COS 423 Lecture 9
Shortest Paths II

©Robert E. Tarjan 2011
Non-negative arc lengths

Use greedy method:

Shortest-first scanning (Dijkstra’s algorithm): Scan a labeled vertex v with $d(v)$ minimum, breaking a tie arbitrarily.
\[L = s:0 \quad \text{scan } s \]
$S = s:0$

scan a

$L = a:3, j:16, g:22$
$S = s:0, a:3$ \hspace{1cm} \textit{scan} \ d$

$L = d:9, j:16, g:21$
$S = s:0, a:3, d:9 \quad \text{scan} \ h$

$L = h:9, j:16, g:21, k:21, e:25$
\[S = s:0, a:3, d:9, h:9 \]
\[L = j:16, g:21, k:21, e:25, i:29 \]
\[S = s:0, a:3, d:9, h:9, j:16 \]
\[L = g:20, k:21, e:25, i:29 \]
Lemma 1: If arc lengths are non-negative, shortest-first scanning maintains the invariant that \(d(x) \leq d(y)\) if \(x\) is scanned and \(y\) is labeled.

Proof: By induction on number of scans. True initially. Suppose true before scan of \(v\). If \(d(v) + c(v, w) < d(w)\), \(d(v) < d(w)\) since \(c(v, w) \geq 0\). By the choice of \(v\) to scan, \(w\) must be unlabeled or labeled. After \(d(w)\) is decreased to \(d(v) + c(v, w)\), \(d(v) \leq d(w)\). Thus the scan preserves the invariant that if \(x\) is labeled, \(d(v) \leq d(x)\), and the lemma remains true when \(v\) is moved to \(S\).
Theorem 1: If arc lengths are non-negative, shortest-first scanning scans each vertex at most once.

Implementation: $L = \text{heap}$, key of $v = d(v)$

find v to scan: $\text{delete-min}(L)$

$\text{label}(w)$: after decreasing $d(w)$,

if $w \in U$ then $\text{insert}(w, L)$

else ($w \in L$) $\text{decrease-key}(w, d(w), L)$
\(\leq n \) inserts, \(\leq n \) delete-mins, \(\leq m \) decrease-keys

\(L = \) implicit heap or pairing heap: \(O(mlgn) \)
\(L = \) rank-pairing heap: \(O(m + nlgn) \)
No cycles

topological order of vertices: \((v, w) \in A\)

\(\rightarrow v\) before \(w\)

graph is acyclic \(\iff\) \(\exists\) topological order

Can find a topological order or a cycle in \(O(m)\) time: graph search, later lecture

Topological scanning: scan vertices in topological order: each vertex scanned once, \(O(m)\) time
Scan s, a, j, g, d, e, b, c, k, l, m, h, i, n, f, t
Arc-length transform

Let π be any real-valued function on vertices

Reduced length of (v, w):

$$c_{\pi}(v, w) = c(v, w) + \pi(v) - \pi(w)$$

If P is a path, $c_{\pi}(P) =$ sum of c_{π} on arcs of P

If P is from v to w, $c_{\pi}(P) = c(P) + \pi(v) - \pi(w)$

→ replacing c by c_{π} preserves shortest paths, although in general it changes their lengths

If C is a cycle, $c_{\pi}(C) = c(C)$

→ replacing c by c_{π} preserves cycle lengths
Goal: find a \(\pi \) that makes all arc lengths non-negative

Solution: Single-source shortest distances via breadth-first scanning

Create a dummy source \(s \) with arcs of length 0 to all other vertices (to guarantee reachability)

Find shortest distances from \(s \) to all vertices

If no negative cycle, let \(\pi = d \):

\[
c_\pi(v, w) = c(v, w) + d(v) - d(w) \geq 0
\]

Special case of linear programming duality
All-pairs shortest paths

Transform arc lengths so non-negative via breadth-first scanning

For each source, solve a single-source problem with non-negative arc lengths via shortest-first scanning

Undo arc length transform

Time = \(O(n(n\log n + m)) \)
Alternative all-pairs algorithm (Floyd-Williams)

Dynamic programming:

For each vertex pair \(u, w \) maintain

\[d(u, w) = \text{length of shortest path from } u \text{ to } w \text{ found so far} \]

Process vertices one-by-one. To process \(v \), consider paths containing \(v \).
for $u \in V$ do for $w \in V$ do
 if $u = w$ then $d(u, w) \leftarrow 0$
 else if $(u, w) \in A$ then $d(u, w) \leftarrow c(u, w)$
 else $d(u, w) \leftarrow \infty$

for $v \in V$ do for $u \in V$ do for $w \in V$ do
 $d(u, w) = \min\{d(u, w), d(u, v) + d(v, w)\}$
When the algorithm stops, if $d(v, v) < 0$ for some v, there is a negative cycle containing v; otherwise, $d(u, w)$ is the length of a shortest path from u to w.

The algorithm is very simple but its running time is $\Theta(n^3)$: takes no advantage of sparsity (few arcs)

To exploit sparsity, only iterate over finite entries. Resembles *Gaussian elimination*; indeed, Gaussian elimination can be used to find shortest paths.
Single-pair shortest paths

Goal: find a shortest path from s to t
Assume no non-negative arc lengths

One-way search: Do shortest-first scanning forward from s until t is deleted from L, or do shortest-first scanning backward from t until s is deleted from L

Two-way search: Do shortest-first scanning forward from s and backward from t concurrently.
Stopping condition for two-way search

Let $d(v)$ and $d'(v)$ be computed distance of v from s and to t, respectively.

Stop when some v has been deleted from both heaps (both $d(v)$ and $d'(v)$ are exact). The length of a shortest path from s to t is

$$\min\{d(x) + d'(x) \mid x \in V\}$$

(not necessarily $d(v) + d'(v)$)

Exercise: prove this
One-way heuristic search

Goal: avoid examining vertices of the graph other than those on a shortest path from s to t

Method: use an easy-to-compute estimate $e(v)$ of the distance from v to t to help guide shortest-first scanning from s: key of v in heap is $d(v) + e(v)$. ($e(v) = 0$ is Dijkstra’s algorithm)

Normalization: $e(t) = 0$
Examples

15 puzzle: $e = \text{number of misplaced tiles}$
more accurate: $e = \text{sum of manhattan distances of tiles to correct positions}$

Road network, lengths are distances $e = \text{straight-line distance ("as the crow flies")}$
What must hold of e so that one scan per vertex suffices?

safety: $e(v) \leq c(v, w) + e(w)$ for $(v, w) \in A$

If e is safe and $e(t) = 0$, $e(v) \leq c(P)$ for any path P from v to t

Exercise: prove this

If e is safe, $d(v)$ when v is first scanned is the length of a shortest path from s to v

Exercise: prove this