
COS 423 Lecture 10

Minimum Spanning TreesMinimum Spanning Trees

©Robert E. Tarjan 2011

An undirected graph is connected if there is a

path from any vertex to any other

A (free or unrooted) tree is an acyclic connected

graph

Given a connected graph, a spanning tree is a

subgraph that is a tree and that contains all subgraph that is a tree and that contains all

the vertices

Problem: Given a connected graph with edge

weights, find a spanning tree of minimum

total edge cost: a minimum spanning tree

(MST)

A connected undirected graph with edge weights

27

1221

18

20

4

3

16

19
30

32

25

14

8

183

15
17

25

10

Minimum spanning tree?

27

1221

18

20

4

3

16

19
30

32

25

14

8

183

15
17

22

10

Applications

Clustering (single-linkage): 1909, skull

classification in anthropology

Network design: 1920’s, Moravian electrical Network design: 1920’s, Moravian electrical

network

Traveling salesperson problem lower bounds:

1971, Held & Karp

When can we conclude that an edge is in the

MST?

When can we conclude that an edge is not in the

MST?MST?

(tie-breaking by edge numbering)

Build an MST by edge coloring

blue = accepted (added to MST)

red = rejected (no longer a candidate)

cut: a partition of the vertex set into two non-
empty parts X, Y. An edge with one end in X
and one in Y crosses the cut.and one in Y crosses the cut.

Blue rule: Given a cut, color blue the minimum-
weight edge crossing it (good edge)

Red rule: Given a cycle, color red its maximum-
weight edge (bad edge)

Generalized greedy method

Begin with all edges uncolored. Repeatedly

apply the blue and red rules, in any order,

until all edges are colored.

At all times, the blue edges form a set of trees, At all times, the blue edges form a set of trees,

called the blue trees. Initially, no blue edges:

each vertex forms a one-vertex blue tree.

Once there is only one blue tree, containing all

the vertices, it is an MST.

Classical algorithms

Global greedy (Kruskal, 1956): Process the edges

in increasing order by weight. To process an

edge, if its ends are in different blue trees

color it blue; otherwise, color it red.color it blue; otherwise, color it red.

Single-source greedy (Jarník 1929, Kruskal 1956,

Prim 1957, Dijkstra 1958): Choose a start

vertex s. While the blue tree B containing s is

not spanning, color blue the minimum-weight

edge with exactly one end in B.

Concurrent greedy (Borůvka, 1926): For each

blue tree, choose the minimum-weight edge

with one end in the tree. Color all the chosen

edges blue. Repeat until there is only one

blue tree.

All three of these algorithms are special cases of

the generalized greedy algorithm.

Global greedy

27

1221

18

20

4

3

16

19
30

32

25

14

8

183

15
17

25

10

Global greedy

27

1221

18

20

4

3

16

19
30

32

25

14

8

183

15
17

25

10

Global greedy

27

1221

18

20

4

3

16

19
30

32

25

14

8

183

15
17

25

10

Global greedy

27

1221

18

20

4

3

16

19
30

32

25

14

8

183

15
17

25

10

Global greedy

27

1221

18

20

4

3

16

19
30

32

25

14

8

183

15
17

25

10

Global greedy

27

1221

18

20

4

3

16

19
30

32

25

14

8

183

15
17

25

10

Global greedy

27

1221

18

20

4

3

16

19
30

32

25

14

8

183

15
17

25

10

Global greedy

27

1221

18

20

4

3

16

19
30

32

25

14

8

183

15
17

25

10

Global greedy

27

1221

18

20

4

3

16

19
30

32

25

14

8

183

15
17

25

10

Global greedy

27

1221

18

20

4

3

16

19
30

32

25

14

8

183

15
17

25

10

Global greedy

27

1221

18

20

4

3

16

19
30

32

25

14

8

183

15
17

25

10

Single-source greedy

27

1221

18

20

4

3

16

19
30

32

25

14

8

183

15
17

25

10

Single-source greedy

27

1221

18

20

4

3

16

s

19
30

32

25

14

8

183

15
17

25

10

Single-source greedy

27

1221

18

20

4

3

16

s

19
30

32

25

14

8

183

15
17

25

10

Single-source greedy

27

1221

18

20

4

3

16

s

19
30

32

25

14

8

183

15
17

25

10

Single-source greedy

27

1221

18

20

4

3

16

s

19
30

32

25

14

8

183

15
17

25

10

Single-source greedy

27

1221

18

20

4

3

16

s

19
30

32

25

14

8

183

15
17

25

10

Single-source greedy

27

1221

18

20

4

3

16

s

19
30

32

25

14

8

183

15
17

25

10

Concurrent greedy

27

1221

18

20

4

3

16

19
30

32

25

14

8

183

15
17

25

10

Concurrent greedy

27

1221

18

20

4

3

16

19
30

32

25

14

8

183

15
17

25

10

Concurrent greedy

27

1221

18

20

4

3

16

19
30

32

25

14

8

183

15
17

25

10

Correctness?

