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Balanced trees minimize worst-case access time 
to within a constant factor, but what if 
accesses are not uniform?

Access locality:

Different but fixed access probabilitiesDifferent but fixed access probabilities

Spatial locality: frequent accesses near certain

positions: fixed or moving fingers, e.g. first,

last 

Time locality: working set 



Ways to exploit locality:

Custom-built data structure:

Optimum search tree (given fixed access   

probabilities)

Finger search tree (heterogenous or Finger search tree (heterogenous or 

homogeneous)

“Working set” tree?

Self-adjusting data structure  



Self-adjusting search tree: during or after each 

access, modify the tree (to reduce overall cost 

of accesses and updates).

List analogy:

swap: rotation

move to front: move to rootmove to front: move to root

First try: after an access or insert, move the 

accessed or inserted node to the root by 

bottom-up rotations along the access path.



Bad example: sequential access
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n accesses in sequential order cost ~n2/2, 

and self-reproducing!   
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Splay Trees (Sleator and Tarjan 1983)

Splay: to spread out.  splay(x) moves x to root via 
rotations, two at a time.  Rotation order is 
generally bottom-up, but if the current node and 
its parent are both left or both right children, the 
top rotation is done first.

splay(x): while p(x) ≠ null dosplay(x): while p(x) ≠ null do

if p(p(x)) = null then rotate(x)                       [zig]

else if x is left and p(x) is right or x is right and

p(x) is left then {rotate(x), rotate(x)}    [zig-zag]

else {rotate(p(x), rotate(x)}                        [zig-zig]    
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Operations on splay trees

Access x: follow search path to x, then splay(x).  

Moves x to root, takes time O(d(x) + 1), 

including d(x) rotations.

Insert x: follow search path to null, replace by x, Insert x: follow search path to null, replace by x, 

splay(x).

Delete x: follow search path to x, swap with 

successor if binary, delete x, splay at old 

parent.



Catenate(T1, T2)(all items in T1 < all items in T2):

splay at last node x in T1; right(x) ← root(T2).

Split(T, x): splay(x); detach right(x) = root of tree 

containing all items > x.
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Splay: pure zig-zag
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Splay: pure zig-zig
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Analysis of splaying

Let the cost of splay(x) be d(x) + 1 = #rots + 1. 

Assign each item x a positive weight w(x).  The 

total weight W(x) of x is the sum of the 

weights of all items in the subtree of x, 

including x.  E.g. w(x) = 1 → W(x) = s(x).including x.  E.g. w(x) = 1 → W(x) = s(x).

Φ(x) = lgW(x)          Φ(T) = ΣΦ(x)

If w(x) = 1, 0 ≤ Φ(T) ≤ nlgn.  

If w(x)≥ 1, Φ(T) ≥ 0.

Access Lemma: The amortized cost of splay(x) is  

≤ 3ΔΦ(x) + 2.



Useful inequality:

0 ≤ (a – b)2 = a2 – 2ab + b2 → 2ab ≤ a2 + b2

→ 4ab ≤ a2 + 2ab + b2 = (a + b)2→ 4ab ≤ a + 2ab + b = (a + b)

→ lga + lgb ≤ 2lg(a + b) – 2           (*)



Proof of access lemma: Case analysis of splay 

steps. 

zig: actual cost = 1

ΔΦ(T) = Φ’(x) + Φ’(y) – Φ(x) – Φ(y)

= Φ’(y) – Φ(x) ≤ Φ’(x) – Φ(x)

= ΔΦ(x) ≤ 3ΔΦ(x)= ΔΦ(x) ≤ 3ΔΦ(x)

→ amortized cost ≤ 3ΔΦ(x) + 1

y

x C

BA

x

y

CB

A

root



zig-zag: actual cost = 2

ΔΦ(T) = Φ’(y) + Φ’(z) – Φ(x) – Φ(y)

≤ 2Φ’(x) – 2 – 2Φ(x) by (*)

≤ 2ΔΦ(x) – 2

→ amortized cost ≤ 2ΔΦ(x) ≤ 3ΔΦ(x)        
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zig-zig: actual cost = 2

ΔΦ(T) = Φ’(y) + Φ’(z) – Φ(x) – Φ(y)

= Φ’(y) + Φ’(z) + Φ(x) – 2Φ(x) – Φ(y)

≤ Φ’(x) + 2Φ’(x) – 2 – 3Φ(x) by (*)

= 3ΔΦ(x) – 2

→ amortized cost ≤ 3ΔΦ(x)  → amortized cost ≤ 3ΔΦ(x)  
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Summing over all splay steps gives the access 

lemma: the amortized cost of splay(x) is  ≤ 

3ΔΦ(x) + 2.3ΔΦ(x) + 2.



Applications of the access lemma

Balance Theorem: Starting from an empty tree, 

an arbitrary sequence of accesses, insertions, 

and deletions takes O(1 + lgn) amortized time 

per operation.

Proof: Choose w(x) = 1.  Insertion of leaf x

(without splaying) increases Φ(T) by O(lgn).  

Amortized cost of splay(x) is O(1 + lgn).  (You 

verify.) 



Static optimality theorem: Start from an 

arbitrary tree and do an arbitrary sequence of 

m accesses, with each item accessed at least 

once.  Let f(x) = #accesses of x,  The amortized 

time to access x is O(1 + lg(m/f(x)).

Proof: Choose w(x) = f(x).  lgf(x) ≤ Φ(x) ≤ lgmProof: Choose w(x) = f(x).  lgf(x) ≤ Φ(x) ≤ lgm

→ competitive with static optimum tree for 

given access frequencies



Working Set Theorem: Start with an arbitrary 

tree and do an arbitrary sequence of accesses, 

with each item accessed at least once.  The 

amortized time to access x is O(1 + lgk(x)), 

where k(x) is the number of distinct items where k(x) is the number of distinct items 

accessed since the last time x was accessed.

Proof: Assign weights 1, 1/4, 1/9, 1/16,…, 1/n2 in 

order by most recent access.



True but proof is long and complicated

Dynamic Finger Theorem (Cole 1990): Start 

from an empty tree and do an arbitrary 

sequence of insertions, deletions, and 

accesses.  The amortized time for an accesses.  The amortized time for an 

operation is O(1 + lgt), where t is the number 

of nodes in symmetric order between the last 

node splayed and the current node splayed, 

inclusive.



Dynamic optimality conjecture

Splay trees are O(1)-competitive with the 

optimum off-line binary search tree algorithm.

Best known so far: Several more-complicated 

binary search trees are O(lglgn)-competitive.



Advantages of splay trees:

No balance information required.

Simple operations. 

Take advantage of any exploitable pattern in  

the access sequence.

Disadvantage of splay trees:

Many rotations, even during accesses!


