
COS 423 Lecture 7

Rank-Pairing HeapsRank-Pairing Heaps

©Robert E. Tarjan 2011

Inefficiency in pairing heaps:

Links during inserts, melds, decrease-keys can

combine two trees of very different sizes,

increasing the potential by Θ(lgn).

To avoid such bad links, we use ranks:To avoid such bad links, we use ranks:

Each node has a non-negative integer rank

Missing nodes have rank –1

Rank of root = 1 + rank of left child

rank of tree = rank of root

Store ranks with nodes. Link only roots of equal

rank. Rank of winning root increases by one:

10 8 8+

r

r + 1r r

10

A B

BA

r

A heap is a set of half trees, not just one half

tree (can’t link half trees of different ranks)

Representation of a heap: a circular singly-linked

list of roots of half trees, with the root of

minimum key (the min-root) firstminimum key (the min-root) first

Circular linking → catenation takes O(1) time

Node ranks depend on how operations are done

find-min: return item in min-root

make-heap: return a new, empty list

insert: create new one-node half tree of rank 0,

insert in list, update min-root

4 9 6 8+5 4 9 6 8+

4 9 6 85

5

meld: catenate lists, update min-root

4 9 6 2 8 5 7+

2 9 6 4 8 5 7

delete-min: Delete min-root. Cut edges along

right path down from new root to give new

half-trees. Link roots of equal rank until no

two roots have equal rank. Form list of

remaining half trees.

To do links, use array of buckets, one per rank. To do links, use array of buckets, one per rank.

Add each tree to its bucket, link with tree in

bucket if there is one, add tree formed by link

to next bucket.

delete-min: numbers are keys

6 8 5 30

9

7

2

4

1

delete-min: numbers are ranks

5 3 3 2

4

3

2

1

0

5 3 3 20 1 2 3 4

0 1 2 3 4 5 6

Each link takes O(1) time, forming final tree

0 1 4 6

Each link takes O(1) time, forming final tree

takes O(max rank) time → delete-min takes

O(max rank + #links) time

Amortize links: let Φ = # half trees

One unit of time per link , ΔΦ = –1

→ link takes 0 amortized time

make heap, find-min, meld do not change Φ,

insert increases Φ by 1 → each takes O(1)

amortized time

delete-min takes O(#new half trees + max rank)

amortized timeamortized time

How many new half trees?

What is max rank?

All rank differences are 1, all leaves have rank 0

→ all half trees are perfect: a half tree of rank r

contains exactly 2r nodes

→ #new half trees, max rank ≤ lgn

→ delete-min takes O(lgn) amortized time→ delete-min takes O(lgn) amortized time

Data structure: lazy binomial queue.

A perfect half tree of rank 4

4

3

22 22

11 1 1

00000 000

What about decrease-key?

Add parent pointers to data structure

decrease key(x, k, H): Remove x and its

left subtree (becomes a new half tree).
Replace x by its right child. Change key of x to
k. Add x to the list of half tree roots. Update k. Add x to the list of half tree roots. Update
the min-root.

But: rank differences are no longer all 1, half
trees are no longer perfect, max rank can grow
beyond O(lgn)

decrease-key(x, k, H): numbers are ranks

3

22 x

y z

22

11 1 1

00000 000

x

3

x

2

1

00

y z

2

11 1

000 000

Solution: maintain an invariant on rank

differences. Allowed node types are 1,1

(perfect); 1,2; and 0,j for any j > 1.

At end of decrease-key of x, set r(x) = r(left(x)) + At end of decrease-key of x, set r(x) = r(left(x)) +

1; start from old parent y of x and walk up

path toward root, decreasing ranks to restore

the invariant:

while p(y) ≠ null and r(y) too big do

{let y be i,j with i ≤ j;

if j – i > 1 then r(y) ← r(y) – i

else r(y) ← r(y) – i + 1;

y ← p(y)};y ← p(y)};

if p(y) = null then r(y) = r(left(y)) + 1

In successive steps, r(y) decreases by a non-

increasing amount

decrease-key(x, k, H) 9

8

6

77

5

6

6

0

x

y

2

6

3

9

8

6

7

7

x

6

7

5
6

6

0

y

5

2

3

9

8

4

7

6

x

6

7

5
4

2

0

y

5

2

3

delete(x, H): decrease-key(x, –∞, H);

delete-min(H)

delete-min: Delete min-root. Cut edges along

right path down from new root to give new

half-trees. Set rank of each new root = 1 + half-trees. Set rank of each new root = 1 +

rank of left child. Link roots of equal rank until

no two roots have equal rank. Form list of

remaining half trees.

