
COS 423 Lecture 9

Shortest Paths IIShortest Paths II

©Robert E. Tarjan 2011

Non-negative arc lengths

Use greedy method:

Shortest-first scanning (Dijkstra’s algorithm): Shortest-first scanning (Dijkstra’s algorithm):

Scan a labeled vertex v with d(v) minimum,

breaking a tie arbitrarily.

L = s:0 scan s

a
d e

c

f

b

30

5

1840

25

251

3

6

14
22

18

6
0

12

16

11

40

2 0

s

j

g h

k

m

l

i

t

n

18

16

10

40

7

12

16

2

48

8

14

20

14

6
0

5

4

22

18 12

12

15

S = s:0 scan a

L = a:3, j:16, g:22

a
d e

c

f

b

30

5

1840

25

251

3

6

14
22

18

6
0

12

16

11

40

2 0

s

j

g h

k

m

l

i

t

n

18

16

10

40

7

12

16

2

48

8

14

20

14

6
0

5

4

22

18 12

12

15

S = s:0, a:3 scan d

L = d:9, j:16, g:21

a
d e

c

f

b

30

5

1840

25

251

3

6

14
22

18

6
0

12

16

11

40

2 0

s

j

g h

k

m

l

i

t

n

18

16

10

40

7

12

16

2

48

8

14

20

14

6
0

5

4

22

18 12

12

15

S = s:0, a:3, d:9 scan h

L = h:9, j:16, g:21, k:21, e:25

a
d e

c

f

b

30

5

25

251

3

6

14

18

6
0

16

11

40

2 0

s

j

g h

k

m

l

i

t

n

18

16

10

40

7

12

253

16

2

48

8

14

20

14

6
0

5

4

22

18 12

12

15

11 2 0

S = s:0, a:3, d:9, h:9 scan j

L = j:16, g:21, k:21, e:25, i:29

a
d e

c

f

b

30

5

25

251

3

6

14

18

6
0

16

11

40

2 0

s

j

g h

k

m

l

i

t

n

18

16

10

40

7

12

253

16

2

48

8

14

20

14

6
0

5

4

22

18 12

12

15

11 2 0

S = s:0, a:3, d:9, h:9, j:16 scan g…

L = g:20, k:21, e:25, i:29

a
d e

c

f

b

30

5

25

251

3

6

14

18

6
0

16

11

40

2 0

s

j

g h

k

m

l

i

t

n

18

16

10

40

7

12

253

16

2

48

8

14

20

14

6
0

5

4

22

18 12

12

15

11 2 0

Lemma 1: If arc lengths are non-negative,

shortest-first scanning maintains the invariant

that d(x) ≤ d(y) if x is scanned and y is labeled.

Proof: By induction on number of scans. True

initially. Suppose true before scan of v. If d(v)

+ c(v, w) < d(w), d(v) < d(w) since c(v, w) ≥ 0.

By the choice of v to scan, w must be

unlabeled or labeled. After d(w) is decreased

to d(v) + c(v, w), d(v) ≤ d(w). Thus the scan

preserves the invariant that if x is labeled, d(v)

≤ d(x), and the lemma remains true when v is

moved to S.

Theorem 1: If arc lengths are non-negative,

shortest-first scanning scans each vertex at

most once.

Implementation: L = heap, key of v = d(v)

find v to scan: delete-min(L)find v to scan: delete-min(L)

label(w): after decreasing d(w),

if w ∈ U then insert(w, L)

else (w ∈ L) decrease-key(w, d(w), L)

≤n inserts, ≤n delete-mins, ≤m decrease-keys

L = implicit heap or pairing heap: O(mlgn)

L = rank-pairing heap: O(m + nlgn)

No cycles

topological order of vertices: (v, w) ∈ A

→ v before w

graph is acyclic ↔ ∃ topological order

Can find a topological order or a cycle in O(m)

time: graph search, later lecture

Topological scanning: scan vertices in topological

order: each vertex scanned once, O(m) time

Scan s, a, j, g, d, e, b, c, k, l, m, h, i, n, f, t

a
d e

c

f

b

30

–15

1840

25

25

3

6

22

18

–6

12

16

11

40

2 0

s

j

g h

k

m

l

i

t

n

18

16

10

40

–27

12

–16

–20

48

8
20

6
–10

5

4

22

18 12

12

15

Arc-length transform

Let π be any real-valued function on vertices

Reduced length of (v, w):

cπ(v, w) = c(v, w) + π(v) – π(w)

