
COS 423 Lecture 5

Self-Adjusting Search treesSelf-Adjusting Search trees

©Robert E. Tarjan 2011

Balanced trees minimize worst-case access time
to within a constant factor, but what if
accesses are not uniform?

Access locality:

Different but fixed access probabilitiesDifferent but fixed access probabilities

Spatial locality: frequent accesses near certain

positions: fixed or moving fingers, e.g. first,

last

Time locality: working set

Ways to exploit locality:

Custom-built data structure:

Optimum search tree (given fixed access

probabilities)

Finger search tree (heterogenous or Finger search tree (heterogenous or

homogeneous)

“Working set” tree?

Self-adjusting data structure

Self-adjusting search tree: during or after each

access, modify the tree (to reduce overall cost

of accesses and updates).

List analogy:

swap: rotation

move to front: move to rootmove to front: move to root

First try: after an access or insert, move the

accessed or inserted node to the root by

bottom-up rotations along the access path.

Bad example: sequential access

6

5

4

3

1

6

5

4

1

2

6

5

4

3

2

1

6

5

6

5

4

3

n accesses in sequential order cost ~n2/2,

and self-reproducing!

2

1

3

2

3
1 5

4

2

1

Splay Trees (Sleator and Tarjan 1983)

Splay: to spread out. splay(x) moves x to root via
rotations, two at a time. Rotation order is
generally bottom-up, but if the current node and
its parent are both left or both right children, the
top rotation is done first.

splay(x): while p(x) ≠ null dosplay(x): while p(x) ≠ null do

if p(p(x)) = null then rotate(x) [zig]

else if x is left and p(x) is right or x is right and

p(x) is left then {rotate(x), rotate(x)} [zig-zag]

else {rotate(p(x), rotate(x)} [zig-zig]

zig

zig-zag

y

x

z

y

x

C

BA

A

D

x

y

CB

A

x

y z

DCBA

root

zig-zig
z

y

x

B C

A

D

C

BA

DCBA

x

y

z

A

B

C D

Operations on splay trees

Access x: follow search path to x, then splay(x).

Moves x to root, takes time O(d(x) + 1),

including d(x) rotations.

Insert x: follow search path to null, replace by x, Insert x: follow search path to null, replace by x,

splay(x).

Delete x: follow search path to x, swap with

successor if binary, delete x, splay at old

parent.

Catenate(T1, T2)(all items in T1 < all items in T2):

splay at last node x in T1; right(x) ← root(T2).

Split(T, x): splay(x); detach right(x) = root of tree

containing all items > x.

+

x
catenate

T1’T2

x

+

T1 T2

T2

x

T T1

x

split

Splay: pure zig-zag

7

1

6

7

1

6

7

1

4

7

1

6

5

3

2

5

3

4

2

4

3 5

2

3

6

5

2 4

Splay: pure zig-zig

7

6

5

4

7

6

5

4

7

6

1

4

52

1

6

7

5

4

2

3

2

1

1

2

3

52

3

52

3

Analysis of splaying

Let the cost of splay(x) be d(x) + 1 = #rots + 1.

Assign each item x a positive weight w(x). The

total weight W(x) of x is the sum of the

weights of all items in the subtree of x,

including x. E.g. w(x) = 1 → W(x) = s(x).including x. E.g. w(x) = 1 → W(x) = s(x).

Φ(x) = lgW(x) Φ(T) = ΣΦ(x)

If w(x) = 1, 0 ≤ Φ(T) ≤ nlgn.

If w(x)≥ 1, Φ(T) ≥ 0.

Access Lemma: The amortized cost of splay(x) is

≤ 3ΔΦ(x) + 2.

Useful inequality:

0 ≤ (a – b)2 = a2 – 2ab + b2 → 2ab ≤ a2 + b2

→ 4ab ≤ a2 + 2ab + b2 = (a + b)2→ 4ab ≤ a + 2ab + b = (a + b)

→ lga + lgb ≤ 2lg(a + b) – 2 (*)

Proof of access lemma: Case analysis of splay

steps.

zig: actual cost = 1

ΔΦ(T) = Φ’(x) + Φ’(y) – Φ(x) – Φ(y)

= Φ’(y) – Φ(x) ≤ Φ’(x) – Φ(x)

= ΔΦ(x) ≤ 3ΔΦ(x)= ΔΦ(x) ≤ 3ΔΦ(x)

→ amortized cost ≤ 3ΔΦ(x) + 1

y

x C

BA

x

y

CB

A

root

zig-zag: actual cost = 2

ΔΦ(T) = Φ’(y) + Φ’(z) – Φ(x) – Φ(y)

≤ 2Φ’(x) – 2 – 2Φ(x) by (*)

≤ 2ΔΦ(x) – 2

→ amortized cost ≤ 2ΔΦ(x) ≤ 3ΔΦ(x)

z

y

x

B C

A

D

x

y z

DCBA

zig-zig: actual cost = 2

ΔΦ(T) = Φ’(y) + Φ’(z) – Φ(x) – Φ(y)

= Φ’(y) + Φ’(z) + Φ(x) – 2Φ(x) – Φ(y)

≤ Φ’(x) + 2Φ’(x) – 2 – 3Φ(x) by (*)

= 3ΔΦ(x) – 2

→ amortized cost ≤ 3ΔΦ(x) → amortized cost ≤ 3ΔΦ(x)

z

y

x

D

C

BA

x

y

z

A

B

C D

Summing over all splay steps gives the access

lemma: the amortized cost of splay(x) is ≤

3ΔΦ(x) + 2.3ΔΦ(x) + 2.

Applications of the access lemma

Balance Theorem: Starting from an empty tree,

an arbitrary sequence of accesses, insertions,

and deletions takes O(1 + lgn) amortized time

per operation.

Proof: Choose w(x) = 1. Insertion of leaf x

(without splaying) increases Φ(T) by O(lgn).

Amortized cost of splay(x) is O(1 + lgn). (You

verify.)

Static optimality theorem: Start from an

arbitrary tree and do an arbitrary sequence of

m accesses, with each item accessed at least

once. Let f(x) = #accesses of x, The amortized

time to access x is O(1 + lg(m/f(x)).

Proof: Choose w(x) = f(x). lgf(x) ≤ Φ(x) ≤ lgmProof: Choose w(x) = f(x). lgf(x) ≤ Φ(x) ≤ lgm

→ competitive with static optimum tree for

given access frequencies

Working Set Theorem: Start with an arbitrary

tree and do an arbitrary sequence of accesses,

with each item accessed at least once. The

amortized time to access x is O(1 + lgk(x)),

where k(x) is the number of distinct items where k(x) is the number of distinct items

accessed since the last time x was accessed.

Proof: Assign weights 1, 1/4, 1/9, 1/16,…, 1/n2 in

order by most recent access.

True but proof is long and complicated

Dynamic Finger Theorem (Cole 1990): Start

from an empty tree and do an arbitrary

sequence of insertions, deletions, and

accesses. The amortized time for an accesses. The amortized time for an

operation is O(1 + lgt), where t is the number

of nodes in symmetric order between the last

node splayed and the current node splayed,

inclusive.

Dynamic optimality conjecture

Splay trees are O(1)-competitive with the

optimum off-line binary search tree algorithm.

Best known so far: Several more-complicated

binary search trees are O(lglgn)-competitive.

Advantages of splay trees:

No balance information required.

Simple operations.

Take advantage of any exploitable pattern in

the access sequence.

Disadvantage of splay trees:

Many rotations, even during accesses!

