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Path compression with naïve  linking 

Bad example for path compression?

A path of n nodes can result in one find path of 

n nodes, but compression flattens the tree: n nodes, but compression flattens the tree: 

not repeatable

Need a class of trees preserved by path 

compression: binomial trees 
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Given n = 2k, build a Bk – 1.  Then repeat n/2 

times: link with a singleton, do a find on 

deepest element: Θ(lgn) time per find

Let the density of finds d = m/n.  As d 

increases, the amortized time per find increases, the amortized time per find 

decreases: Θ(logd + 1n) 

Lower bound: class of trees preserved by a link 

with a singleton followed by d finds 

(generalized binomial trees: exercise) 



Upper bound: debit argument

Count changes of parent once a node becomes a 
non-root: undercounts number of nodes on 
each find path by 2

For purposes of the analysis we give each node a 
←

For purposes of the analysis we give each node a 
rank: when make-set(x) occurs, r(x) ← 0; when 
a(y) ← x in a link, r(x) ← max{r(x), r(y) + 1}  

Without compression, r(x) = h(x); with 
compression, r(x) ≥ h(x).  With or without 
compression, r(x) < r(a(x)); r(a(x)) never 
decreases 



Let x be a non-root.  We charge a change in a(x) 

during a find to the corresponding increase in 

r(a(x)).  We define k(x) and j(x), the level of x

and the index of x, as follows:

k(x) = max{k|(d + 1)k ≤ r(a(x)) – r(x)}

j(x) = max{j|j(d + 1)k(x) ≤ r(a(x)) – r(x)}j(x) = max{j|j(d + 1)k(x) ≤ r(a(x)) – r(x)}

0 ≤ k(x) ≤ logd + 1n, 1 ≤ j(x) ≤ d



When a find occurs, if x is a node whose parent 

changes, we give x one debit unless it is the 

last node in its level along the find path.

Along each find path, there is at most one node 

per level that is last in the level, totaling 1 + 

log n per find.  The remaining nodes logd + 1n per find.  The remaining nodes 

whose parents change are debited for the 

change.

How many debits in total?



Let x be a node.  Then k(x) never decreases.  

Suppose x gets a debit.  Then there is a node y

after x on the find path such that k(x) = k(y).  

Let a, a’, respectively, be the parent functions 

before and after the compression.  Then 

r(a’(x)) – r(x) ≥ r(a(y)) – r(x)r(a’(x)) – r(x) ≥ r(a(y)) – r(x)

≥ r(a(y)) – r(y) + r(a(x)) – r(x)

≥ (d + 1)k(x) + j(x)(d + 1)k(x)

≥ (j(x) + 1)(d + 1)k(x)



Thus when x incurs a debit, its index or its level 

increases.  Since j(x) can only increase d – 1   

times before k(x) increases, x can incur at 

most d logd + 1n debits.  Summing over all 

nodes, #debits = O(mlogd + 1n)nodes, #debits = O(mlogd + 1n)

→ amortized time per find = O(logd + 1n)  



Path compression with linking by rank

History of bounds (amortized time per find)

1971 O(1) (false)

1972 O(lglgn) M. Fisher

1973 O(lg*n) Hopcroft & Ullman

1975 Θ(α(n, d)) Tarjan

later  Ω(lglgn) (false)

2005 top-down analysis Seidel & Sharir



Ackermann’s function

(Péter & Robinson)

A(k, j) = j + 1 if k = 0

= A(k – 1, 1) if k > 0, j = 0

= A(k – 1, A(k, j – 1)) if k > 0, j > 0

A(1, j) = j + 2, A(2, j) = 2j + 3, A(3, j) > 2j, A(4, j) > 

tower of j 2’s, A(4, 2) has 19,729 decimal digits

A(k, j) is strictly increasing in both arguments

α(n, d) = min{k > 0|A(k, d) > n} 



Upper bound: debit argument

Count changes of parent once a node becomes a 

non-root: undercounts number of nodes on 

each find path by 2.  Charge a change in a(x) each find path by 2.  Charge a change in a(x) 

to the corresponding increase in r(a(x)).



If r(x) ≥ d, we define k(x) and j(x), the level of x,

and the index of x, as follows: 

k(x) = max{k|A(k, r(x)) ≤ r(a(x))}

j(x) = max{j|A(k(x) + 1, j) ≤ r(a(x))}

A(0, r(x)) = r(x) + 1 → k(x) ≥ 0

A(α(n, d), d) > n → k(x) < α(n, d) (r(x) ≥ d)

A(k(x) + 1, 0) = A(k(x), 1) → j(x) ≥ 0 (r(x) ≥ 1)

A(k(x) + 1, r(x)) > r(a(x)) → j(x) < r(x)    



→ 0 ≤ k(x) < α(n, d), 0 ≤ j(x) < r(x) if r(x) ≥ d

We charge for nodes whose parent changes as a 
result of a find.  If x is such a node, we give x a 
debit if r(x) < d and r(a(x)) < d, or if r(x) ≥ d and 
x is not last in its level on the find path.  Every 
other node on the find path is either last in its other node on the find path is either last in its 
level, at most α(n, d) nodes per find, or its 
rank is < d but the rank of its parent is ≥ d, at 
most one node per find.  Thus at most α(n, d) 
+ 1 nodes per find change parent but do not 
accrue a debit.



