
COS 423 Lecture 11

Finding Minimum Spanning Trees

FasterFaster

© Robert E. Tarjan 2011

Concurrent greedy with cleanup

For certain families of graphs, concurrent greedy

with cleanup runs in O(n) time

Requirements:

(i) All graphs in the family are sparse: m = O(n)

(ii) The family is closed under edge contraction:

combine both ends of the edge into a single

vertex, with an edge to any vertex that was

adjacent to either end

If m ≤ cn, concurrent greedy with cleanup takes

O(c(n + n/2 + n/ 4 +…)) = O(n) time

Trees: m < n, closed under contraction, no cleanups
needed

Planar graphs: m < 3n, closed under contractionPlanar graphs: m < 3n, closed under contraction

For concurrent greedy (with or without cleanups) to
run in O(m) time on a arbitrary graph, we need a
way to “thin” a graph: using red rule, color red all
but O(n) edges, in O(m) time.

Faster algorithms for general graphs

O(mlglgn) Yao 1975, packets

Run concurrent greedy algorithm, but with only

m/lgn edges. To do this, group edges incident m/lgn edges. To do this, group edges incident

to each vertex into packets, each of size lgn

(with at most one small packet per vertex).

Give the main algorithm only the minimum-

weight edge in each packet.

Time to find packet minima is O(mlglgn).

O(mlg*n) Fredman & Tarjan 1984, F-heaps

Store the set of edges incident to each blue tree
in an F-heap (or rank-pairing heap). Run
single-source greedy until blue tree is big
enough; then choose an unconnected source
and run single-source from it. Repeat until all and run single-source from it. Repeat until all
blue trees are big enough. Clean up. Repeat.

Algorithm is a hybrid of single-source and
concurrent greedy with cleanup. Each round
takes O(m) time. If blue trees have size at
least k before a round, they have size at least
2k after → lg*n rounds.

O(mlglg*n) Gabow et al. 1986, F-heaps + packets

O(m) Karger et al. 1995, thinning + random
sampling

O(mα(n)) Chazelle 1998, soft heaps + O(mα(n)) Chazelle 1998, soft heaps +
complicated hybrid algorithm

O(minimum) Pettie & Ramachandran 2002,
Chazelle’s algorithm with fixed-depth

recursion + brute force for small subproblems

The power of random sampling

Concurrent greedy + thinning

How to thin?

A related question: MST verification

Given a spanning tree T, is it an MST?

Yes, if and only if every non-tree edge (v, w) has

maximum weight on the cycle formed with

the path in T joining v and w

Proof: Red ruleProof: Red rule

Use the same idea to thin: given any forest (set

of vertex-disjoint trees), can color red any

non-tree edge whose ends are in the same

tree and whose weight is maximum on the

cycle formed with tree edges

Thinning using a forest

27

1221

18

20

4

3

16

19
30

32

25

14

8

183

15
17

22

10

Thinning using a forest

27

1221

18

20

4

3

16

19
30

32

25

14

8

183

15
17

22

10

How to find maxima on tree paths?

For now, assume O(m)

How to find a good forest? Best is an MST, but

too expensive to compute

Good enough: an MSF (minimum spanning

forest) of a random sample of the edges. (The

sample subgraph may not be connected)

Randomized minimum spanning tree algorithm

Concurrent greedy with occasional thinning

Let b = #blue trees, initially n,

e = #uncolored edges, initially m

c = a constant to be chosen laterc = a constant to be chosen later

while b > 1 do

if e < cb then one pass of concurrent greedy

else thinning step

Thinning step

Sample the uncolored edges by adding each

edge with probability ½, independently

Find an MSF of the sample by applying the MST

algorithm recursively to each connected

component of the samplecomponent of the sample

Color red all sampled edges not in the MSF and

all non-sampled edges maximum on a cycle

with MSF edges

After thinning, expected #uncolored edges ≤ 2b

Expected running time

R(e) ≤ O(e) + R(e – b/2) if sparse

≤ O(e) + R(e/2) + T(2b) if dense

Sparse: e < cb → b/2 > e/(2c)Sparse: e < cb → b/2 > e/(2c)

→ e – b/2 < e(1 – 1/(2c))

Dense: e ≥ cb → 2b ≤ 2e/c

→ e/2 + 2b ≤ e(1/2 + 4e/c)

c = 5 →R(e) ≤ O(e) + R(9e/10) = O(e)

After thinning, expected #uncolored edges ≤ 2b

Proof: Think of building the MSF F of the

sample in the following way: Process the

edges in increasing order by weight. To

process (v, w), flip coin. If heads, put (v, w) in process (v, w), flip coin. If heads, put (v, w) in

sample: if ends in same tree, color red;

otherwise, add to F. If tails, not in sample: if

ends in same tree, color red; otherwise, not in

sample, not colored.

Proof (cont.): Do coin flip after testing whether

ends are in same tree: if ends in same tree,

color red; otherwise, flip coin, add to F if

heads. This change has no effect on the

outcome: F is the same, as is the set of red

edges. (The outcomes of the coin flips on the

red edges have no effect.)red edges have no effect.)

Expected #uncolored edges = expected #coin

flips = expected #flips until b – 1 heads. Each

flip increases expected #heads by ½ →

expected #flips = 2(b – 1).

Finding maxima on tree paths

Convert to a problem on a shallow tree

Given tree T with edge weights, the Borůvka tree

B(T) is formed from T by running the concurrent

greedy algorithm on T. Tree B contains one node

for each blue tree formed. Each leaf of B is a

vertex of T; each non-leaf is a blue tree containing vertex of T; each non-leaf is a blue tree containing

>1 vertex; the root is the final blue tree. Node x

is the parent of node y in B if y is a blue tree

before some pass k and x is the blue tree

containing the vertices of y after pass k. The

weight of edge (x, y) is the weight of the edge

incident to y selected during pass k.

Minimum spanning tree

a
b

c

27

1221

18

20

4

3

16

d

h

e f

i j

g
19

30

32

25

14

8

183

15
17

25

10

Borůvka tree

21

1416
14

ad h e b fi j gc

1219 84 310 319 12 4

If T has n vertices, B has <2n nodes, ≤ n/2k of

depth k

The concurrent greedy algorithm can build the

Borůvka tree of the MST as it builds the MSTBorůvka tree of the MST as it builds the MST

T(v, w) = path joining vertices v and w in T

B(v, w) = path joining nodes v and w in B

p(v) = parent of v in B

For any v, w in T, max{c(x, y)| (x, y) on T(v, w)} =

max{c(x, y)|(x, y) on B(v, w)}

Proof:

(≤): Let (x, y) have maximum weight on T(v, w). Let U

be a blue tree that selects (x, y). Deleting (x, y) from

T forms a cut X, Y with one of v and w in X and the

other in Y. Let x and v be in X, so y and w are in Y. other in Y. Let x and v be in X, so y and w are in Y.

Since (x, y) has maximum weight on T(x, y), v but

not w is in U. The edge (U, p(U)) has weight c(x, y),

and this edge is on B(v, w).

(≥): Let (U, p(U)) be any edge on B(v, w). Let v be in U,

so w is not in U. Let (x, y) be the edge on T(v, w)

with exactly one end in U. Then c(x, y) ≥ c(U, p(U)).

