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Directed graph with arc weights
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path weight = sum of arc weights along path

Goal: find a minimum-weight path from s to t, 
for given pairs of vertices s, t

weights: costs, travel times, lengths,…weights: costs, travel times, lengths,…

Henceforth think of weights as lengths;

a minimum-weight path is shortest (but we  
allow negative lengths) 



Path s, g, d, e, f, t

Length 22 + 2 + 16 + 30 + 18 = 88

Shortest?
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Versions of shortest path problem

Single pair: from one s to one t

Single source: from one s to each possible t

Single sink: from each possible s to one t

All pairs: from each possible s to each possible t

Single-source problem is central:

equivalent to single-sink problem (reverse arc 

directions)

all pairs = n single-source problems

single-pair algorithms at least partially solve a  

single-source (or single-sink) problem 



Special cases

Graph is undirected

Graph is planar

No negative arcsNo negative arcs

No cycles



Negative cycles

A negative cycle is a cycle whose total length is 

negative.

If there are no negative cycles and there is someIf there are no negative cycles and there is some

path from s to t (t is reachable from s), then 

there is a shortest path from s to t that is 

simple (it contains no repeated vertices):  

deletion of a cycle from the path does not 

increase the length of the path.



If a negative cycle is reachable from s, then 

there are arbitrarily short paths from s to 

every vertex on the cycle: just repeat the 

cycle.

If there are negative cycles, the problem of 

finding a shortest simple path is NP-hard.finding a shortest simple path is NP-hard.

Revised goal: Find a shortest path from s to t for 

each of the given pairs s, t, or find a negative 

cycle. 



In some applications, negative cycles are good, 

and the goal is to find one.

Currency arbitrage: find a money-making cycle 

of currency trades

$1 = ¥83.1724      ¥1 = £0.00741115 $1 = ¥83.1724      ¥1 = £0.00741115 

£1 = €1.18694      €1 =  $1.3668

Does trading $  for ¥ for £ for € for $ (or some 

other cycle of trades) make money?



Graph:  vertices are currencies, arcs are currency 

conversions, weights are exchange rates

Value of cycle: product of exchange rates around 

cycle

money-making ↔ value > 1

Transform: arc length = –lg(exchange rate)

value > 1 ↔ cycle length < 0



Notation

G = (V, A): graph with vertex set V and arc set A

n = |V|, m = |A|, assume n > 1

s: source vertex for single-source or single-pair 

problemproblem

t: target vertex for single-sink or single-pair 

problem

(v, w): arc from v to w

c(v, w) = length of arc (v, w)

c(P) = length of path P



Single–source problem: find shortest paths from 

s to each vertex reachable from s, or find a 

negative cycle reachable from s.

Method: iterative improvement.  For each vertex 

v, maintain the length d(v) of the shortest v, maintain the length d(v) of the shortest 

path from s to v found so far.  Look for shorter 

paths by repeatedly examining arcs (v, w).  If 

d(v) + c(v, w) < d(w), there is a shorter path to 

w: decrease d(w) to d(v) + c(v, w).  Stop when 

no such improvement is possible. 



Labeling algorithm

for w ∈ V do d(w) ← ∞; d(s) ← 0; 

while ∃(v, w) ∈ A ∋ d(v) + c(v, w) < d(w) do

label(w): d(w) ← d(v) + c(v, w)label(w): d(w) ← d(v) + c(v, w)

Each iteration of the while loop is a labeling step.

(The Operations Research literature calls such a 

step a relaxation of (v, w).) 



Lemma 1: The labeling algorithm maintains the 

invariant that if d(w) < ∞, w is reachable from s, 

and d(w) is the length of a path from s to w.

Proof: For each assignment to d(w) we define a 

path P(w, d(w)) from s to w of length d(w), as path P(w, d(w)) from s to w of length d(w), as 

follows: P(s, 0) is the path consisting of vertex s

and no arcs; if d(w) ← d(v) + c(v, w), the  path 

P(w, d(w)) is P(v, d(v)) followed by (v, w).



Theorem 1: If the algorithm stops, d(w) if finite 

is the length of a shortest path from s to w; 

d(w) = ∞ ↔ w is unreachable from s.