Each charged node x of rank < d can accumulate 

a charge of at most d – 1  before its parent has 

rank ≥ d and it is never charged again.  Thus 

the total number of debits accrued by such 

nodes is at most n(d – 1) = O(m).

It remains to bound the debits accrued by nodes It remains to bound the debits accrued by nodes 

of rank ≥ d.  Suppose such a node x accrues a 

debit. Let y be a node after x on the find path 

with k(y) = k(x).  Let a, a’ be the parent 

functions before and after the find, 

respectively.  



r(a’(x)) ≥ r(a(y)) ≥ A(k(x), r(y)) ≥ A(k(x), r(a(x)))

≥ A(k(x), A(k(x) + 1, j(x))

= A(k(x) + 1, j(x) + 1)

→ j(x) or k(x) increases as a result of the find

→ #debits accrued by nodes of high rank→ #debits accrued by nodes of high rank

≤ α(n, d)r per node of rank r ≥ d

The sum of node ranks is at most n (Why?)

→#debits per find = O(α(n, d))

= amortized time per find 



This argument can be tightened: the function A

can grow even faster; the inverse function α

can grow even more slowly, e. g. α(n, d) = 

min{k > 0|A(k, d) > lgn}, but this only improves 

the bound by an additive constant.  

Seidel and Sharir have shown that for any 

feasible problem size, the number of parent 

changes during compressions is at most m + 2n



Can extend the bound to the case m = o(n); can 

tighten the bound to α(n’, d), where n’ is the 

number of elements in the set on which the 

find is done

The bound holds for some one-pass variants of 

path compression: path halving, path splitting



Is the bound tight?

We use double induction to build examples that 

change k pointers per find, for any k.  The 

number of nodes is B(k, j), defined as follows:  

B(k, j) = 1 if k = 0

= 2B(k – 1, 2) if k > 0, j = 1= 2B(k – 1, 2) if k > 0, j = 1

= B(k, j – 1)×B(k – 1, B(k, j – 1)) if k > 0, j > 1

B(k, j) grows even faster than A(k, j), but the 

inverses are within an additive constant. 



To simplify the argument, we change the way 

linking is done:

link(x, y): let z be a new root; a(x) ← z; a(y) ← z

z
x y

x y

z



We shall only link identical trees.  Given a tree T, 

T0 = T,

Ti + 1 =  link(Ti, Ti) =

By such links we can build perfect binary trees.  
(Such trees can be Borůvka trees.)

Ti Ti



Theorem: Let T be an tree with j leaves other 

than the root.  If s = B(k, j), then starting with s 

copies of T, there is a sequence of intermixed 

links and finds such that each find changes at 

least k pointers, each link combines two Tleast k pointers, each link combines two Ti

trees to form a Ti + 1 tree, and there are js

finds, one on each leaf of an original copy of T. 



Proof: By double induction on k and j.

Let k = 0.  Then can do finds on all leaves of T = 
T0.  Each find changes no pointers; no links are 
needed.

Suppose true for k – 1, any j.  Let T have one leaf 
other than the root.  Link two copies of T to 
form T1.  Let T’ be T1 with its two leaves form T1.  Let T’ be T1 with its two leaves 
deleted.  Then T’ has two leaves, the parents 
of the deleted leaves.  By the induction 
hypothesis there is a sequence of intermixed 
links and finds on B(k – 1, 2) copies of T’ that 
does finds on all the leaves of the copies, each 
of find changing k – 1 pointers.   



The corresponding sequence of intermixed links of 

copies of T1 and finds on leaves of the copies 

changes k pointers per find: each find on a 

parent is replaced by a find on its child; one 

more pointer is changed since the find path is 

one edge longer.  Thus the theorem holds for k, j

= 1: B(k, 1) = 2B(k – 1, 2).= 1: B(k, 1) = 2B(k – 1, 2).

Suppose true for k – 1, any j; and for k, j – 1.  Let T

be a tree with j leaves.  Starting with B(k, j – 1) 

copies of T, can do links intermixed with finds 

on j – 1 leaves (all but one) in each copy of T.   



