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Undirected graph search

G = (V, E)  V = vertex set, E = edge set

n = |V|, m = |E|

Each edge (v, w) ∈ E connects two vertices v, w; 
can be traversed in either direction: from v to w, can be traversed in either direction: from v to w, 
or from w to v.

Graph search: From a given start vertex v, visit all 
vertices and edges reachable from v, once each.

Graph exploration: while some vertex is unvisited, 
choose a start vertex v, search from v.



Connected components: subgraphs induced by 

maximal sets of mutually reachable vertices: x

and y are in the same component iff there is a 

path from x to y (and back).

To find components, do an exploration: each 

search visits the vertices and edges of one 

component.



Edge-guided search

Maintain a set S of traversable edges (one end 

visited), generate a set T of tree arcs

explore(V, E): explore(V, E): 

{for v ∈ V do mark v unvisited;

S ← { }; T ← { };

for v ∈ V do if v unvisited then search(v)}



search(v):

{visit(v);

while ∃(v, w) ∈ S do

{S ← S – (v, w); 

traverse(v, w);traverse(v, w);

if w unvisited then 

{T ← T ∪ {(v, w)}; visit(w)}}

visit(v):{ mark v visited; S ← {(v, w) ∈ E}} 



Exploration traverses each edge once in each 
direction, generates a set of tree arcs that 
form rooted trees, one spanning each 
connected component; roots are start 
vertices.  These trees form a spanning forest.

Graph representation: Graph representation: 

For each vertex v, set of edges (v, w), stored in 

a list or in an array

Each edge is in two incidence sets

Exploration time: O(n + m)



Types of search

Can find connected components using any

search order.  For harder problems, specific 

search orders give efficient algorithms

Breadth-first (BFS): S is a queue

Depth-first (DFS): S is a stack



Vertex-guided search

Maintain a set U of vertices to visit

explore(V, E): 

{for v ∈ V do mark v unvisited;{for v ∈ V do mark v unvisited;

T ← { }; 

for v ∈ V do if v unvisited then

{U ← {v}; search}



search:

while ∃v ∈ U do

{U ← U – v; visit(v);

for (v, w) ∈ E do

{traverse(v, w);

if w unvisited then

{T ← T ∪ {(v, w)}; U ← U ∪ {w}}}}

visit(v): mark v visited 



BFS is a vertex-guided search (U = queue), not

DFS: traversals of edges incident to a vertex 

are not necessarily consecutive

Other types of vertex-guided search:

Shortest-first: U is a heap, key = cost

Maximum-cardinality: U is a heap,

key of v = #adjacent visited vertices



Recursive implementation of DFS

explore(V, E): 

{for v ∈ V do mark v unvisited;∈

for v ∈ V do if v unvisited then search(v)}



search(v):

{previsit(v) [visit(v)];

for (v, w) ∈ E do

{advance(v, w) [traverse(v)];

if w unvisited then

{T ← T ∪ {(v, w)}; search(w)};{T ← T ∪ {(v, w)}; search(w)};

retreat(v, w)};

postvisit(v)}

previsit(v): mark v visited



DFS is local: each advance or retreat moves to 

an adjacent vertex

Origins: maze traversal

preorder pre(v): number vertices from 1 to n as preorder pre(v): number vertices from 1 to n as 

they are previsited, order by number

postorder post(v): number vertices from 1 to n

as they are postvisited, order by number



Nesting lemma: v is an ancestor of w in the DFS 

forest iff v ≤pre w and v ≥post w

Proof: For any vertex v, the preorder numbers of 

the descendants of v are consecutive, with v

numbered smallest; the postorder numbers of numbered smallest; the postorder numbers of 

the descendants of v are also consecutive, 

with v numbered largest.



Can implement DFS non-recursively using a stack 

of current arcs: the current arc into a vertex is 

its entering tree arc.  The current arcs define 

the current path from the start vertex of the 

search to the current vertex of the search.  The search to the current vertex of the search.  The 

vertices on the current path are exactly those 

that have been previsited but not postvisited.



Graph structure imposed by search

Convert each edge into an arc by directing it in 

the direction it is first traversed.

In addition to generating spanning trees of the 

connected components, exploration imposes a 

structure on the non-tree arcs, depending on 

the type of search.



BFS

If (v, w) is an arc, 0 ≤ d(w) – d(v) ≤ 1, where d(x) 

is the depth of x in the BFS forest: every edge 

connects two vertices at the same depth or at connects two vertices at the same depth or at 

adjacent depths.



Proof: Make the search vertex-guided.  Define 

passes.  Pass 0 is the first iteration of the 

while loop.  Pass k + 1 is all iterations that visit 

vertices added to U during pass k.  An 

induction shows that vertex v is visited during 

pass d(v).  Let (v, w) be an edge that is first pass d(v).  Let (v, w) be an edge that is first 

traversed as a result of the visit to v.  Then w

will be visited before or during pass d(v) + 1.  

