
COS 423 Lecture 8

Shortest PathsShortest Paths

©Robert E. Tarjan 2011

Directed graph with arc weights

a
d e

c

f

b

30

–15

1840

25

25–10

3

6

14
22

18

6
–14

12

16

11

40

2 0

s

j

g h

k

m

l

i

t

n

18

16

10

40

–27

12

16

–20

48

8

14

20

14

6
–10

5

4

22

18 12

12

15

path weight = sum of arc weights along path

Goal: find a minimum-weight path from s to t,
for given pairs of vertices s, t

weights: costs, travel times, lengths,…weights: costs, travel times, lengths,…

Henceforth think of weights as lengths;

a minimum-weight path is shortest (but we
allow negative lengths)

Path s, g, d, e, f, t

Length 22 + 2 + 16 + 30 + 18 = 88

Shortest?

a
d e

c

f

b

30

–15

25

25–10

3

6

18

6
–14

16

11

40

2 0

s

j

g h

k

m

l

i

t

n

18

16

10

40

–27

12

253

16

–20

48

8

14

20

14

6
–10

5

4

22

18

18 12

12

15

11 2 0

Versions of shortest path problem

Single pair: from one s to one t

Single source: from one s to each possible t

Single sink: from each possible s to one t

All pairs: from each possible s to each possible t

Single-source problem is central:

equivalent to single-sink problem (reverse arc

directions)

all pairs = n single-source problems

single-pair algorithms at least partially solve a

single-source (or single-sink) problem

Special cases

Graph is undirected

Graph is planar

No negative arcsNo negative arcs

No cycles

Negative cycles

A negative cycle is a cycle whose total length is

negative.

If there are no negative cycles and there is someIf there are no negative cycles and there is some

path from s to t (t is reachable from s), then

there is a shortest path from s to t that is

simple (it contains no repeated vertices):

deletion of a cycle from the path does not

increase the length of the path.

If a negative cycle is reachable from s, then

there are arbitrarily short paths from s to

every vertex on the cycle: just repeat the

cycle.

If there are negative cycles, the problem of

finding a shortest simple path is NP-hard.finding a shortest simple path is NP-hard.

Revised goal: Find a shortest path from s to t for

each of the given pairs s, t, or find a negative

cycle.

In some applications, negative cycles are good,

and the goal is to find one.

Currency arbitrage: find a money-making cycle

of currency trades

$1 = ¥83.1724 ¥1 = £0.00741115 $1 = ¥83.1724 ¥1 = £0.00741115

£1 = €1.18694 €1 = $1.3668

Does trading $ for ¥ for £ for € for $ (or some

other cycle of trades) make money?

Graph: vertices are currencies, arcs are currency

conversions, weights are exchange rates

Value of cycle: product of exchange rates around

cycle

money-making ↔ value > 1

Transform: arc length = –lg(exchange rate)

value > 1 ↔ cycle length < 0

Notation

G = (V, A): graph with vertex set V and arc set A

n = |V|, m = |A|, assume n > 1

s: source vertex for single-source or single-pair

problemproblem

t: target vertex for single-sink or single-pair

problem

(v, w): arc from v to w

c(v, w) = length of arc (v, w)

c(P) = length of path P

Single–source problem: find shortest paths from

s to each vertex reachable from s, or find a

negative cycle reachable from s.

Method: iterative improvement. For each vertex

v, maintain the length d(v) of the shortest v, maintain the length d(v) of the shortest

path from s to v found so far. Look for shorter

paths by repeatedly examining arcs (v, w). If

d(v) + c(v, w) < d(w), there is a shorter path to

w: decrease d(w) to d(v) + c(v, w). Stop when

no such improvement is possible.

Labeling algorithm

for w ∈ V do d(w) ← ∞; d(s) ← 0;

while ∃(v, w) ∈ A ∋ d(v) + c(v, w) < d(w) do

label(w): d(w) ← d(v) + c(v, w)label(w): d(w) ← d(v) + c(v, w)

Each iteration of the while loop is a labeling step.

