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One-way algorithm

(variant of Tarjan 1982, Gabow 2000)

Starting idea (Purdom 1968): Do a depth-first 

exploration.  When traversing a cycle arc, 

contract the set of vertices on the corresponding 

cycle (back arc + tree path) into a single vertex.  

When postvisiting a vertex, list the original When postvisiting a vertex, list the original 

vertices contracted into it as a component.

Correctness: Contraction preserves strong 

components

Straightforward to implement using disjoint set 

data structure, running time = O(n + mα(n, d))

Components are listed in reverse topological order



Search from j

Current path j, f

Traversal of (f, j) contracts f, j into j’ 
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Current path j’, c, a, d

Traversal of (d, c) contracts d, a, c into c’   
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Current path j’, c’, g

Traversal of (g, c) contracts g, c’ into c’’   
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Current path j’, c’’, k, h, l, i, e

Traversal of (e, h) contracts e, i, l, h into h’   
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Current path j’, c’’, k, h’

Traversal of (I, k) contracts h’, k into k’   
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Current path j’, c’’, k’

Postvisit of k’ gives component {e, i, l, h, k}   
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Current path j’, c’’, b

Traversal of (b, e), (b, k) leads to component k’

Postvisit of b gives component {b}    
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Current path j’, c’’

Postvisit of c’’ gives component {g, d, a, c}    
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Current path j’

Traversal of (j, g) leads to c’’, of (j, k) leads to k’

Postvisit of j’ gives component {f, j}     
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From almost-linear time to linear time

Special case of set union

Links and finds are not arbitrary: active sets form 

a stack (current path P)

Number vertices in preorder, order by number.  In Number vertices in preorder, order by number.  In 

each set, choose smallest vertex as root

Store component roots on a stack R, in increasing 

order = order of components on P



w in a set → find(w) = max{x ≤pre w|x on R}: find 

top x on R with x ≤pre w

To combine sets: pop from R all vertices above x

The pops pay for the find!The pops pay for the find!

Can make the find implicit!

Need a way to test whether a vertex is in an 

active set, a way to form components



Number components consecutively from n + 1.  
To form a component numbered c, set pre(v) = 
c for all vertices v in component: vertices in 
components are larger than those in active sets

To keep track of non-roots in active sets, use a 
second stack S.  When x is postvisited, push it second stack S.  When x is postvisited, push it 
on S.  All postvisited vertices in a set are 
adjacent on S, order of sets on S is same as 
order on P.  To form a component, when v is 
postvisited and on top of R, pop v from R and 
all x with x >pre v from S



Implementation

explore(V, E): 

{ S ← [ ]; P ← [ ]; k ← 0; c ← n;{ S ← [ ]; P ← [ ]; k ← 0; c ← n;

for v ∈ V do pre(v) ← 0;

for v ∈ V do if pre(v) = 0 then search(v)}



search(v):

{k ← k + 1; pre(v) ← k; push(v, R); 

for (v, w) ∈ E do

if pre(w) = 0 then search(w)

else while top(R)) >pre w do pop(R)

if top(R) ≠ v then push(v, S) elseif top(R) ≠ v then push(v, S) else

{c ← c + 1; 

while top(S) >pre v do

{x ← pop(S); pre(x) ← c};

pop(R); pre(v) ← c}}



Search from j

R j:1, f:2

S
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R j:1, f:2

S

Traversal of (f, j) pops f 
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R j:1, c:3, a:4, d:5

S

Traversal of (d, c) pops d, a   
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R j:1, c:3, g:6

S

Traversal of (g, c) pops g   
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R j:1, c:3, k:7, h:8, l:9, i:10, e:11

S

Traversal of (e, h) pops e, i, l   
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R j:1, c:3, k:7, h:8 

S e:11, i:10 

Traversal of (I, k) pops h   
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R j:1, c:3, k:7 

S e:11, i:10, l:9, h:8 

Postvisit of k gives component {h, l, i, e, k}; all 

get pre = 13   
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R j:1, c:3, b:12 

S g:6, d:5 

Postvisit of b gives component {b}, pre = 14    
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R j:1, c:3 

S g:6, d:5, a:4 

Postvisit of c gives component {a, d, g, c},

pre = 15    

c

a b

d e

f

c

j

g h

d

k l

e

i



R j:1 

S f:2 

Postvisit of j gives component {f, j}, pre = 16     
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Correctness proof: The algorithm maintains the 

following invariants:

Each traversed arc either has both ends in the 

same active set, or leads from one set to the 

next-higher one, or leads to a vertex already in 

a componenta component

Each set of vertices on the postvisit stack 

between adjacent roots on the root stack  is 

strongly connected with the smaller bounding 

root

Each set of popped vertices forms a component  



A variant and a question

Eliminate postvisit stack.  Form a component by 

searching from its root, adding to the new 

component each visited vertex not yet in a 

component

Is there a simple way to choose search start 

vertices such that each top-level search will 

span a component?