Thus d(w) ≤ d(v) + 1. Since (v, w) was not 

traversed before pass d(v), d(w) ≥ d(v).    



Distance Lemma: If G is connected, for each 

vertex v, d(v) is the minimum number of edges 

on a path from the start vertex to v.

Proof: By induction on d(v).



Application to finding small cutsets

Removing the vertices at any depth breaks the 

graph into (at least) two connected 

components: the vertices at smaller depths components: the vertices at smaller depths 

and those at larger depths.

Removing the edges between any pair of 

adjacent depths does the same thing.



DFS

If (v, w) is a non-tree arc, w is an ancestor of v in the 
DFS forest.  Any edge connects two related 
vertices

Proof: Let (v, w) be a non-tree arc.  Then (v, w) is 
first traversed from v, between previsit(v) and 

Proof: Let (v, w) be a non-tree arc.  Then (v, w) is 
first traversed from v, between previsit(v) and 
postvisit(v).  Since (v, w) is not a tree arc, 
previsit(w) precedes traverse(v, w).  Since (v, w) 
was not traversed from w, postvisit(w) follows 
traverse(v, w).  Thus w must be on the current 
path, and hence an ancestor of v.    



Path lemma: Any path between v and w contains a 
common ancestor of v and w in the DFS forest.

Proof: Let u be a vertex of smallest depth on the 
path.  Claim: u is an ancestor of every vertex on 
the path.  Let x be a vertex that violates the claim.  
Consider the part of the path between u and x.  It 
must contain an edge (y, z) with y but not z a 
descendant of u.  Vertex z must be an ancestor of 
must contain an edge (y, z) with y but not z a 
descendant of u.  Vertex z must be an ancestor of 
y, and hence must be a proper ancestor of u.  But 
d(z) < d(u), a contradiction.

Among the vertices on the path, u is smallest in 
preorder and largest in postorder.  



A directed graph
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Directed graph search

Each arc (v, w) ∈ E can be traversed in only one 
direction, from v to w

Directed graph search (forward) is just like 
undirected graph search, except that each arc undirected graph search, except that each arc 
is already directed, and is in only one incident 
arc set: (v, w) is in the set of arcs out of v

Backward search: for each vertex, store the set 
of incoming arcs; to search, (conceptually) 
reverse the arc directions



Exploration of a digraph generates a set of tree 

arcs that form trees spanning the sets of 

vertices reached from the start vertices of the 

searches.  Arcs can lead between trees (but 

only from later to earlier visited vertices). The 

exploration imposes a structure on the non-exploration imposes a structure on the non-

tree arcs, depending on the type of search.  

The imposed structure is weaker than in 

undirected graph search, but the nesting 

lemma holds. 



BFS (digraph)

If (v, w) is an arc, d(w) – d(v) ≤ 1, where d(x) is 

the depth of x in the BFS forest.the depth of x in the BFS forest.



Proof: Make the search vertex-guided.  Define 

passes.  Pass 0 is the first iteration of the 

while loop.  Pass k + 1 is all iterations that visit 

vertices added to U during pass k.  An 

induction shows that vertex v is visited during induction shows that vertex v is visited during 

pass d(v).  Let (v, w) be an edge that is  

traversed as a result of the visit to v.  Then w

will be visited before or during pass d(v) + 1.  

Thus d(w) ≤ d(v) + 1.    



Distance Lemma (digraph): Suppose every 

vertex is reachable from the start vertex of the 

first search.  For each vertex v, d(v) is the 

minimum number of edges on a path from the minimum number of edges on a path from the 

start vertex to v.

Proof: By induction on d(v).



DFS (digraph)

The nesting lemma holds for digraphs by the same 
proof as for graphs

Arc Lemma: Each arc (v, w) is of one of four types:

tree arc: v < w, v > w, w unvisited when (v, w) tree arc: v <pre w, v >post w, w unvisited when (v, w) 

is traversed

forward arc: v <pre w, v >post w, w visited when (v, w) 

is traversed

back arc: v >pre w, v <post w

cross arc: v >pre w, v >post w



Proof: We show that the excluded case, v <pre w

and v <post w, cannot happen.  If w is unvisited 

when (v, w) is traversed, then (v, w) is a tree arc, 

and v >post w.  If w is visited when (v, w) is 

traversed, but v < w, w must be previsitedtraversed, but v <pre w, w must be previsited

between the previsit and the postvisit of w.  This 

implies w is a descendant of v; hence v >post w.   



