
COS 423 Lecture 13

Analysis of path CompressionAnalysis of path Compression

© Robert E. Tarjan 2011

Path compression with naïve linking

Bad example for path compression?

A path of n nodes can result in one find path of

n nodes, but compression flattens the tree: n nodes, but compression flattens the tree:

not repeatable

Need a class of trees preserved by path

compression: binomial trees

Binomial trees

B0 B1 B2
B3 B4

B0 = ,

Bk + 1 = = =

Bk

Bk

Bk

Bk – 1 Bk Bk – 1 B1

B1

Bk

link

compress
Bk

Given n = 2k, build a Bk – 1. Then repeat n/2

times: link with a singleton, do a find on

deepest element: Θ(lgn) time per find

Let the density of finds d = m/n. As d

increases, the amortized time per find increases, the amortized time per find

decreases: Θ(logd + 1n)

Lower bound: class of trees preserved by a link

with a singleton followed by d finds

(generalized binomial trees: exercise)

Upper bound: debit argument

Count changes of parent once a node becomes a
non-root: undercounts number of nodes on
each find path by 2

For purposes of the analysis we give each node a
←

For purposes of the analysis we give each node a
rank: when make-set(x) occurs, r(x) ← 0; when
a(y) ← x in a link, r(x) ← max{r(x), r(y) + 1}

Without compression, r(x) = h(x); with
compression, r(x) ≥ h(x). With or without
compression, r(x) < r(a(x)); r(a(x)) never
decreases

Let x be a non-root. We charge a change in a(x)

during a find to the corresponding increase in

r(a(x)). We define k(x) and j(x), the level of x

and the index of x, as follows:

k(x) = max{k|(d + 1)k ≤ r(a(x)) – r(x)}

j(x) = max{j|j(d + 1)k(x) ≤ r(a(x)) – r(x)}j(x) = max{j|j(d + 1)k(x) ≤ r(a(x)) – r(x)}

0 ≤ k(x) ≤ logd + 1n, 1 ≤ j(x) ≤ d

When a find occurs, if x is a node whose parent

changes, we give x one debit unless it is the

last node in its level along the find path.

Along each find path, there is at most one node

per level that is last in the level, totaling 1 +

log n per find. The remaining nodes logd + 1n per find. The remaining nodes

whose parents change are debited for the

change.

How many debits in total?

Let x be a node. Then k(x) never decreases.

Suppose x gets a debit. Then there is a node y

after x on the find path such that k(x) = k(y).

Let a, a’, respectively, be the parent functions

before and after the compression. Then

r(a’(x)) – r(x) ≥ r(a(y)) – r(x)r(a’(x)) – r(x) ≥ r(a(y)) – r(x)

≥ r(a(y)) – r(y) + r(a(x)) – r(x)

≥ (d + 1)k(x) + j(x)(d + 1)k(x)

≥ (j(x) + 1)(d + 1)k(x)

Thus when x incurs a debit, its index or its level

increases. Since j(x) can only increase d – 1

times before k(x) increases, x can incur at

most d logd + 1n debits. Summing over all

nodes, #debits = O(mlogd + 1n)nodes, #debits = O(mlogd + 1n)

→ amortized time per find = O(logd + 1n)

Path compression with linking by rank

History of bounds (amortized time per find)

1971 O(1) (false)

1972 O(lglgn) M. Fisher

1973 O(lg*n) Hopcroft & Ullman

1975 Θ(α(n, d)) Tarjan

later Ω(lglgn) (false)

2005 top-down analysis Seidel & Sharir

Ackermann’s function

(Péter & Robinson)

A(k, j) = j + 1 if k = 0

= A(k – 1, 1) if k > 0, j = 0

= A(k – 1, A(k, j – 1)) if k > 0, j > 0

A(1, j) = j + 2, A(2, j) = 2j + 3, A(3, j) > 2j, A(4, j) >

tower of j 2’s, A(4, 2) has 19,729 decimal digits

A(k, j) is strictly increasing in both arguments

α(n, d) = min{k > 0|A(k, d) > n}

Upper bound: debit argument

Count changes of parent once a node becomes a

non-root: undercounts number of nodes on

each find path by 2. Charge a change in a(x) each find path by 2. Charge a change in a(x)

to the corresponding increase in r(a(x)).