(The Operations Research literature calls such a

step a relaxation of (v, w).)

Lemma 1: The labeling algorithm maintains the

invariant that if d(w) < ∞, w is reachable from s,

and d(w) is the length of a path from s to w.

Proof: For each assignment to d(w) we define a

path P(w, d(w)) from s to w of length d(w), as path P(w, d(w)) from s to w of length d(w), as

follows: P(s, 0) is the path consisting of vertex s

and no arcs; if d(w) ← d(v) + c(v, w), the path

P(w, d(w)) is P(v, d(v)) followed by (v, w).

Theorem 1: If the algorithm stops, d(w) if finite

is the length of a shortest path from s to w;

d(w) = ∞ ↔ w is unreachable from s.

Proof: Let P be a shortest path from s to w. If

the algorithm stops, d(x) + c(x, y) ≥ d(y) for the algorithm stops, d(x) + c(x, y) ≥ d(y) for

every arc (x, y) on P. Summing over all arcs on

P gives c(P) ≥ d(w) – d(s) ≥ d(w), since d(s) ≤ 0.

By Lemma 1, d(w) = c(P) (and d(s) = 0). In

particular, if w is reachable from s, d(w) < ∞.

Theorem 1 implies that if there is a negative cycle

reachable from s, the labeling algorithm never

stops.

If there are no negative cycles, a stronger version If there are no negative cycles, a stronger version

of Lemma 1 holds:

Lemma 2: If there are no negative cycles, each

path P(w, d(w)) is simple.

Proof: Suppose the lemma is false. Let P(w, d(w))

be the first such path defined that is not

simple, and let d(w) ← d(v) + c(v, w) be the

corresponding assignment. Then P(v, d(v)) is

simple but contains w. Thus P(v, d(v)) is P(w, d’)

followed by P’, where P(w, d’) is a path followed by P’, where P(w, d’) is a path

corresponding to an earlier assignment and P’

is a path from w to v. Then d’ > d(v) + c(v, w)

and c(P’) = d(v) – d’. The cycle P’ followed by

(v, w) has length d(v) – d’ + c(v, w) < 0, a

contradiction.

Theorem 2: If there are no negative cycles, the

algorithm stops.

Proof: By Lemma 2, the number of labeling

steps is at most the number of simple paths

from s.

The bound on the number of steps given by the The bound on the number of steps given by the

proof of Theorem 2 is exponential, and indeed

the labeling algorithm takes exponential time

in the worst case. To make the algorithm

efficient, we must choose the order of steps

carefully.

Before addressing how to choose labeling steps,

we extend the algorithm to find shortest

paths, not just their lengths.

To do this, we maintain a parent p(w) for each To do this, we maintain a parent p(w) for each

vertex w: p(w) is the next-to-last vertex on the

shortest path to w found so far.

Labeling algorithm with parents

for w ∈ V do {d(w) ← ∞; p(w) ← null}; d(s) ← 0;

while ∃(v, w) ∈ E ∋ d(v) + c(v, w) < d(w) dowhile ∃(v, w) ∈ E ∋ d(v) + c(v, w) < d(w) do

{d(w) ← d(v) + c(v, w); p(w) ← v}

Labeling algorithm with parents

for w ∈ V do {d(w) ← ∞; p(w) ← null}; d(s) ← 0;

while ∃(v, w) ∈ E ∋ d(v) + c(v, w) < d(w) dowhile ∃(v, w) ∈ E ∋ d(v) + c(v, w) < d(w) do

{d(w) ← d(v) + c(v, w); p(w) ← v}

Lemma 3: If p(w) ≠ null, d(p(w)) + c(p(w), w) ≤
d(w).

