block whose

number is min{pre(v), pre(w)}. Hint: You may wish to assume that, instead of putting vertices

on stacks R and S, the algorithm puts the corresponding tree arcs on R and S. This may make it

easier to reason about the correctness of the algorithm. You will want to prove that the algorithm

maintains an invariant relating the blocks of the edges traversed so far to the contents of the

stacks R and S.

3. We define the strong blocks of a directed graph to be the subgraphs whose arc sets are the

finest partition of the arcs such that two arcs on a common simple cycle are in the same block of

the partition.

(a) Give an example to show that (unlike the undirected case (2a)) there is a directed graph in

which there are three arcs (u, v), (w, x), and (y, z) such that (u, v) and (w, x) are on a common

simple cycle, and (w, x) and (y, z) are on a common simple cycle, but no simple cycle contains

both (u, v) and (y, z).

(b) Give an O(n + m)-time algorithm to find the strong blocks of a given directed graph. You

may use any of the algorithms discussed in class. Hint: prove that the strong blocks can be found

using the following approach: First, find the strong components. Next, within each strong

component, ignore the arc directions and find the blocks of the resulting undirected graph.

4. A depth-first search of the following directed graph is performed and results

numbering in the figure. We identify vertices by their preorder numbers.

(a) Identify the type of each arc: tree, forward, back (cycle), or cross.

(b) Give the semi-dominator, relative dominator, and immediate dominator of each vertex.

the dominator tree.

following approach: First, find the strong components. Next, within each strong

component, ignore the arc directions and find the blocks of the resulting undirected graph.

first search of the following directed graph is performed and results in the p

dentify vertices by their preorder numbers.

(a) Identify the type of each arc: tree, forward, back (cycle), or cross.

dominator, relative dominator, and immediate dominator of each vertex.

following approach: First, find the strong components. Next, within each strong

component, ignore the arc directions and find the blocks of the resulting undirected graph.

in the preorder

dominator, relative dominator, and immediate dominator of each vertex. Draw

