
COS 423                                    Optional Problem Set                                    Due Tuesday May 10 

Spring 2011 

Tarjan 

 

No collaboration.  If you choose, you may turn this problem set in as a replacement for any 

single previous problem set.  PLEASE INDICATE WHICH PREVIOUS PROBLEM SET YOU 

WISH TO REPLACE. 

 

A twin heap is an implicit data structure consisting of a pair of heaps, one a min-heap, the other a 

max-heap, stored in a single two-dimensional array H(i, j),  with i > 0 and  j in {0, 1}.  The 

children of H(i, j) are H(2i, j) and H(2i + 1, j); the parent of H(i, j) is H(i div 2, j).  The slots of H 

are filled in the order H(1,0), H(1, 1), H(2, 0), H(2, 1), H(3, 0), H(3, 1),… and emptied in the 

opposite order.  The slots with j = 0 form a min-heap and those with j = 1 form a max-heap: H(i, 

0) ≥ H(i div 2, 0) and H(i, 1) ≤ H(i div 2, 1).  Your goal is to explore two different ways of tying 

the min-heap and the max-heap together. 

 

1. A min-max twin heap is a twin heap with the additional constraint that H(i, 0) ≤ H(i, 1) for all 

i.  Give algorithms for returning a minimum value, returning a maximum value, inserting a 

value, and deleting a value (given its position) in a min-max twin heap.  Your algorithms for 

returning a minimum or maximum value should take O(1) time worst-case.  Your algorithms for 

inserting or deleting a value should take O(lgn) time worst-case, where n is the number of values 

in the heap.  Give the best bounds you can (including constant factors) for the number of binary 

comparisons between values required for each of these operations. 

 

2. A median twin heap is a twin heap with the additional constraint that H(1, 0) ≥ H(1, 1) (and 

without the constraint in Problem 1).  Give algorithms for returning the median of the values in 

the heap, for inserting a value, and for deleting a value (given its position) in a median twin 

heap.  Your algorithm for returning the median should take O(1) time worst-case; your insertion 

and deletion algorithms should take O(lgn) time worst-case.  Give the best bounds you can 

(including constant factors) for the number of binary comparisons between values required for 

each of these operations. 

 

3. Consider the preflow push algorithm for computing a maximum flow (described in Lecture 

21).  A variant that we did not analyze is that of always choosing a vertex of highest label from 

which to do a push, or to label if such a push is not possible. 

 

(a) Give an implementation of the highest-label selection rule such that the total running time 

of the algorithm with this rule is O(nm)  plus O(1) per non-saturating push. 

 



(b) Give a careful and complete proof that with this rule the number of non-saturating pushes is 

O(n
2
m

1/2
).  Make the constant factor in your bound as small as you can.  Here is one way to 

obtain such a bound.  Define the potential of an active vertex v to be the number of vertices 

(active or not) whose label is no higher than that of v.  Define a large push to be a nonsaturating 

push that happens when there are at least k active vertices of maximum label; all other non-

saturating pushes are small.  Here k is a parameter whose value you are free to choose.  Define 

a phase to consist of all pushes that take place between changes in the maximum of the labels 

of active vertices.  Prove that the number of phases is O(n
2
) (get the best constant factor you 

can), that the number of small pushes per phase is at most k, and that any big push decreases 

the potential by at least k.  Prove that the total increase in potential caused by labeling steps 

and saturating pushes is O(n
2
m) (with the best constant factor you can).  Finally, combine these 

results with a good choice of k to get the desired bound on the number of non-saturating 

pushes.     