Proof: Just after a step that decreases d(w),

d(p(w)) + c(p(w), w) = d(w). Until d(w)
decreases again, p(w) does not change, and
d(p(w)) cannot increase.d(p(w)) cannot increase.

Lemma 4: If the algorithm stops and p(w) ≠ null,
d(p(w)) + c(p(w), w) = d(w).

Proof: If p(w) ≠ null and(p(w) + c(p(w), w) ≠ d(w),
d(p(w)) + c(p(w), w) < p(w) by lemma 3, so the
algorithm does not stop.

Lemma 5: Any cycle of arcs (p(x), x) is negative.

Proof: Suppose a labeling step creates a cycle C

of such arcs by assigning p(w) ← v. Consider

the state just before the step. For any vertex x

≠ w on the cycle, c(p(x), x) ≤ d(x) – d(p(x)) by ≠ w on the cycle, c(p(x), x) ≤ d(x) – d(p(x)) by

Lemma 3. Also, c(v, w) < d(w) – d(v).

Summing these inequalities over all arcs on C

gives c(C) < 0. (All terms on the right side

cancel.)

Theorem 3: If there are no negative cycles, the
arcs (p(v), v) form a tree T rooted s (no arc
enters s, one arc enters each vertex other than
s, and there are no cycles) containing exactly
the vertices reached from s. When the
algorithm stops, T is a shortest path tree (SPT):
every path in T is shortest.

Proof: Immediate from Theorems 1 and 2 and
Lemmas 4 and 5.

Corollary 1: G contains either a shortest path
tree rooted at s or a negative cycle reachable
from s.

Interlude: Shortest Path Tree

Verification

Suppose we are given a graph G and a tree T
rooted at s whose arcs are in G. How can we
test whether T is a shortest path tree(SPT) of
G? G?

The labeling algorithm provides an O(m)-time
test: for each vertex w in G, compute d(w) as
follows: d(s) = 0, d(w) = d(p(w)) + c(p(w), w)
where p(w) is the parent of w in T, d(w) = ∞ if
w is not in T. Then T is an SPT if and only if for
every arc (v, w) in G, d(v) + c(v, w) ≥ d(w).

SPT Verification

Given a spanning tree, is it an SPT?

a
d e

c

f

b

30

–15

18
25

25–10

3

6

14

18

6
–14

16

11

40

2 0

s

j

g h

k

m

l

i

t

n

18

16

10

40

–27

12

25

16

–20

48

8

14

20

14

6
–10

5

4

22

18 12

12

15

11

To make the shortest path algorithm efficient,

we begin by doing the labeling steps vertex-

by-vertex instead of arc-by-arc.

We partition the vertices into three sets: U

(unlabeled), L (labeled), and S (scanned). Each

vertex in U has not been reached from s; each vertex in U has not been reached from s; each

vertex in L may have outgoing arcs that give

shorter paths, and each vertex in S has been

reached and its arcs have been checked since

its distance last changed.

The scanning algorithm

for w ∈ V do {d(w) ← ∞; p(w) ← null}; d(s) ← 0;

U ← V – {s}; L ← {s}; S ← { };

while some v ∈ L do scan(v):

{for each arc (v, w) out of v do{for each arc (v, w) out of v do

if d(v) + c(v, w) < d(w) then

{d(w) ← d(v) + c(v, w); p(w) ← v;

move w to L};

move v to S}

v ∈U ↔ d(v) = ∞

If d(v) + c(v, w) < d(w), then v is in L.

Proof: By induction on #steps. True initially.

Once d(v) + c(v, w) ≥ d(w), can only become Once d(v) + c(v, w) ≥ d(w), can only become

false if d(v) decreases, in which case v is

moved to L.