Each find changes k pointers, and the final tree T’ is 
a compressed version of Ti for i = lgB(k, j – 1).  
Repeat this process B(k – 1, B(k, j – 1)) times, 
resulting in this many copies of T’.   Let T’’ be T’
with all nodes deleted except for proper 
ancestors  of the original leaves which finds have 
not yet been done.  Then T’’ has B(k, j – 1) leaves.  
Starting with B(k – 1, B(k, j – 1)) copies of T’’, can Starting with B(k – 1, B(k, j – 1)) copies of T’’, can 
do links intermixed with finds on all the leaves, 
each of which changes k – 1 pointers.  Instead do 
the corresponding sequence of operations on the 
copies of T’, replacing each find by a find on its 
child that was an original leaf.  Each of these finds 
changes k pointers. 



Thus the theorem is true for k, j:

B(k, j) = B(k, j – 1)×B(k – 1, B(k, j – 1))

Corollary: Starting with B(k + 1, j) singletons, can 

do an intermixed sequence of links and finds 

such that there are j finds of each node and such that there are j finds of each node and 

each find changes k pointers.

Corollary: Path compression with linking by rank 

takes Ω(n, d) amortized time per find.

Proof: Map original links to new links, add extra 

pointers (shortcuts) for free.



Upper bound by top-down analysis

(extra)

Bound the number of parent changes by a 

divide-and-conquer recurrence

Solve the recurrence (or just plug it into itself Solve the recurrence (or just plug it into itself 

repeatedly)

To obtain a closed recurrence, we need a 

“funny” form of compression



shatter(x): make every ancestor of x a root, by 

setting its parent to null

Once a(x) becomes null as a result of a shatter, x

can no longer be linked; its tree is only subject 

to compressions and shatteringsto compressions and shatterings

The parent changes (to null) that occur during a 

shatter are counted outside the recursive 

subproblem in which the shatter occurs; 

within the subproblem, these changes are free 



shatter(X)

X

X



To use the method if linking is naïve, we assign 

ranks to nodes as described previously

To bound parent changes, we partition nodes 

into low and high based on their final 

(maximum) ranks: if r(x) < k, x is low, 

otherwise x is high (k is a parameter)otherwise x is high (k is a parameter)

Given the original problem, we form two 

subproblems, the low and high problems, on 

the low and high nodes, respectively



We do all the make-set operations before all the 

links and finds, and we give all nodes their 

final ranks (so that links do not change any 

ranks)

Each node in the low problem has the same rank Each node in the low problem has the same rank 

as in the original problem; each node in the 

high problem has rank k less than its rank in 

the original problem. 



Mapping of operations

Consider link(x, y) in the original problem.  Let y be 
the new root.  (Proceed symmetrically if x is the 
new root.)  If y is low, do the  link in the low 
problem, if x is high, do the link in the high 
problem, and if x is low and y is high, do nothing 
in either subproblem.in either subproblem.

Suppose find(x) in the original problem returns 
node y.  If y is low, do find(x) in the low problem.  
If x is high, do find(x) in the high problem.  If x is 
low and y is high, let z be the first high node 
along the find path in the original problem; do 
shatter(x) in the low problem and find(z) in the 
high problem.  



Each link in the original problem maps to a link 

in the low or the high problem or to nothing

Each find in the original problem maps to a find 

in the low or the high problem and, if to a find 

in the high problem, possibly to a shatter in 

the low problem.the low problem.

If x is any non-root in either the low or the high 

problem, r(x) < r(a(x)).



If linking is naïve, in both the low and high 

problems there is at least one node per rank, 

from 0 up to the maximum rank.

If linking is by rank, the number of nodes of rank 

≥ j in the both low and high problems is at ≥ j in the both low and high problems is at 

most 1/2j times the total number of nodes in 

the problem, and the number of nodes in the 

high problem is at most 1/2k times the total 

number of nodes in the original problem.



The total cost of finds (number of parent changes) 

in the original problem is at most the total cost of 

finds in the high and low problems plus the 

number of nodes in the low problem plus the 

number of finds in the high problem:

Each find path that contains both low and high 

nodes contains one low node whose parent is nodes contains one low node whose parent is 

already a high node, and zero or more nodes 

whose parent is low but whose new parent is 

high.  Over all finds, this is at most one per find in 

the high problem plus at most one per node in 

the low problem.  



The recurrence

C(n, m, r) ≤ C(n’, m’, r’) + C(n’’, m’’, r’’) + n’ + m’’

Here n, m, and r are the number of nodes, the 

number of finds, and the maximum rank; single number of finds, and the maximum rank; single 

and double primes denote the low and high 

problems, respectively: n = n’ + n’’, m = m’ + 

m’’, r = r’ + r’’.



One can use this recurrence to bound the 

amortized time for finds with path 

compression, with naïve linking or linking by 

rank: your challengerank: your challenge