If P is a path, cπ(P) = sum of cπ on arcs of P

If P is from v to w, c (P) = c(P) + π(v) – π(w)If P is from v to w, cπ(P) = c(P) + π(v) – π(w)

→ replacing c by cπ preserves shortest paths,

although in general it changes their lengths

If C is a cycle, cπ(C) = c(C)

→ replacing c by cπ preserves cycle lengths

Goal: find a π that makes all arc lengths non-

negative

Solution: Single-source shortest distances via

breadth-first scanning

Create a dummy source s with arcs of length 0 to

all other vertices (to guarantee reachability)all other vertices (to guarantee reachability)

Find shortest distances from s to all vertices

If no negative cycle, let π = d:

cπ(v, w) = c(v, w) + d(v) – d(w) ≥ 0

Special case of linear programming duality

All-pairs shortest paths

Transform arc lengths so non-negative via

breadth-first scanning

For each source, solve a single-source problem

with non-negative arc lengths via shortest-first with non-negative arc lengths via shortest-first

scanning

Undo arc length transform

Time = O(n(nlgn + m))

Alternative all-pairs algorithm

(Floyd-Williams)

Dynamic programming:

For each vertex pair u, w maintain

d(u, w) = length of shortest path from u to d(u, w) = length of shortest path from u to

w found so far

Process vertices one-by-one. To process v,

consider paths containing v.

for u ∈ V do for w ∈ V do

if u = w then d(u, w) ← 0

else if (u, w) ∈ A then d(u, w) ← c(u, w)

else d(u, w) ← ∞else d(u, w) ← ∞

for v ∈ V do for u ∈ V do for w ∈ V do

d(u, w) = min{d(u, w), d(u, v) + d(v, w)}

When the algorithm stops, if d(v, v) < 0 for some

v, there is a negative cycle containing v;

otherwise, d(u, w) is the length of a shortest

path from u to w.

The algorithm is very simple but its running time

is Θ(n3): takes no advantage of sparsity (few is Θ(n3): takes no advantage of sparsity (few

arcs)

To exploit sparsity, only iterate over finite

entries. Resembles Gaussian elimination;

indeed, Gaussian elimination can be used to

find shortest paths.

Single-pair shortest paths

Goal: find a shortest path from s to t

Assume no non-negative arc lengths

One-way search: Do shortest-first scanning

forward from s until t is deleted from L, or do forward from s until t is deleted from L, or do

shortest-first scanning backward from t until s

is deleted from L

Two-way search: Do shortest-first scanning

forward from s and backward from t

concurrently.

Stopping condition for two-way search

Let d(v) and d’(v) be computed distance of v

from s and to t, respectively

Stop when some v has been deleted from both

heaps (both d(v) and d’(v) are exact). The heaps (both d(v) and d’(v) are exact). The

length of a shortest path from s to t is

min{d(x) + d’(x)| x ∈ V}

(not necessarily d(v) + d’(v))

Exercise: prove this

One-way heuristic search

Goal: avoid examining vertices of the graph other

than those on a shortest path from s to t

Method: use an easy-to-compute estimate e(v) of

the distance from v to t to help guide shortest-

first scanning from s: key of v in heap is d(v) +

e(v). (e(v) = 0 is Dijkstra’s algorithm)

Normalization: e(t) = 0

Examples

15 puzzle: e = number of misplaced tiles

more accurate: e = sum of manhattan

distances of tiles to correct positionsdistances of tiles to correct positions

Road network, lengths are distances

e = straight-line distance (“as the crow flies”)

What must hold of e so that one scan per vertex

suffices?

safety: e(v) ≤ c(v, w) + e(w) for (v, w) ∈ A

If e is safe and e(t) = 0, e(v) ≤ c(P) for any path P

from v to tfrom v to t

Exercise: prove this

If e is safe, d(v) when v is first scanned is the

length of a shortest path from s to v

Exercise: prove this