If r(x) ≥ d, we define k(x) and j(x), the level of x,

and the index of x, as follows:

k(x) = max{k|A(k, r(x)) ≤ r(a(x))}

j(x) = max{j|A(k(x) + 1, j) ≤ r(a(x))}

A(0, r(x)) = r(x) + 1 → k(x) ≥ 0

A(α(n, d), d) > n → k(x) < α(n, d) (r(x) ≥ d)

A(k(x) + 1, 0) = A(k(x), 1) → j(x) ≥ 0 (r(x) ≥ 1)

A(k(x) + 1, r(x)) > r(a(x)) → j(x) < r(x)

→ 0 ≤ k(x) < α(n, d), 0 ≤ j(x) < r(x) if r(x) ≥ d

We charge for nodes whose parent changes as a
result of a find. If x is such a node, we give x a
debit if r(x) < d and r(a(x)) < d, or if r(x) ≥ d and
x is not last in its level on the find path. Every
other node on the find path is either last in its other node on the find path is either last in its
level, at most α(n, d) nodes per find, or its
rank is < d but the rank of its parent is ≥ d, at
most one node per find. Thus at most α(n, d)
+ 1 nodes per find change parent but do not
accrue a debit.

Each charged node x of rank < d can accumulate

a charge of at most d – 1 before its parent has

rank ≥ d and it is never charged again. Thus

the total number of debits accrued by such

nodes is at most n(d – 1) = O(m).

It remains to bound the debits accrued by nodes It remains to bound the debits accrued by nodes

of rank ≥ d. Suppose such a node x accrues a

debit. Let y be a node after x on the find path

with k(y) = k(x). Let a, a’ be the parent

functions before and after the find,

respectively.

r(a’(x)) ≥ r(a(y)) ≥ A(k(x), r(y)) ≥ A(k(x), r(a(x)))

≥ A(k(x), A(k(x) + 1, j(x))

= A(k(x) + 1, j(x) + 1)

→ j(x) or k(x) increases as a result of the find

→ #debits accrued by nodes of high rank→ #debits accrued by nodes of high rank

≤ α(n, d)r per node of rank r ≥ d

The sum of node ranks is at most n (Why?)

→#debits per find = O(α(n, d))

= amortized time per find

This argument can be tightened: the function A

can grow even faster; the inverse function α

can grow even more slowly, e. g. α(n, d) =

min{k > 0|A(k, d) > lgn}, but this only improves

the bound by an additive constant.

Seidel and Sharir have shown that for any

feasible problem size, the number of parent

changes during compressions is at most m + 2n

Can extend the bound to the case m = o(n); can

tighten the bound to α(n’, d), where n’ is the

number of elements in the set on which the

find is done

The bound holds for some one-pass variants of

path compression: path halving, path splitting

Is the bound tight?

We use double induction to build examples that

change k pointers per find, for any k. The

number of nodes is B(k, j), defined as follows:

B(k, j) = 1 if k = 0

= 2B(k – 1, 2) if k > 0, j = 1= 2B(k – 1, 2) if k > 0, j = 1

= B(k, j – 1)×B(k – 1, B(k, j – 1)) if k > 0, j > 1

B(k, j) grows even faster than A(k, j), but the

inverses are within an additive constant.

To simplify the argument, we change the way

linking is done:

link(x, y): let z be a new root; a(x) ← z; a(y) ← z

z
x y

x y

z

We shall only link identical trees. Given a tree T,

T0 = T,

Ti + 1 = link(Ti, Ti) =

By such links we can build perfect binary trees.
(Such trees can be Borůvka trees.)

Ti Ti

Theorem: Let T be an tree with j leaves other

than the root. If s = B(k, j), then starting with s

copies of T, there is a sequence of intermixed

links and finds such that each find changes at

least k pointers, each link combines two Tleast k pointers, each link combines two Ti

trees to form a Ti + 1 tree, and there are js

finds, one on each leaf of an original copy of T.

Proof: By double induction on k and j.

Let k = 0. Then can do finds on all leaves of T =
T0. Each find changes no pointers; no links are
needed.

Suppose true for k – 1, any j. Let T have one leaf
other than the root. Link two copies of T to
form T1. Let T’ be T1 with its two leaves form T1. Let T’ be T1 with its two leaves
deleted. Then T’ has two leaves, the parents
of the deleted leaves. By the induction
hypothesis there is a sequence of intermixed
links and finds on B(k – 1, 2) copies of T’ that
does finds on all the leaves of the copies, each
of find changing k – 1 pointers.

The corresponding sequence of intermixed links of

copies of T1 and finds on leaves of the copies

changes k pointers per find: each find on a

parent is replaced by a find on its child; one

more pointer is changed since the find path is

one edge longer. Thus the theorem holds for k, j

= 1: B(k, 1) = 2B(k – 1, 2).= 1: B(k, 1) = 2B(k – 1, 2).

Suppose true for k – 1, any j; and for k, j – 1. Let T

be a tree with j leaves. Starting with B(k, j – 1)

copies of T, can do links intermixed with finds

on j – 1 leaves (all but one) in each copy of T.

