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An undirected graph is connected if there is a 

path from any vertex to any other

A (free or unrooted) tree is an acyclic connected 

graph

Given a connected graph, a spanning tree is a 

subgraph that is a tree and that contains all subgraph that is a tree and that contains all 

the vertices

Problem: Given a connected graph with edge 

weights, find a spanning tree of minimum 

total edge cost: a minimum spanning tree 

(MST)  



A connected undirected graph with edge weights
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Minimum spanning tree?
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Applications

Clustering (single-linkage): 1909, skull 

classification in anthropology

Network design: 1920’s, Moravian electrical Network design: 1920’s, Moravian electrical 

network

Traveling salesperson problem lower bounds: 

1971, Held & Karp



When can we conclude that an edge is in the 

MST?

When can we conclude that an edge is not in the 

MST?MST?

(tie-breaking by edge numbering)



Build an MST by edge coloring

blue = accepted (added to MST)

red = rejected (no longer a candidate)

cut: a partition of the vertex set into two non-
empty parts X, Y.  An edge with one end in X
and one in Y crosses the cut.and one in Y crosses the cut.

Blue rule: Given a cut, color blue the minimum-
weight edge crossing it (good edge) 

Red rule: Given a cycle, color red its maximum-
weight edge (bad edge)



Generalized greedy method

Begin with all edges uncolored.  Repeatedly 

apply the blue and red rules, in any order, 

until all edges are colored.

At all times, the blue edges form a set of trees, At all times, the blue edges form a set of trees, 

called the blue trees.  Initially, no blue edges: 

each vertex forms a one-vertex blue tree.

Once there is only one blue tree, containing all 

the vertices, it is an MST.



Classical algorithms

Global greedy (Kruskal, 1956): Process the edges 

in increasing order by weight.  To process an 

edge, if its ends are in different blue trees 

color it blue; otherwise, color it red.color it blue; otherwise, color it red.

Single-source greedy (Jarník 1929, Kruskal 1956, 

Prim 1957, Dijkstra 1958): Choose a start 

vertex s.  While the blue tree B containing s is 

not spanning, color blue the minimum-weight 

edge with exactly one end in B. 



Concurrent greedy (Borůvka, 1926): For each 

blue tree, choose the minimum-weight edge 

with one end in the tree.  Color all the chosen 

edges blue.  Repeat until there is only one 

blue tree.

All three of these algorithms are special cases of 

the generalized greedy algorithm.



Global greedy
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Global greedy
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Global greedy
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Global greedy
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Global greedy
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Global greedy
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Global greedy
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Global greedy
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Global greedy
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Global greedy
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Global greedy
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Single-source greedy
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Single-source greedy
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Single-source greedy
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Single-source greedy
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Single-source greedy
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Single-source greedy
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Single-source greedy
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Concurrent greedy
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Concurrent greedy
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Concurrent greedy
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Correctness?

Implementation and efficiency?

Fastest version?Fastest version?



No edge can be colored both blue and red.

Proof: Suppose (v, w) is minimum crossing X, Y

and maximum on C.  Some other edge (x, y) 

on C must cross X, Y.  c(v, w) < c(x, y) < c(v, w): 

contradiction.contradiction.

→ there is no cycle of blue edges: the blue 

edges always form a set of trees



Let T be an MST.  Any edge in T can be colored 

blue; any edge not in T can be colored red.

Proof: Let (v, w) be an edge in T.  Deleting (v, w) 

from T forms two trees.  Let X be the vertex 

set of one tree and Y that of the other.  Then 

(v, w) is the minimum-weight edge crossing X, (v, w) is the minimum-weight edge crossing X, 

Y: if some other edge (x, y) crossing X, Y has 

smaller weight, the tree formed from T by 

deleting (v, w) and adding (x, y) has smaller 

weight than T, a contradiction.  Thus (v, w) can 

be colored blue.



Proof (cont.): Let (v, w) be an edge not in T.  The 

path in T connecting v and w forms a cycle 

with (v, w).  Edge (v, w) must have maximum 

weight on this cycle: if some edge (x, y) on the 

cycle has larger weight, the tree formed by 

deleting (x, y) from T and adding (v, w) has deleting (x, y) from T and adding (v, w) has 

less weight than T, a contradiction.

→ generalized greedy algorithm is correct, MST 

is unique



Implementations 

Single-source scanning: Use a heap  H of vertices 

not in the blue tree B but connected to it by at 

least one edge

k(v) = minimum weight of an arc connecting v to 

blue treeblue tree

(p(v), v) = connecting arc of minimum weight

E = edge set of graph 



for v ∈ V do k(v) ← ∞;

H ← make-heap; initialize B to contain s and no 
edges;

for (s, v) ∈ E do

{k(v) ← c(s, v); p(v) ← s; insert(v, H)};

while H ≠ { } dowhile H ≠ { } do

{v ← delete-min(H); add (p(v), v) to B;

for (v, w) ∈ E do if c(v, w) < k(w) and w not in B

then {k(w) ← c(v, w); p(w) ← v;

if w not in H then insert(w, H)

else decrease-key(w, k(v), H)}



Graph representation: for each vertex, set of 

incident edges.  Each edge is in two such sets.

n – 1 insertions, m – n + 1 decrease-keys

→O(mlgn) time (implicit heap or pairing heap)

O(m + nlgn) time (rank-pairing heap)O(m + nlgn) time (rank-pairing heap)

(vs. O(n2) original implementation:

heap = unordered set)



Global greedy: Sort edges by weight or store in a 

heap with key = weight

Need a data structure to keep track of the vertex 

sets of the blue trees.  Initially each vertex is sets of the blue trees.  Initially each vertex is 

in its own tree.  Operations (first cut):

find(x): return the set containing x

unite(A, B): unite the sets A and B



Process the edges in sorted order.

process(v, w): if find(v) ≠ find(w) then

{unite(find(v), find(w)), color (v, w) blue}

Stop after n – 1 edges are colored blue.

The running time is dominated by the sorting 

time, or by the heap operations if a heap is 

used: O(mlgn)  



Concurrent greedy: after k passes, each blue 
tree contains at least 2k vertices → ≤lgn passes

To do a pass: For each blue tree, keep track of 
the minimum-weight connecting edge, initially 
null.  For each arc, find the blue trees 
containing its ends; update the minimum-
weight connecting arcs of these blue trees weight connecting arcs of these blue trees 
appropriately.  (If both ends in the same tree, 
can delete the edge.)

To find blue trees: either use disjoint set data 
structure or find connected components of 
the blue edges by graph search and number 
each component.



O(m) time per pass → O(mlgn) time total

Cleanup: Before a pass, number the blue trees. 

Assign to each edge the tree numbers of its 

ends.  Sort the edges lexicographically by edge 

number.  Delete all edges with both ends number.  Delete all edges with both ends 

numbered the same, and of each group of 

edges with the same pair of numbers, delete all 

but the minimum-weight arc.

After cleanup, at most b2/2 edges, if b blue trees 



With cleanup, after pass k, b ≤ n/2k

→ total time for concurrent greedy with 

cleanup is O(min{n2, mlgn})

Is O(nlgn + m) fastest?  (Is sorting inherent in 

MST-finding?)


