
COS 423 Lecture 15

Strong components and blocksStrong components and blocks

© Robert E. Tarjan 2011

c

a b

d e

Strong components

f

c

j

g h

d

k l

e

i

One-way algorithm

(variant of Tarjan 1982, Gabow 2000)

Starting idea (Purdom 1968): Do a depth-first

exploration. When traversing a cycle arc,

contract the set of vertices on the corresponding

cycle (back arc + tree path) into a single vertex.

When postvisiting a vertex, list the original When postvisiting a vertex, list the original

vertices contracted into it as a component.

Correctness: Contraction preserves strong

components

Straightforward to implement using disjoint set

data structure, running time = O(n + mα(n, d))

Components are listed in reverse topological order

Search from j

Current path j, f

Traversal of (f, j) contracts f, j into j’

c

a b

d e

f

c

j

g h

d

k l

e

i

Current path j’, c, a, d

Traversal of (d, c) contracts d, a, c into c’

c

a b

d e

f

c

j

g h

d

k l

e

i

Current path j’, c’, g

Traversal of (g, c) contracts g, c’ into c’’

c

a b

d e

f

c

j

g h

d

k l

e

i

Current path j’, c’’, k, h, l, i, e

Traversal of (e, h) contracts e, i, l, h into h’

c

a b

d e

f

c

j

g h

d

k l

e

i

Current path j’, c’’, k, h’

Traversal of (I, k) contracts h’, k into k’

c

a b

d e

f

c

j

g h

d

k l

e

i

Current path j’, c’’, k’

Postvisit of k’ gives component {e, i, l, h, k}

c

a b

d e

f

c

j

g h

d

k l

e

i

Current path j’, c’’, b

Traversal of (b, e), (b, k) leads to component k’

Postvisit of b gives component {b}

c

a b

d e

f

c

j

g h

d

k l

e

i

Current path j’, c’’

Postvisit of c’’ gives component {g, d, a, c}

c

a b

d e

f

c

j

g h

d

k l

e

i

Current path j’

Traversal of (j, g) leads to c’’, of (j, k) leads to k’

Postvisit of j’ gives component {f, j}

c

a b

d e

f

c

j

g h

d

k l

e

i

From almost-linear time to linear time

Special case of set union

Links and finds are not arbitrary: active sets form

a stack (current path P)

Number vertices in preorder, order by number. In Number vertices in preorder, order by number. In

each set, choose smallest vertex as root

Store component roots on a stack R, in increasing

order = order of components on P

w in a set → find(w) = max{x ≤pre w|x on R}: find

top x on R with x ≤pre w

To combine sets: pop from R all vertices above x

The pops pay for the find!The pops pay for the find!

Can make the find implicit!

Need a way to test whether a vertex is in an

active set, a way to form components

Number components consecutively from n + 1.
To form a component numbered c, set pre(v) =
c for all vertices v in component: vertices in
components are larger than those in active sets

To keep track of non-roots in active sets, use a
second stack S. When x is postvisited, push it second stack S. When x is postvisited, push it
on S. All postvisited vertices in a set are
adjacent on S, order of sets on S is same as
order on P. To form a component, when v is
postvisited and on top of R, pop v from R and
all x with x >pre v from S

Implementation

explore(V, E):

{ S ← []; P ← []; k ← 0; c ← n;{ S ← []; P ← []; k ← 0; c ← n;

for v ∈ V do pre(v) ← 0;

for v ∈ V do if pre(v) = 0 then search(v)}

search(v):

{k ← k + 1; pre(v) ← k; push(v, R);

for (v, w) ∈ E do

if pre(w) = 0 then search(w)

else while top(R)) >pre w do pop(R)

if top(R) ≠ v then push(v, S) elseif top(R) ≠ v then push(v, S) else

{c ← c + 1;

while top(S) >pre v do

{x ← pop(S); pre(x) ← c};

pop(R); pre(v) ← c}}

Search from j

R j:1, f:2

S

c

a b

d e

f

c

j

g h

d

k l

e

i

R j:1, f:2

S

Traversal of (f, j) pops f

c

a b

d e

f

c

j

g h

d

k l

e

i

R j:1, c:3, a:4, d:5

S

Traversal of (d, c) pops d, a

c

a b

d e

f

c

j

g h

d

k l

e

i

R j:1, c:3, g:6

S

Traversal of (g, c) pops g

c

a b

d e

f

c

j

g h

d

k l

e

i

R j:1, c:3, k:7, h:8, l:9, i:10, e:11

S

Traversal of (e, h) pops e, i, l

c

a b

d e

f

c

j

g h

d

k l

e

i

R j:1, c:3, k:7, h:8

S e:11, i:10

Traversal of (I, k) pops h

c

a b

d e

f

c

j

g h

d

k l

e

i

R j:1, c:3, k:7

S e:11, i:10, l:9, h:8

Postvisit of k gives component {h, l, i, e, k}; all

get pre = 13

c

a b

d e

f

c

j

g h

d

k l

e

i

R j:1, c:3, b:12

S g:6, d:5

Postvisit of b gives component {b}, pre = 14

c

a b

d e

f

c

j

g h

d

k l

e

i

R j:1, c:3

S g:6, d:5, a:4

Postvisit of c gives component {a, d, g, c},

pre = 15

c

a b

d e

f

c

j

g h

d

k l

e

i

R j:1

S f:2

Postvisit of j gives component {f, j}, pre = 16

c

a b

d e

f

c

j

g h

d

k l

e

i

Correctness proof: The algorithm maintains the

following invariants:

Each traversed arc either has both ends in the

same active set, or leads from one set to the

next-higher one, or leads to a vertex already in

a componenta component

Each set of vertices on the postvisit stack

between adjacent roots on the root stack is

strongly connected with the smaller bounding

root

Each set of popped vertices forms a component

A variant and a question

Eliminate postvisit stack. Form a component by

searching from its root, adding to the new

component each visited vertex not yet in a

component

Is there a simple way to choose search start

vertices such that each top-level search will

span a component?