Delete-min: numbers are keys

6 8 5 30

9

7

2

4

1

Delete-min: numbers are ranks

5 3 3 2

4

4

2

1

1

5 3 3 24 4 2 1 1

0 1 2 3 4 5 6

2 3 4 6

Each link takes O(1) time, forming final tree

takes O(max rank) time → delete-min takes

O(max rank + #links) time

Data structure: (type-2) rank-pairing heap

Invariant on rank differences

→ max rank is O(lgn)

Amortize rank decrease steps as well as links

→ amortized time of decrease-key is O(1),

other amortized time bounds the same

Half tree height bound

Fibonacci numbers

F0 = 0, F1 = 1, Fk = Fk – 1 + Fk – 2 for k > 1

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,…

Golden ratio φ = (1 + √5)/2

φ2 = φ + 1 φk ≤ Fk + 2

For any non-root x, s(x) + 1 ≥ Fr(x) + 3

For any root x, s(x) ≥ Fr(x) + 2

Proof for non-roots by induction on h(x):

s(null) + 1 = 0 + 1 = F2

s(leaf) + 1 = 1 + 1 ≥ F3

h(x) > 0: s(x) + 1 = s(left(x)) + 1 + s(right(x)) + 1 ≥h(x) > 0: s(x) + 1 = s(left(x)) + 1 + s(right(x)) + 1 ≥

Fr(x) + 2 + Fr(x) + 1 = Fr(x) + 3 if x is 1,1 or 1,2;

immediate if x is 0,j

n ≥ Fr(x) + 2 ≥ φr(x) →

r(x) ≤ lgφn < 1.44043lgn

How to amortize rank decrease steps and links?

Such a step must decrease Φ

Φ(x) = i + j + c if x is i,j (c any constant)

→ when r(x) decreases by δ, Φ(x) decreases → when r(x) decreases by δ, Φ(x) decreases

by 2δ, Φ(p(x)) increases by δ,

net change is –δ

A link converts a root to a 1,1

→ Φ(root) > Φ(x) if x is 1,1

Choosing c = –2, Φ(root) = 1 gives Φ(x) = 0 if x

1,1

Almost works!

Problem: 0,2 nodes also have Φ = 0, but such

nodes need Φ = 1 when they become roots. nodes need Φ = 1 when they become roots.

Need extra potential.

Only one 1,1 node can decrease in rank during a

decrease-key: choose c = –1, give 1,1 nodes

potential 0 instead of 1.

Φ(x) = r(x) – r(left(x)) if root

= 0 if 1,1

= 2r(x) – r(left(x)) – r(right(x)) – 1 otherwise

make-heap (ΔΦ = 0), find-min (ΔΦ = 0), insert

(ΔΦ = 1), meld (ΔΦ = 0) take O(1) amortized

time

delete-min: Each new root needs one unit of Φ,

which it has unless it is a 1,1 node. Only lgφn

1,1 nodes on a path (at most one per rank)

→ creation of new half trees increases Φ by at

most lgφn

Each link takes 0 amortized time

→ delete-min takes O(lgn) amortized time

decrease-key: Creating new subtree takes O(1)

amortized time (ΔΦ ≤ 2). Each rank decrease

step reduces Φ unless it is of a 1,1 node. Only

one 1,1 node can decrease in rank: can only

decrease by 1, previous decrease must be by decrease by 1, previous decrease must be by

at least 2

→ decrease-key takes O(1) amortized time

Variants

Can strengthen or weaken rank invariant:

Stronger: nodes are 1,1 or 0,j for j > 0

type-1 rank-pairing heap

Weaker: nodes are 1,1; 1,2; 1,3; or 0,j for j > 2

type-3 rank-pairing heap

Type 1: smaller height bound but more

complicated amortized analysis, worse

constant factors, seems to require a special

linking order in delete-minlinking order in delete-min

Type 2: the sweet spot

Type 3: simpler amortized analysis (Φ(non-root)

= sum of rank differences of children – 2) but

bigger height bound

Why care about fast decrease-key?

Dijkstra’s shortest path algorithm: coming up!Dijkstra’s shortest path algorithm: coming up!

