COS 423 Lecture 5
Self-Adjusting Search trees

©Robert E. Tarjan 2011
Balanced trees minimize worst-case access time to within a constant factor, but what if accesses are not uniform?

Access locality:
 Different but fixed access probabilities
Spatial locality: frequent accesses near certain positions: fixed or moving fingers, e.g. first, last
Time locality: working set
Ways to exploit locality:

Custom-built data structure:

- Optimum search tree (given fixed access probabilities)
- Finger search tree (heterogenous or homogeneous)
- “Working set” tree?

Self-adjusting data structure
Self-adjusting search tree: during or after each access, modify the tree (to reduce overall cost of accesses and updates).

List analogy:

- swap: rotation
- move to front: move to root

First try: after an access or insert, move the accessed or inserted node to the root by bottom-up rotations along the access path.
Bad example: sequential access

\[n \text{ accesses in sequential order cost } \sim n^2/2, \]
and self-reproducing!
Splay Trees (Sleator and Tarjan 1983)

Splay: to spread out. \(splay(x) \) moves \(x \) to root via rotations, two at a time. Rotation order is generally bottom-up, but if the current node and its parent are both left or both right children, the top rotation is done first.

\[
splay(x): \textbf{while} \ p(x) \neq \text{null} \ \textbf{do} \\
\quad \textbf{if} \ p(p(x)) = \text{null} \ \textbf{then} \ rotate(x) \quad \textbf{[zig]} \\
\quad \textbf{else if} \ x \text{ is \ left and } p(x) \text{ is \ right or } x \text{ is \ right and } p(x) \text{ is \ left} \ \textbf{then} \ \{rotate(x), \ rotate(x)\} \quad \textbf{[zig-zag]} \\
\quad \textbf{else} \ \{rotate(p(x), \ rotate(x))\} \quad \textbf{[zig-zig]}
\]
Operations on splay trees

Access x: follow search path to x, then $splay(x)$. Moves x to root, takes time $O(d(x) + 1)$, including $d(x)$ rotations.

Insert x: follow search path to null, replace by x, $splay(x)$.

Delete x: follow search path to x, swap with successor if binary, delete x, splay at old parent.
Catenate(T_1, T_2)(all items in $T_1 <$ all items in T_2): splay at last node x in T_1; right(x) \leftarrow root(T_2).

Split(T, x): splay(x); detach right(x) = root of tree containing all items $> x$.

\[T_1 \ + \ T_2 \rightarrow T_1' \ + T_2 \]

\[T \rightarrow T_1 \ + T_2 \]
Splay: pure zig-zag
Splay: pure zig-zig
Analysis of splaying

Let the cost of \(splay(x) \) be \(d(x) + 1 = \#rots + 1 \).

Assign each item \(x \) a positive weight \(w(x) \). The total weight \(W(x) \) of \(x \) is the sum of the weights of all items in the subtree of \(x \), including \(x \). E.g. \(w(x) = 1 \rightarrow W(x) = s(x) \).

\[
\Phi(x) = \lg W(x) \quad \Phi(T) = \Sigma \Phi(x)
\]

If \(w(x) = 1 \), \(0 \leq \Phi(T) \leq n \lg n \).

If \(w(x) \geq 1 \), \(\Phi(T) \geq 0 \).

Access Lemma: The amortized cost of \(splay(x) \) is \(\leq 3 \Delta \Phi(x) + 2 \).
Useful inequality:

\[0 \leq (a - b)^2 = a^2 - 2ab + b^2 \rightarrow 2ab \leq a^2 + b^2 \]
\[\rightarrow 4ab \leq a^2 + 2ab + b^2 = (a + b)^2 \]
\[\rightarrow \lg a + \lg b \leq 2\lg(a + b) - 2 \quad (\ast) \]
Proof of access lemma: Case analysis of splay steps.

zig: actual cost = 1

\[\Delta \Phi(T) = \Phi'(x) + \Phi'(y) - \Phi(x) - \Phi(y) \]

\[= \Phi'(y) - \Phi(x) \leq \Phi'(x) - \Phi(x) \]

\[= \Delta \Phi(x) \leq 3\Delta \Phi(x) \]

→ amortized cost ≤ 3ΔΦ(x) + 1
zig-zag: actual cost = 2

\[\Delta \Phi(T) = \Phi'(y) + \Phi'(z) - \Phi(x) - \Phi(y) \]

\[\leq 2\Phi'(x) - 2 - 2\Phi(x) \text{ by (*)} \]

\[\leq 2\Delta \Phi(x) - 2 \]

→ amortized cost \(\leq 2\Delta \Phi(x) \leq 3\Delta \Phi(x) \)
zig-zig: actual cost = 2

\[
\Delta \Phi(T) = \Phi'(y) + \Phi'(z) - \Phi(x) - \Phi(y)
\]

\[
= \Phi'(y) + \Phi'(z) + \Phi(x) - 2\Phi(x) - \Phi(y)
\]

\[
\leq \Phi'(x) + 2\Phi'(x) - 2 - 3\Phi(x) \text{ by (*)}
\]

\[
= 3\Delta \Phi(x) - 2
\]

→ amortized cost ≤ 3\Delta \Phi(x)
Summing over all splay steps gives the access lemma: the amortized cost of $splay(x)$ is $\leq 3\Delta \Phi(x) + 2$.
Applications of the access lemma

Balance Theorem: Starting from an empty tree, an arbitrary sequence of accesses, insertions, and deletions takes $O(1 + \lg n)$ amortized time per operation.

Proof: Choose $w(x) = 1$. Insertion of leaf x (without splaying) increases $\Phi(T)$ by $O(\lg n)$. Amortized cost of $splay(x)$ is $O(1 + \lg n)$. (You verify.)
Static optimality theorem: Start from an arbitrary tree and do an arbitrary sequence of \(m \) accesses, with each item accessed at least once. Let \(f(x) = \# \text{accesses of } x \), The amortized time to access \(x \) is \(O(1 + \lg(m/f(x))) \).

Proof: Choose \(w(x) = f(x) \). \(\lg f(x) \leq \Phi(x) \leq \lg m \)

\[\rightarrow \text{competitive with static optimum tree for given access frequencies} \]
Working Set Theorem: Start with an arbitrary tree and do an arbitrary sequence of accesses, with each item accessed at least once. The amortized time to access \(x \) is \(O(1 + \lg k(x)) \), where \(k(x) \) is the number of distinct items accessed since the last time \(x \) was accessed.

Proof: Assign weights 1, 1/4, 1/9, 1/16,\ldots, 1/n^2 in order by most recent access.
True but proof is long and complicated

Dynamic Finger Theorem (Cole 1990): Start from an empty tree and do an arbitrary sequence of insertions, deletions, and accesses. The amortized time for an operation is $O(1 + \log t)$, where t is the number of nodes in symmetric order between the last node splayed and the current node splayed, inclusive.
Dynamic optimality conjecture

Splay trees are $O(1)$-competitive with the optimum off-line binary search tree algorithm.

Best known so far: Several more-complicated binary search trees are $O(lg lgn)$-competitive.
Advantages of splay trees:
 No balance information required.
 Simple operations.
 Take advantage of any exploitable pattern in the access sequence.

Disadvantage of splay trees:
 Many rotations, even during accesses!