Yes, if the component-spanning searches are

backward

Two-way algorithm

(Kosaraju 1978, Sharir 1981)

Do a forward depth-first exploration, ordering
the vertices in reverse postorder.

Do a backward exploration, choosing start
vertices in the order generated by the forward vertices in the order generated by the forward
exploration.

(Or, equivalently, do the first exploration
backward and the second one forward.)

Each search done by the second exploration
spans a strong component.

c

a b

d e

f

c

j

g h

d

k l

e

i

preorder: a, b, e, h, l, i, k, d, c, g; f, j

postorder: i, k, l, h, e, b, c, g, d, a; j, f

tree arcs

forward arcs

cross arcs
c

a b

d e

back arcs

f

c

j

g h

d

k l

e

i

postorder: i, k, l, h, e, b, c, g, d, a; j, f

backward searches:

f, j

a, c, d, g

b
c

a b

d e

e, i, I, h, k

f

c

j

g h

d

k l

e

i

Correctness Proof: By induction on the

components in order by their smallest

vertices. Let u be the smallest vertex in a

component C. Suppose the components with

smallest vertices smaller than u have been smallest vertices smaller than u have been

correctly generated by previous searches. The

next search will start from u, and when it

starts, all vertices in C are unvisited. Thus the

search will visit all vertices in C.

Correctness Proof (cont.): Let x ≠ w be visited by

the search. Then x is larger than w, since

when the search started w was the smallest

unvisited vertex. By the postorder lemma, x is unvisited vertex. By the postorder lemma, x is

a descendant of u, which implies that x is in C.

Thus the search from u visits precisely the

vertices in C.

Blocks

c

a b

d e
f

g

k

h i

l m

j

n

f

One-way algorithm

(simplifies Gabow 2000)

Use depth-first exploration. Blocks are like

strong components but partition edges, not

vertices: think of current path as a list of tree

arcs, not as a list of vertices. When traversing arcs, not as a list of vertices. When traversing

a cycle arc, condense all tree arcs on the

corresponding cycle into a single “super-arc.”

When retreating along a tree arc or super-arc,

form the corresponding component.

Details

Number vertices in preorder and order vertices
by number. Maintain two stacks R and S, the
former storing the first-traversed arc in each
tentative block (the root of the corresponding
set), the latter storing all tree arcs retreated
along but not yet in blocks. On R represent along but not yet in blocks. On R represent
each tree arc by its tail; on S, by its head.

Number each block formed, starting from n + 1.
When a tree arc with head x is added to block
c, set pre(x) = c. When a search started at v
finishes, set pre(v) = 2n. When all done, each
edge (v, w) is in block min{pre(v), pre(w)}

Implementation

explore(V, E):

{ R ← []; S ← []; k ← 0; c ← n;{ R ← []; S ← []; k ← 0; c ← n;

for v ∈ V do pre(v) ← 0;

for v ∈ V do if pre(v) = 0 then

{search(v); pre(v) ← 2n}}

search(v):

{k ← k + 1; pre(v) ← k;

for (v, w) ∈ E do

if pre(w) = 0 then

{push(v, R); search(w); push(w, S);

if top(R) = v thenif top(R) = v then

{pop(R); c ← c + 1;

while top(S) ≥pre w do

{x ← pop(S); pre(x) ← c}}}

else while top(R)) >pre w do pop(R)}

Correctness proof: Exercise

A root of a DFS tree is a cut vertex iff it has at

least two children. A non-root is a cut vertex

iff a retreat along an outgoing tree arc forms a

block

An edge is a bridge if it is in a block by itselfAn edge is a bridge if it is in a block by itself

The bridge components are the connected

components after the bridges are deleted (or

can find by directing the edges during DFS and

finding strong components)

Search from a

R a:1, c:2

S g:3 Retreat on (c, g) forms component 15

(bridge)

c

a b

d15

g

c

k

h i

d

l m

e

j

n

f

15

R a:1, c:2

S

Advance on (d, a) pops c

c

a b

d15

g

c

k

h i

d

l m

e

j

n

f

15

R a:1, d:4, h:5, i:6, b:7

S

Advance on (e, i) pops b; retreat on (i, b) forms 16

c

a b

d15

16

g

c

k

h i

d

l m

e

j

n

f

15

R a:1, d:4, h:5, i:6, l:9, m:10, j:11, f:12

S

Advance on (n,j) pops f; retreat along (j, f) forms

17

c

a b

d15

16

g

c

k

h i

d

l m

e

j

n

f

15

17

R A:1, d:4, h:5, i:6, l:9, m:10

S

Retreat along (m, j) forms 18 (bridge)

c

a b

d15

16

g

c

k

h i

d

l m

e

j

n

f

15

17

18

R a:1, d:4, h:5, i:6, l:9

S

Advance along (m, i) pops l; retreat along (l, i)

forms 19

c

a b

d15

16

g

c

k

h i

d

l m

e

j

n

f

15

17

1819

R a:1, d:4, h:5, i:6

S

Advance along (k, h) pops i; retreat along (h, i)

forms 20

c

a b

d15

16

g

c

k

h i

d

l m

e

j

n

f

15

17

1820
19

R a:1, d:4

S

Advance along (h, c) pops d; retreat along (c, a)

forms 21

c

a b

d15

16

21

g

c

k

h i

d

l m

e

j

n

f

15

17

1820
19

21