Proof: Let P be a shortest path from s to w.  If 

the algorithm stops, d(x) + c(x, y) ≥ d(y) for the algorithm stops, d(x) + c(x, y) ≥ d(y) for 

every arc (x, y) on P.  Summing over all arcs on 

P gives c(P) ≥ d(w) – d(s) ≥ d(w), since d(s) ≤ 0.  

By Lemma 1, d(w) = c(P) (and d(s) = 0).  In 

particular, if w is reachable from s, d(w) < ∞. 



Theorem 1 implies that if there is a negative cycle 

reachable from s, the labeling algorithm never 

stops.  

If there are no negative cycles, a stronger version If there are no negative cycles, a stronger version 

of Lemma 1 holds:

Lemma 2: If there are no negative cycles, each 

path P(w, d(w)) is simple.



Proof: Suppose the lemma is false.  Let P(w, d(w)) 

be the first such path defined that is not 

simple, and let d(w) ← d(v) + c(v, w) be the 

corresponding assignment.  Then P(v, d(v)) is 

simple but contains w. Thus P(v, d(v)) is P(w, d’) 

followed by P’, where P(w, d’) is a path followed by P’, where P(w, d’) is a path 

corresponding to an earlier assignment and P’

is a path from w to v.  Then d’ > d(v) + c(v, w) 

and c(P’) = d(v) – d’.  The cycle P’ followed by 

(v, w) has length d(v) – d’ + c(v, w) < 0, a 

contradiction.    



Theorem 2: If there are no negative cycles, the 

algorithm stops.

Proof: By Lemma 2, the number of labeling 

steps is at most the number of simple paths 

from s.

The bound on the number of steps given by the The bound on the number of steps given by the 

proof of Theorem 2 is exponential, and indeed 

the labeling algorithm takes exponential time 

in the worst case.  To make the algorithm 

efficient, we must choose the order of steps 

carefully.



Before addressing how to choose labeling steps, 

we extend the algorithm to find shortest 

paths, not just their lengths.  

To do this, we maintain a parent p(w) for each To do this, we maintain a parent p(w) for each 

vertex w: p(w) is the next-to-last vertex on the 

shortest path to w found so far. 



Labeling algorithm with parents

for w ∈ V do {d(w) ← ∞; p(w) ← null}; d(s) ← 0;

while ∃(v, w) ∈ E ∋ d(v) + c(v, w) < d(w) dowhile ∃(v, w) ∈ E ∋ d(v) + c(v, w) < d(w) do

{d(w) ← d(v) + c(v, w); p(w) ← v}



Labeling algorithm with parents

for w ∈ V do {d(w) ← ∞; p(w) ← null}; d(s) ← 0;

while ∃(v, w) ∈ E ∋ d(v) + c(v, w) < d(w) dowhile ∃(v, w) ∈ E ∋ d(v) + c(v, w) < d(w) do

{d(w) ← d(v) + c(v, w); p(w) ← v}



Lemma 3: If p(w) ≠ null, d(p(w)) + c(p(w), w) ≤ 
d(w).

Proof: Just after a step that decreases d(w),

d(p(w)) + c(p(w), w) = d(w).  Until d(w) 
decreases again, p(w) does not change, and 
d(p(w)) cannot increase.d(p(w)) cannot increase.

Lemma 4: If the algorithm stops and p(w) ≠ null, 
d(p(w)) + c(p(w), w) = d(w).

Proof: If p(w) ≠ null and(p(w) + c(p(w), w) ≠ d(w),  
d(p(w)) + c(p(w), w) < p(w) by lemma 3, so the 
algorithm does not stop. 



Lemma 5: Any cycle of arcs (p(x), x) is negative.

Proof: Suppose a labeling step creates a cycle C

of such arcs by assigning p(w) ← v.  Consider 

the state just before the step.  For any vertex x

≠ w on the cycle, c(p(x), x) ≤ d(x) – d(p(x)) by ≠ w on the cycle, c(p(x), x) ≤ d(x) – d(p(x)) by 

Lemma 3.  Also, c(v, w) < d(w) – d(v).  

Summing these inequalities over all arcs on C

gives c(C) < 0.  (All terms on the right side 

cancel.)  



Theorem 3: If there are no negative cycles, the 
arcs (p(v), v) form a tree T rooted s (no arc 
enters s, one arc enters each vertex other than 
s, and there are no cycles) containing exactly 
the vertices reached from s.  When the 
algorithm stops, T is a shortest path tree (SPT): 
every path in T is shortest.