→ Labeling and scanning algorithm is correct

Graph Representation

For each vertex, store the set of outgoing arcs

Store arc sets in lists, or in arrays, which can be

subarrays of one big arraysubarrays of one big array

Array representation saves space (no pointers),

improves locality of access

Efficient scanning orders

General graph:

Breadth-first scanning (Bellman-Ford)

L = queue, add new labeled vertices to back

Non-negative arc lengths:Non-negative arc lengths:

Shortest-first scanning (Dijkstra)

L = heap, distances are keys

Acyclic graph:

Topological scanning

Breadth-first scanning

L = s:0 scan s

a
d e

c

f

b

30

–15

25

25–10

3

6

18

6
–14

16

11

40

2 0

s

j

g h

k

m

l

i

t

n

18

16

10

40

–27

12

253

16

–20

48

8

14

20

14

6
–10

5

4

22

18

18 12

12

15

11 2 0

S = s:0 scan a

L = a:3, g:22, j:16

a
d e

c

f

b

30

–15

25

25–10

3

6

18

6
–14

16

11

40

2 0

s

j

g h

k

m

l

i

t

n

18

16

10

40

–27

12

253

16

–20

48

8

14

20

14

6
–10

5

4

22

18

18 12

12

15

11 2 0

S = s:0, a:3 scan g, scan j

L = g:21, j:16, d:9

a
d e

c

f

b

30

–15

25

25–10

3

6

18

6
–14

16

11

40

2 0

s

j

g h

k

m

l

i

t

n

18

16

10

40

–27

12

253

16

–20

48

8

14

20

14

6
–10

5

4

22

18

18 12

12

15

11 2 0

S = s:0, a:3, j:16 scan d

L = d:9, k:39, g:20

a
d e

c

f

b

30

–15

25

25–10

3

6

18

6
–14

16

11

40

2 0

s

j

g h

k

m

l

i

t

n

18

16

10

40

–27

12

253

16

–20

48

8

14

20

14

6
–10

5

4

22

18

18 12

12

15

11 2 0

S = s:0, a:3, j:16, d:9 scan k, scan g

L = k:21, g:20, h:9, e:25

a
d e

c

f

b

30

–15

25

25–10

3

6

18

6
–14

16

11

40

2 0

s

j

g h

k

m

l

i

t

n

18

16

10

40

–27

12

253

16

–20

48

8

14

20

14

6
–10

5

4

22

18

18 12

12

15

11 2 0

S = s:0, a:3, j:16, d:9, k:21, g:20

L = h:9, e:25, i:11, m:26 …

a
d e

c

f

b

30

–15

25

25–10

3

6

18

6
–14

16

11

40

2 0

s

j

g h

k

m

l

i

t

n

18

16

10

40

–27

12

253

16

–20

48

8

14

20

14

6
–10

5

4

22

18

18 12

12

15

11 2 0

Running time of breadth-first scanning

Define passes through the queue:

pass 0 = scanning of s

pass k + 1 = scanning of all vertices added to

the queue during pass k

After pass k, each vertex having a shortest path After pass k, each vertex having a shortest path

from s of k arcs has correct distance

→ all distances correct after pass n – 1

→ algorithm stops after ≤n passes, or never

Each pass scans each vertex at most once

→ O(nm) time

Generalized breadth-first scanning

The O(nm) time bound holds as long as all

vertices added to L in pass k are scanned

before any vertex added to L in pass k + 1.

Two-set implementation: Add newly scanned

vertices to L’. Once L is empty, move all

vertices in L’ to L. Scan vertices in L in

arbitrary order.

Negative cycle detection

Lazy: count passes. If count exceeds n, stop:

there must be a negative cycle. Such a cycle

can be found by following parent pointers.

(Exercise: prove this.)(Exercise: prove this.)

Eager: test for a cycle of parent pointers during

each labeling step.

How?