Each find changes k pointers, and the final tree T’ is
a compressed version of Ti for i = lgB(k, j – 1).
Repeat this process B(k – 1, B(k, j – 1)) times,
resulting in this many copies of T’. Let T’’ be T’
with all nodes deleted except for proper
ancestors of the original leaves which finds have
not yet been done. Then T’’ has B(k, j – 1) leaves.
Starting with B(k – 1, B(k, j – 1)) copies of T’’, can Starting with B(k – 1, B(k, j – 1)) copies of T’’, can
do links intermixed with finds on all the leaves,
each of which changes k – 1 pointers. Instead do
the corresponding sequence of operations on the
copies of T’, replacing each find by a find on its
child that was an original leaf. Each of these finds
changes k pointers.

Thus the theorem is true for k, j:

B(k, j) = B(k, j – 1)×B(k – 1, B(k, j – 1))

Corollary: Starting with B(k + 1, j) singletons, can

do an intermixed sequence of links and finds

such that there are j finds of each node and such that there are j finds of each node and

each find changes k pointers.

Corollary: Path compression with linking by rank

takes Ω(n, d) amortized time per find.

Proof: Map original links to new links, add extra

pointers (shortcuts) for free.

Upper bound by top-down analysis

(extra)

Bound the number of parent changes by a

divide-and-conquer recurrence

Solve the recurrence (or just plug it into itself Solve the recurrence (or just plug it into itself

repeatedly)

To obtain a closed recurrence, we need a

“funny” form of compression

shatter(x): make every ancestor of x a root, by

setting its parent to null

Once a(x) becomes null as a result of a shatter, x

can no longer be linked; its tree is only subject

to compressions and shatteringsto compressions and shatterings

The parent changes (to null) that occur during a

shatter are counted outside the recursive

subproblem in which the shatter occurs;

within the subproblem, these changes are free

shatter(X)

X

X

To use the method if linking is naïve, we assign

ranks to nodes as described previously

To bound parent changes, we partition nodes

into low and high based on their final

(maximum) ranks: if r(x) < k, x is low,

otherwise x is high (k is a parameter)otherwise x is high (k is a parameter)

Given the original problem, we form two

subproblems, the low and high problems, on

the low and high nodes, respectively

We do all the make-set operations before all the

links and finds, and we give all nodes their

final ranks (so that links do not change any

ranks)

Each node in the low problem has the same rank Each node in the low problem has the same rank

as in the original problem; each node in the

high problem has rank k less than its rank in

the original problem.

Mapping of operations

Consider link(x, y) in the original problem. Let y be
the new root. (Proceed symmetrically if x is the
new root.) If y is low, do the link in the low
problem, if x is high, do the link in the high
problem, and if x is low and y is high, do nothing
in either subproblem.in either subproblem.

Suppose find(x) in the original problem returns
node y. If y is low, do find(x) in the low problem.
If x is high, do find(x) in the high problem. If x is
low and y is high, let z be the first high node
along the find path in the original problem; do
shatter(x) in the low problem and find(z) in the
high problem.

Each link in the original problem maps to a link

in the low or the high problem or to nothing

Each find in the original problem maps to a find

in the low or the high problem and, if to a find

in the high problem, possibly to a shatter in

the low problem.the low problem.

If x is any non-root in either the low or the high

problem, r(x) < r(a(x)).

If linking is naïve, in both the low and high

problems there is at least one node per rank,

from 0 up to the maximum rank.

If linking is by rank, the number of nodes of rank

≥ j in the both low and high problems is at ≥ j in the both low and high problems is at

most 1/2j times the total number of nodes in

the problem, and the number of nodes in the

high problem is at most 1/2k times the total

number of nodes in the original problem.

The total cost of finds (number of parent changes)

in the original problem is at most the total cost of

finds in the high and low problems plus the

number of nodes in the low problem plus the

number of finds in the high problem:

Each find path that contains both low and high

nodes contains one low node whose parent is nodes contains one low node whose parent is

already a high node, and zero or more nodes

whose parent is low but whose new parent is

high. Over all finds, this is at most one per find in

the high problem plus at most one per node in

the low problem.

The recurrence

C(n, m, r) ≤ C(n’, m’, r’) + C(n’’, m’’, r’’) + n’ + m’’

Here n, m, and r are the number of nodes, the

number of finds, and the maximum rank; single number of finds, and the maximum rank; single

and double primes denote the low and high

problems, respectively: n = n’ + n’’, m = m’ +

m’’, r = r’ + r’’.

One can use this recurrence to bound the

amortized time for finds with path

compression, with naïve linking or linking by

rank: your challengerank: your challenge