Proof: Immediate from Theorems 1 and 2 and 
Lemmas 4 and 5.

Corollary 1: G contains either a shortest path 
tree rooted at s or a negative cycle reachable 
from s.    



Interlude: Shortest Path Tree 

Verification

Suppose we are given a graph G and a tree T
rooted at s whose arcs are in G.  How can we 
test whether T is a shortest path tree(SPT) of 
G?  G?  

The labeling algorithm provides an O(m)-time 
test: for each vertex w in G, compute d(w) as 
follows: d(s) = 0, d(w) = d(p(w)) + c(p(w), w) 
where p(w) is the parent of w in T, d(w) = ∞ if 
w is not in T.  Then T is an SPT if and only if for 
every arc (v, w) in G, d(v) + c(v, w) ≥ d(w). 



SPT Verification

Given a spanning tree, is it an SPT?
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To make the shortest path algorithm efficient, 

we begin by doing the labeling steps vertex-

by-vertex instead of arc-by-arc.

We partition the vertices into three sets: U

(unlabeled), L (labeled), and S (scanned).  Each 

vertex in U has not been reached from s; each vertex in U has not been reached from s; each 

vertex in L may have outgoing arcs that give 

shorter paths, and each vertex in S has been 

reached and its arcs have been checked since 

its distance last changed. 



The scanning algorithm 

for w ∈ V do {d(w) ← ∞; p(w) ← null}; d(s) ← 0;

U ← V – {s}; L ← {s}; S ← { };  

while some v ∈ L do scan(v): 

{for each arc (v, w) out of v do{for each arc (v, w) out of v do

if d(v) + c(v, w) < d(w) then

{d(w) ← d(v) + c(v, w); p(w)  ← v;

move w to L};

move v to S}



v ∈U ↔ d(v) = ∞

If d(v) + c(v, w) < d(w), then v is in L.

Proof: By induction on #steps.  True initially.  

Once d(v) + c(v, w) ≥ d(w), can only become Once d(v) + c(v, w) ≥ d(w), can only become 

false if d(v) decreases, in which case v is 

moved to L.

→ Labeling and scanning algorithm is correct



Graph Representation

For each vertex, store the set of outgoing arcs

Store arc sets in lists, or in arrays, which can be 

subarrays of one big arraysubarrays of one big array

Array representation saves space (no pointers), 

improves locality of access



Efficient scanning orders

General graph:

Breadth-first scanning (Bellman-Ford)

L = queue, add new labeled vertices to back

Non-negative arc lengths:Non-negative arc lengths:

Shortest-first scanning (Dijkstra)

L = heap, distances are keys

Acyclic graph:

Topological scanning 



Breadth-first scanning

L = s:0 scan s
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S = s:0                          scan a

L = a:3, g:22, j:16
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S = s:0, a:3 scan g, scan j 

L = g:21, j:16, d:9
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S = s:0, a:3, j:16 scan d

L = d:9, k:39, g:20
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S = s:0, a:3, j:16, d:9 scan k, scan g

L = k:21, g:20, h:9, e:25
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S = s:0, a:3, j:16, d:9, k:21, g:20

L = h:9, e:25, i:11, m:26                     …
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Running time of breadth-first scanning

Define passes through the queue:

pass 0 = scanning of s

pass k + 1 = scanning of all vertices added to  

the queue during pass k

After pass k, each vertex having a shortest path After pass k, each vertex having a shortest path 

from s of k arcs has correct distance

→ all distances correct after pass n – 1

→ algorithm stops after ≤n passes, or never

Each pass scans each vertex at most once

→ O(nm) time   



Generalized breadth-first scanning

The O(nm) time bound holds as long as all 

vertices added to L in pass k are scanned 

before any vertex added to L in pass k + 1.

Two-set implementation: Add newly scanned 

vertices to L’.  Once L is empty, move all 

vertices in L’ to L.  Scan vertices in L in 

arbitrary order. 



Negative cycle detection

Lazy: count passes.  If count exceeds n, stop: 

there must be a negative cycle.  Such a cycle 

can be found by following parent pointers.  

(Exercise: prove this.)(Exercise: prove this.)

Eager: test for a cycle of parent pointers during 

each labeling step.

How?