Yes, if the component-spanning searches are 

backward



Two-way algorithm 

(Kosaraju 1978, Sharir 1981)

Do a forward depth-first exploration, ordering 
the vertices in reverse postorder.

Do a backward exploration, choosing start 
vertices in the order generated by the forward vertices in the order generated by the forward 
exploration.

(Or, equivalently, do the first exploration 
backward and the second one forward.)

Each search done by the second exploration 
spans a strong component.
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preorder: a, b, e, h, l, i, k, d, c, g; f, j

postorder: i, k, l, h, e, b, c, g, d, a; j, f

tree arcs

forward arcs

cross arcs
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postorder: i, k, l, h, e, b, c, g, d, a; j, f

backward searches:

f, j

a, c, d, g
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Correctness Proof:  By induction on the 

components in order by their smallest 

vertices.  Let u be the smallest vertex in a 

component C.  Suppose the components with 

smallest vertices smaller than u have been smallest vertices smaller than u have been 

correctly generated by previous searches.  The 

next search will start from u, and when it 

starts, all vertices in C are unvisited.  Thus the 

search will visit all vertices in C.    



Correctness Proof (cont.): Let x ≠ w be visited by 

the search.  Then x is larger than w, since 

when the search started w was the smallest 

unvisited vertex.  By the postorder lemma, x is unvisited vertex.  By the postorder lemma, x is 

a descendant of u, which implies that x is in C.  

Thus the search from u visits precisely the 

vertices in C.



Blocks
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One-way algorithm

(simplifies Gabow 2000) 

Use depth-first exploration.  Blocks are like 

strong components but partition edges, not 

vertices: think of current path as a list of tree 

arcs, not as a list of vertices.  When traversing arcs, not as a list of vertices.  When traversing 

a cycle arc, condense all tree arcs on the 

corresponding cycle into a single “super-arc.”  

When retreating along a tree arc or super-arc, 

form the corresponding component.



Details

Number vertices in preorder and order vertices 
by number.  Maintain two stacks R and S, the 
former storing the first-traversed arc in each 
tentative block (the root of the corresponding 
set), the latter storing all tree arcs retreated 
along but not yet in blocks.   On R represent along but not yet in blocks.   On R represent 
each tree arc by its tail; on S, by its head.    

Number each block formed, starting from n + 1.  
When a tree arc with head x is added to block 
c, set pre(x) = c.  When a search started at v
finishes, set pre(v) = 2n.  When all done, each 
edge (v, w) is in block min{pre(v), pre(w)} 



Implementation

explore(V, E): 

{ R ← [ ]; S ← [ ]; k ← 0; c ← n;{ R ← [ ]; S ← [ ]; k ← 0; c ← n;

for v ∈ V do pre(v) ← 0;

for v ∈ V do if pre(v) = 0 then

{search(v); pre(v) ← 2n}}



search(v):

{k ← k + 1; pre(v) ← k; 

for (v, w) ∈ E do

if pre(w) = 0 then

{push(v, R); search(w); push(w, S); 

if top(R) = v thenif top(R) = v then

{pop(R); c ← c + 1; 

while top(S) ≥pre w do

{x ← pop(S); pre(x) ← c}}}

else while top(R)) >pre w do pop(R)}



Correctness proof: Exercise

A root of a DFS tree is a cut vertex iff it has at 

least two children.  A non-root is a cut vertex 

iff a retreat along an outgoing tree arc forms a 

block

An edge is a bridge if it is in a block by itselfAn edge is a bridge if it is in a block by itself

The bridge components are the connected 

components after the bridges are deleted (or 

can find by directing the edges during DFS and 

finding strong components) 



Search from a

R a:1, c:2  

S g:3  Retreat on (c, g) forms component 15 

(bridge)
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R a:1, c:2  

S

Advance on (d, a) pops c 
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R a:1, d:4, h:5, i:6, b:7  

S

Advance on (e, i) pops b; retreat on (i, b) forms 16
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R a:1, d:4, h:5, i:6, l:9, m:10, j:11, f:12  

S

Advance on (n,j) pops f; retreat along (j, f) forms 

17 
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R A:1, d:4, h:5, i:6, l:9, m:10  

S

Retreat along (m, j) forms 18 (bridge)
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R a:1, d:4, h:5, i:6, l:9  

S

Advance along (m, i) pops l; retreat along (l, i) 

forms 19
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R a:1, d:4, h:5, i:6   

S

Advance along (k, h) pops i; retreat along (h, i) 

forms 20
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R a:1, d:4   

S

Advance along (h, c) pops d; retreat along (c, a) 

forms 21 
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