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Shortest Paths IIShortest Paths II

©Robert E. Tarjan 2011



Non-negative arc lengths

Use greedy method:

Shortest-first scanning (Dijkstra’s algorithm): Shortest-first scanning (Dijkstra’s algorithm): 

Scan a labeled vertex v with d(v) minimum, 

breaking a tie arbitrarily.



L = s:0 scan s
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S = s:0                          scan a

L = a:3, j:16, g:22
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S = s:0, a:3 scan d 

L = d:9, j:16, g:21
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S = s:0, a:3, d:9 scan h 

L = h:9, j:16, g:21, k:21, e:25
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S = s:0, a:3, d:9, h:9 scan j 

L = j:16, g:21, k:21, e:25, i:29
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S = s:0, a:3, d:9, h:9, j:16 scan g… 

L = g:20, k:21, e:25, i:29
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Lemma 1: If arc lengths are non-negative, 

shortest-first scanning maintains the invariant 

that d(x) ≤ d(y) if x is scanned and y is labeled.

Proof: By induction on number of scans.  True 

initially.  Suppose true before scan of v.  If d(v) 

+ c(v, w) < d(w), d(v) < d(w) since c(v, w) ≥ 0.  

By the choice of v to scan, w must be 

unlabeled or labeled.  After d(w) is decreased 

to d(v) + c(v, w), d(v) ≤ d(w).  Thus the scan 

preserves the invariant that if x is labeled, d(v) 

≤ d(x), and the lemma remains true when v is 

moved to S.



Theorem 1: If arc lengths are non-negative, 

shortest-first scanning scans each vertex at 

most once.

Implementation: L = heap, key of v = d(v)

find v to scan: delete-min(L)find v to scan: delete-min(L)

label(w): after decreasing d(w),

if w ∈ U then insert(w, L)

else (w ∈ L) decrease-key(w, d(w), L)                       



≤n inserts, ≤n delete-mins, ≤m decrease-keys

L = implicit heap or pairing heap: O(mlgn)

L = rank-pairing heap: O(m + nlgn)



No cycles

topological order of vertices: (v, w) ∈ A

→ v before w

graph is acyclic ↔ ∃ topological order

Can find a topological order or a cycle in O(m) 

time: graph search, later lecture

Topological scanning: scan vertices in topological 

order: each vertex scanned once, O(m) time



Scan s, a, j, g, d, e, b, c, k, l, m, h, i, n, f, t 
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Arc-length transform

Let π be any real-valued function on vertices

Reduced length of (v, w):

cπ(v, w) = c(v, w) + π(v) – π(w)

If P is a path, cπ(P) = sum of cπ on arcs of P

If P is from v to w, c (P) = c(P) + π(v) – π(w)If P is from v to w, cπ(P) = c(P) + π(v) – π(w)

→ replacing c by cπ preserves shortest paths, 

although in general it changes their lengths

If C is a cycle, cπ(C) = c(C)

→ replacing c by cπ preserves cycle lengths



Goal: find a π that makes all arc lengths non-

negative

Solution: Single-source shortest distances via 

breadth-first scanning

Create a dummy source s with arcs of length 0 to 

all other vertices (to guarantee reachability)all other vertices (to guarantee reachability)

Find shortest distances from s to all vertices

If no negative cycle, let π = d:

cπ(v, w) = c(v, w) + d(v) – d(w) ≥ 0

Special case of linear programming duality



All-pairs shortest paths

Transform arc lengths so non-negative via 

breadth-first scanning

For each source, solve a single-source problem 

with non-negative arc lengths via shortest-first with non-negative arc lengths via shortest-first 

scanning

Undo arc length transform

Time = O(n(nlgn + m))



Alternative all-pairs algorithm

(Floyd-Williams)

Dynamic programming:

For each vertex pair u, w maintain

d(u, w) = length of shortest path from u to d(u, w) = length of shortest path from u to 

w found so far

Process vertices one-by-one.  To process v,   

consider paths containing v.



for u ∈ V do for w ∈ V do

if u = w then d(u, w) ← 0

else if (u, w) ∈ A then d(u, w) ← c(u, w)

else d(u, w) ← ∞else d(u, w) ← ∞

for v ∈ V do for u ∈ V do for w ∈ V do

d(u, w) = min{d(u, w), d(u, v) + d(v, w)}



When the algorithm stops, if d(v, v) < 0 for some 

v, there is a negative cycle containing v; 

otherwise, d(u, w) is the length of a shortest 

path from u to w.          

The algorithm is very simple but its running time 

is Θ(n3): takes no advantage of sparsity (few is Θ(n3): takes no advantage of sparsity (few 

arcs)

To exploit sparsity, only iterate over finite 

entries.  Resembles Gaussian elimination; 

indeed, Gaussian elimination can be used to 

find shortest paths.     



Single-pair shortest paths

Goal: find a shortest path from s to t

Assume no non-negative arc lengths

One-way search: Do shortest-first scanning 

forward from s until t is deleted from L, or do forward from s until t is deleted from L, or do 

shortest-first scanning backward from t until s 

is deleted from L

Two-way search: Do shortest-first scanning 

forward from s and backward from t

concurrently.



Stopping condition for two-way search

Let d(v) and d’(v) be computed distance of v

from s and to t, respectively

Stop when some v has been deleted from both 

heaps (both d(v) and d’(v) are exact).  The heaps (both d(v) and d’(v) are exact).  The 

length of a shortest path from s to t is

min{d(x) + d’(x)| x ∈ V}

(not necessarily d(v) + d’(v))

Exercise: prove this



One-way heuristic search

Goal: avoid examining vertices of the graph other 

than those on a shortest path from s to t

Method: use an easy-to-compute estimate e(v) of 

the distance from v to t to help guide shortest-

first scanning from s: key of v in heap is d(v) + 

e(v).  (e(v) = 0 is Dijkstra’s algorithm)

Normalization: e(t) = 0



Examples

15 puzzle: e = number of misplaced tiles

more accurate: e = sum of manhattan

distances of tiles to correct positionsdistances of tiles to correct positions

Road network, lengths are distances

e = straight-line distance (“as the crow flies”)



What must hold of e so that one scan per vertex 

suffices?

safety: e(v) ≤ c(v, w) + e(w) for (v, w) ∈ A

If e is safe and e(t) = 0, e(v) ≤ c(P) for any path P

from v to tfrom v to t

Exercise: prove this

If e is safe, d(v) when v is first scanned is the 

length of a shortest path from s to v

Exercise: prove this