If d(v) + c(v, w) < d(w), follow parent pointers

from v until reaching w (negative cycle found)

or s

This method takes Θ(n) time per labeling step,

increasing the running time to Θ(n2m)

Better: The predecessor pointers define a tree Better: The predecessor pointers define a tree

rooted at s. Instead of starting at v and

visiting its ancestors looking for w, start at w

and visit its descendants looking for v

Why better?

d(v) + c(v, w) < d(w)

We disassemble the subtree rooted at w as we

traverse it looking for v. Each deletion of a

vertex from T is preceded by a labeling of the

same vertex; this labeling pays for the same vertex; this labeling pays for the

deletion. Furthermore each vertex other than

w deleted from T will be labeled again later:

its distance is not minimum. This method is

subtree disassembly.

We store the vertices of T in a doubly-linked circular

list in preorder (all descendants of a vertex are

consecutive, each child follows its parent, not

necessarily consecutively), using pointers a (after)

and b (before).

If d(v) + c(v, w) < d(w), we visit the descendants of If d(v) + c(v, w) < d(w), we visit the descendants of

w, deleting each from T. If v is visited, a cycle

exists. If not, we decrease d(w) and reinsert w

into T as a child of v. Optionally, for each vertex x

≠ w deleted from T, we can decrease d(x) by

almost as much as the decrease in d(w).

Scanning with subtree disassembly and distance updates

for w ∈ V do {d(w) ← ∞; p(w) ← null; b(w) ← null};

d(s) ← 0; U ← V – {s}; L ← {s}; S ← { }; a(s) ← s; b(s) ← s;

while some v ∈ L do

{for each arc (v, w) out of v do

{δ ← d(w) – d(v) – c(v, w);

if δ > 0 then if δ > 0 then

{d(w) ← d(w) – δ; p(w) ← v; move w to L;

x ← b(w); b(w) ← null; y ← a(w);

while b(p(y)) = null do

if y = v then stop: negative cycle

else {d(y) ← d(y) – δ + ε; b(y) ← null; y ← a(y)};

a(x) ← y; b(y) ← x; a(w) ← a(v); b(a(w)) ← w;

b(w) ← v; a(v) ← w}}; move v to S}

Scanning with subtree disassembly and distance updates

for w ∈ V do {d(w) ← ∞; p(w) ← null; b(w) ← null};

d(s) ← 0; U ← V – {s}; L ← {s}; S ← { }; a(s) ← s; b(s) ← s;

while some v ∈ L do

{for each arc (v, w) out of v do

{δ ← d(w) – d(v) – c(v, w);

if δ > 0 then if δ > 0 then

{d(w) ← d(w) – δ; p(w) ← v; move w to L;

x ← b(w); b(w) ← null; y ← a(w);

while b(p(y)) = null do

if y = v then stop: negative cycle

else {d(y) ← d(y) – δ + ε; b(y) ← null; y ← a(y)};

a(x) ← y; b(y) ← x; a(w) ← a(v); b(a(w)) ← w;

b(w) ← v; a(v) ← w}}; move v to S}

The before pointers indicate whether a vertex is

in T: x in T ↔ b(x) ≠ null

If the algorithm detects a negative cycle, the

cycle can be found by following parent

pointers from v (or from w).pointers from v (or from w).

If w = s, there is a negative cycle.

After the while loop, y is the vertex after the last

(now deleted) descendant of w in preorder.

The while loop removes each proper

descendant y of w from T and decreases its

distance by δ – ε, where δ = d(w) – d(v) + c(v,

w) and ε is the smallest representable positive

number (if arc lengths are integers, ε = 1); we number (if arc lengths are integers, ε = 1); we

cannot reduce d(y) by an additional ε, because

we must make sure that y is labeled again

before the algorithm stops. (Why?)

Not only does subtree disassembly detect

negative cycles eagerly, it speeds up the

scanning algorithm in practice: it results in

fewer scans of vertices whose distance from s

is not yet minimum. Thus it is an important

heuristic even if eager negative cycle detection heuristic even if eager negative cycle detection

is not needed.

Theorem 4: Breadth-first scanning with subtree

disassembly, with or without distance updates,

runs in O(nm) time and stops as soon as a

cycle of parent pointers exists.

