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Concurrent greedy with cleanup

For certain families of graphs, concurrent greedy 

with cleanup runs in O(n) time

Requirements:

(i)  All graphs in the family are sparse: m = O(n)

(ii) The family is closed under edge contraction:

combine both ends of the edge into a single 

vertex, with an edge to any vertex that was 

adjacent to either end



If m ≤ cn, concurrent greedy with cleanup takes

O(c(n + n/2 + n/ 4 +…)) = O(n) time

Trees: m < n, closed under contraction, no cleanups 
needed

Planar graphs: m < 3n, closed under contractionPlanar graphs: m < 3n, closed under contraction

For concurrent greedy (with or without cleanups) to 
run in O(m) time on a arbitrary graph, we need a 
way to “thin” a graph: using red rule, color red all 
but O(n) edges, in O(m) time.



Faster algorithms for general graphs

O(mlglgn) Yao 1975, packets

Run concurrent greedy algorithm, but with only 

m/lgn edges.  To do this, group edges incident m/lgn edges.  To do this, group edges incident 

to each vertex into packets, each of size lgn

(with at most one small packet per vertex).  

Give the main algorithm only the minimum-

weight edge in each packet.

Time to find packet minima is O(mlglgn).  



O(mlg*n) Fredman & Tarjan  1984, F-heaps

Store the set of edges incident to each blue tree 
in an F-heap (or rank-pairing heap).  Run 
single-source greedy until blue tree is big 
enough; then choose an unconnected source 
and run single-source from it.  Repeat until all and run single-source from it.  Repeat until all 
blue trees are big enough.  Clean up.  Repeat.

Algorithm is a hybrid of single-source and 
concurrent greedy with cleanup.  Each round 
takes O(m) time.  If blue trees have size at 
least k before a round, they have size at least 
2k after → lg*n rounds.



O(mlglg*n) Gabow et al. 1986, F-heaps + packets

O(m) Karger et al. 1995, thinning + random 
sampling 

O(mα(n)) Chazelle 1998, soft heaps + O(mα(n)) Chazelle 1998, soft heaps + 
complicated hybrid algorithm

O(minimum) Pettie & Ramachandran 2002, 
Chazelle’s algorithm with fixed-depth 

recursion + brute force for small subproblems



The power of random sampling

Concurrent greedy + thinning

How to thin?



A related question: MST verification

Given a spanning tree T, is it an MST?

Yes, if and only if every non-tree edge (v, w) has 

maximum weight on the cycle formed with 

the path in T joining v and w

Proof: Red ruleProof: Red rule

Use the same idea to thin: given any forest (set 

of vertex-disjoint trees), can color red any 

non-tree edge whose ends are in the same 

tree and whose weight is maximum on the 

cycle formed with tree edges



Thinning using a forest
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Thinning using a forest
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How to find maxima on tree paths?

For now, assume O(m)

How to find a good forest?  Best is an MST, but 

too expensive to compute

Good enough: an MSF (minimum spanning 

forest) of a random sample of the edges.  (The  

sample subgraph may not be connected)



Randomized minimum spanning tree algorithm

Concurrent greedy with occasional thinning

Let b = #blue trees, initially n,

e = #uncolored edges, initially m

c = a constant to be chosen laterc = a constant to be chosen later

while b > 1 do

if e < cb then one pass of concurrent greedy 

else thinning step



Thinning step

Sample the uncolored edges by adding each 

edge with probability ½, independently

Find an MSF of the sample by applying the MST 

algorithm recursively to each connected 

component of the samplecomponent of the sample

Color red all sampled edges not in the MSF and 

all non-sampled edges maximum on a cycle 

with MSF edges

After thinning, expected #uncolored edges ≤ 2b



Expected running time

R(e) ≤ O(e) + R(e – b/2) if sparse

≤ O(e) + R(e/2) + T(2b) if dense

Sparse: e < cb → b/2 > e/(2c)Sparse: e < cb → b/2 > e/(2c)

→ e – b/2 < e(1 – 1/(2c))

Dense: e ≥ cb → 2b ≤ 2e/c

→ e/2 + 2b ≤ e(1/2 + 4e/c)

c = 5 →R(e) ≤ O(e) + R(9e/10) = O(e)



After thinning, expected #uncolored edges ≤ 2b

Proof: Think of building the MSF  F of the 

sample in the following way: Process the 

edges in increasing order by weight.  To 

process (v, w), flip coin.  If heads, put (v, w) in process (v, w), flip coin.  If heads, put (v, w) in 

sample: if ends in same tree, color red; 

otherwise, add to F.  If tails, not in sample: if 

ends in same tree, color red; otherwise, not in 

sample, not colored.      



Proof (cont.): Do coin flip after testing whether 

ends are in same tree: if ends in same tree, 

color red; otherwise, flip coin, add to F if 

heads.  This change has no effect on the 

outcome: F is the same, as is the set of red 

edges.  (The outcomes of the coin flips on the 

red edges have no effect.)red edges have no effect.)

Expected #uncolored edges = expected #coin 

flips = expected #flips until b – 1 heads.  Each 

flip increases expected #heads by ½ → 

expected #flips = 2(b – 1).      



Finding maxima on tree paths

Convert to a problem on a shallow tree

Given tree T with edge weights, the Borůvka tree 

B(T) is formed from T by running the concurrent 

greedy algorithm on T.  Tree B contains one node 

for each blue tree formed.  Each leaf of B is a 

vertex of T; each non-leaf is a blue tree containing vertex of T; each non-leaf is a blue tree containing 

>1 vertex; the root is the final blue tree.   Node x

is the parent of node y in B if y is a blue tree 

before some pass k and x is the blue tree 

containing the vertices of y after pass k.  The 

weight of edge (x, y) is the weight of the edge 

incident to y selected during pass k.  



Minimum spanning tree
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Borůvka tree

21

1416
14

ad h e b fi j gc

1219 84 310 319 12 4



If T has n vertices, B has <2n nodes, ≤ n/2k of 

depth k

The concurrent greedy algorithm can build the 

Borůvka tree of the MST as it builds the MSTBorůvka tree of the MST as it builds the MST

T(v, w) = path joining vertices v and w in T

B(v, w) = path joining nodes v and w in B

p(v) = parent of v in B



For any v, w in T, max{c(x, y)| (x, y) on T(v, w)} = 

max{c(x, y)|(x, y) on B(v, w)}

Proof:

(≤): Let (x, y) have maximum weight on T(v, w).  Let U 

be a blue tree that selects (x, y).  Deleting (x, y) from 

T forms a cut X, Y with one of v and w in X and the 

other in Y.  Let x and v be in X, so y and w are in Y.  other in Y.  Let x and v be in X, so y and w are in Y.  

Since (x, y) has maximum weight on T(x, y), v but 

not w is in U.  The edge (U, p(U)) has weight c(x, y), 

and this edge is on B(v, w).

(≥): Let (U, p(U)) be any edge on B(v, w).  Let v be in U, 

so w is not in U.  Let (x, y) be the edge on T(v, w) 

with exactly one end in U.  Then c(x, y) ≥ c(U, p(U)).     