If d(v) + c(v, w) < d(w), follow parent pointers 

from v until reaching w (negative cycle found) 

or s

This method takes Θ(n) time per labeling step, 

increasing the running time to Θ(n2m)

Better: The predecessor pointers define a tree Better: The predecessor pointers define a tree 

rooted at s.  Instead of starting at v and 

visiting its ancestors looking for w, start at w

and visit its descendants looking for v

Why better? 



d(v) + c(v, w) < d(w)

We disassemble the subtree rooted at w as we 

traverse it looking for v.  Each deletion of a 

vertex from T is preceded by a labeling of the 

same vertex; this labeling pays for the same vertex; this labeling pays for the 

deletion.  Furthermore each vertex other than 

w deleted from T will be labeled again later: 

its distance is not minimum.  This method is  

subtree disassembly. 



We store the vertices of T in a doubly-linked circular 

list in preorder (all descendants of a vertex are 

consecutive, each child follows its parent, not 

necessarily consecutively), using pointers a (after) 

and b (before).

If d(v) + c(v, w) < d(w), we visit the descendants of If d(v) + c(v, w) < d(w), we visit the descendants of 

w, deleting each from T.  If v is visited, a cycle 

exists.  If not, we decrease d(w) and reinsert w

into T as a child of v.  Optionally, for each vertex x

≠ w deleted from T, we can decrease d(x) by 

almost as much as the decrease in d(w).



Scanning with subtree disassembly and distance updates

for w ∈ V do {d(w) ← ∞; p(w) ← null; b(w) ← null};

d(s) ← 0; U ← V – {s}; L ← {s}; S ← { }; a(s) ← s; b(s) ← s;

while some v ∈ L do

{for each arc (v, w) out of v do

{δ ← d(w) – d(v) – c(v, w);

if δ > 0 then if δ > 0 then 

{d(w) ← d(w) – δ; p(w) ← v; move w to L;

x ← b(w); b(w) ← null; y ← a(w);

while b(p(y)) = null do 

if y = v then stop: negative cycle

else {d(y) ← d(y) – δ + ε; b(y) ← null; y ← a(y)};

a(x) ← y; b(y) ← x;  a(w) ← a(v); b(a(w)) ← w;

b(w) ← v; a(v) ← w}}; move v to S}



Scanning with subtree disassembly and distance updates

for w ∈ V do {d(w) ← ∞; p(w) ← null; b(w) ← null};

d(s) ← 0; U ← V – {s}; L ← {s}; S ← { }; a(s) ← s; b(s) ← s;

while some v ∈ L do

{for each arc (v, w) out of v do

{δ ← d(w) – d(v) – c(v, w);

if δ > 0 then if δ > 0 then 

{d(w) ← d(w) – δ; p(w) ← v; move w to L;

x ← b(w); b(w) ← null; y ← a(w);

while b(p(y)) = null do 

if y = v then stop: negative cycle

else {d(y) ← d(y) – δ + ε; b(y) ← null; y ← a(y)};

a(x) ← y; b(y) ← x;  a(w) ← a(v); b(a(w)) ← w;

b(w) ← v; a(v) ← w}}; move v to S}



The before pointers indicate whether a vertex is 

in T: x in T ↔ b(x) ≠ null

If the algorithm detects a negative cycle, the 

cycle can be found by following parent 

pointers from v (or from w).pointers from v (or from w).

If w = s, there is a negative cycle. 

After the while loop, y is the vertex after the last 

(now deleted) descendant of w in preorder. 



The while loop removes each proper 

descendant y of w from T and decreases its 

distance by δ – ε, where δ = d(w) – d(v) + c(v, 

w) and ε is the smallest representable positive 

number (if arc lengths are integers, ε = 1); we number (if arc lengths are integers, ε = 1); we 

cannot reduce d(y) by an additional ε, because 

we must make sure that y is labeled again 

before the algorithm stops.  (Why?)  



Not only does subtree disassembly detect 

negative cycles eagerly, it speeds up the 

scanning algorithm in practice: it results in 

fewer scans of vertices whose distance from s

is not yet minimum.  Thus it is an important 

heuristic even if eager negative cycle detection heuristic even if eager negative cycle detection 

is not needed.

Theorem 4: Breadth-first scanning with subtree

disassembly, with or without distance updates, 

runs in O(nm) time and stops as soon as a 

cycle of parent pointers exists.  