Preorder lemma: Let P be a path whose first 

vertex u is minimum on P in preorder.  Then u is 

an ancestor of every vertex on P.

Proof: Suppose the lemma is false.  Let (y, z) be 

the first arc on the path with z not a 

descendant of u.  Then z < y.  (Otherwise, z is descendant of u.  Then z <pre y.  (Otherwise, z is 

a descendant of y and hence of u.)  But z >pre u.  

Thus z is previsited between the previsit to u

and the previsit to y, which implies z is a 

descendant of u.     



Postorder lemma: Let P be a path whose last 

vertex u is maximum on P in postorder.  Then 

u is an ancestor of every vertex on P.

Proof:  Suppose the lemma is false.  Let (y, z) be 

the last arc on P such that y is not a the last arc on P such that y is not a 

descendant of u.  Then y <pre u ≤pre z.  Then y

is an ancestor of z, and hence related to u.  

But y <post u implies y is a descendant of u. 



Path Lemma (digraph): If v ≤pre w or v ≤post w, any 

path P from v to w contains a common 

ancestor of v and w.

Proof: Let x be minimum on P in preorder and y

maximum on P in postorder.  By the preorder 

lemma, x is an ancestor of w; by the postorderlemma, x is an ancestor of w; by the postorder

lemma, y is an ancestor of v.  If x = y, the 

lemma holds.  Suppose x ≠ y.  Since x <pre y and 

x <post y, x and y are unrelated.  But w a 

descendant of x and v a descendant of y

implies w <pre v and w <post v, contradicting the 

hypothesis of the lemma. 



Finding a topological order or a cycle

Number the vertices from n to 1 in postorder.  

This is reverse postorder, rpost(v). If no arc (v, 

w) has v ≥rpost w, then reverse postorder is a 

topological order: every arc leads from a 

smaller to a larger vertex.  If some arc (v, w) smaller to a larger vertex.  If some arc (v, w) 

has v >rpost w, then w is an ancestor of v, and 

there is a cycle consisting of (v, w) and the 

path from w to v in the DFS forest

→DFS gives an O(n + m)-time algorithm to find   

either a topological order or a cycle



Depth-first exploration: search from a visits a, d, 

h, g, c; search from b visits b, e, f; search from 

i visits i; search from j visits j
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preorder a, d, h, g, c; b, e, f; i; j

postorder h, c, g, d, a; f, e, b; i; j

tree arcs in blue

back arcs in red a
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Alternate topological order algorithm

while there is a vertex v with no incoming arcs  

do {give v the next number;

delete v and its outgoing arcs}

If this algorithm successfully numbers all the 

vertices, the numbering is topological.  If not, 

every remaining vertex has at least one 

incoming arc, can find a cycle by doing a DFS 

backward from any vertex until reaching a 

previously visited vertex



Efficient implementation

For each vertex x, compute in(x), the number of 
arcs into x: 

{initialize in(x) ← 0 for all x;

for arc (v, w) ∈ E do add 1 to in(w)}

Initialize a set Z containing all vertices x with in(x) Initialize a set Z containing all vertices x with in(x) 
= 0.

while ∃∃∃∃x ∈ Z do

{delete x from Z; number x; 

for (x, y)∈ E do

{subtract 1 from in(y);

if in(y) = 0 then insert y in Z}} 



Topological order via alternate algorithm, with Z

implemented as a queue:

a, b, j, d, e, i, g, h, f, c  
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Running time = O(n + m)

By choosing each candidate vertex in all possible 

ways, the alternate algorithm can generate all 

possible topological orders

Not true of the DFS algorithm: some acyclic 

graphs have topological orders that cannot be 

generated by DFS



Undirected DFS to find blocks

Cut vertex: removal disconnects the connected 

component containing it

Bridge: edge whose removal disconnects the 

connected component containing itconnected component containing it

Block: Maximal subgraph such that any two arcs are 

on a simple cycle; the blocks partition the arcs

Bridge component: maximal subgraph such that any 

two vertices are on a cycle (not necessarily 

simple)



Blocks



Bridges and cut vertices dashed

7 blocks, 3 bridge components



The blocks partition the edges

The bridge components partition the vertices

Each bridge is a block

Goal: find cut vertices, bridges, blocks, bridge 

components, in O(n + m) time



Directed DFS to find strong 

components 

Two vertices v and w are strongly connected if 

there is a path from v to w and a path from w

to v.  Strong connectivity is an equivalence 

relation.  A strong component is a subgraphrelation.  A strong component is a subgraph

induced by a maximal set of strongly 

connected vertices.  The strong components 

can be topologically ordered: numbered so 

that each arc is either within a component or 

leads from a smaller component to a larger.  



Strong components





Goal: find strong components, and a topological 

order of them, in O(n + m) time.