Implementation and efficiency?

Fastest version?Fastest version?

No edge can be colored both blue and red.

Proof: Suppose (v, w) is minimum crossing X, Y

and maximum on C. Some other edge (x, y)

on C must cross X, Y. c(v, w) < c(x, y) < c(v, w):

contradiction.contradiction.

→ there is no cycle of blue edges: the blue

edges always form a set of trees

Let T be an MST. Any edge in T can be colored

blue; any edge not in T can be colored red.

Proof: Let (v, w) be an edge in T. Deleting (v, w)

from T forms two trees. Let X be the vertex

set of one tree and Y that of the other. Then

(v, w) is the minimum-weight edge crossing X, (v, w) is the minimum-weight edge crossing X,

Y: if some other edge (x, y) crossing X, Y has

smaller weight, the tree formed from T by

deleting (v, w) and adding (x, y) has smaller

weight than T, a contradiction. Thus (v, w) can

be colored blue.

Proof (cont.): Let (v, w) be an edge not in T. The

path in T connecting v and w forms a cycle

with (v, w). Edge (v, w) must have maximum

weight on this cycle: if some edge (x, y) on the

cycle has larger weight, the tree formed by

deleting (x, y) from T and adding (v, w) has deleting (x, y) from T and adding (v, w) has

less weight than T, a contradiction.

→ generalized greedy algorithm is correct, MST

is unique

Implementations

Single-source scanning: Use a heap H of vertices

not in the blue tree B but connected to it by at

least one edge

k(v) = minimum weight of an arc connecting v to

blue treeblue tree

(p(v), v) = connecting arc of minimum weight

E = edge set of graph

for v ∈ V do k(v) ← ∞;

H ← make-heap; initialize B to contain s and no
edges;

for (s, v) ∈ E do

{k(v) ← c(s, v); p(v) ← s; insert(v, H)};

while H ≠ { } dowhile H ≠ { } do

{v ← delete-min(H); add (p(v), v) to B;

for (v, w) ∈ E do if c(v, w) < k(w) and w not in B

then {k(w) ← c(v, w); p(w) ← v;

if w not in H then insert(w, H)

else decrease-key(w, k(v), H)}

Graph representation: for each vertex, set of

incident edges. Each edge is in two such sets.

n – 1 insertions, m – n + 1 decrease-keys

→O(mlgn) time (implicit heap or pairing heap)

O(m + nlgn) time (rank-pairing heap)O(m + nlgn) time (rank-pairing heap)

(vs. O(n2) original implementation:

heap = unordered set)

Global greedy: Sort edges by weight or store in a

heap with key = weight

Need a data structure to keep track of the vertex

sets of the blue trees. Initially each vertex is sets of the blue trees. Initially each vertex is

in its own tree. Operations (first cut):

find(x): return the set containing x

unite(A, B): unite the sets A and B

Process the edges in sorted order.

process(v, w): if find(v) ≠ find(w) then

{unite(find(v), find(w)), color (v, w) blue}

Stop after n – 1 edges are colored blue.

The running time is dominated by the sorting

time, or by the heap operations if a heap is

used: O(mlgn)

Concurrent greedy: after k passes, each blue
tree contains at least 2k vertices → ≤lgn passes

To do a pass: For each blue tree, keep track of
the minimum-weight connecting edge, initially
null. For each arc, find the blue trees
containing its ends; update the minimum-
weight connecting arcs of these blue trees weight connecting arcs of these blue trees
appropriately. (If both ends in the same tree,
can delete the edge.)

To find blue trees: either use disjoint set data
structure or find connected components of
the blue edges by graph search and number
each component.

O(m) time per pass → O(mlgn) time total

Cleanup: Before a pass, number the blue trees.

Assign to each edge the tree numbers of its

ends. Sort the edges lexicographically by edge

number. Delete all edges with both ends number. Delete all edges with both ends

numbered the same, and of each group of

edges with the same pair of numbers, delete all

but the minimum-weight arc.

After cleanup, at most b2/2 edges, if b blue trees

With cleanup, after pass k, b ≤ n/2k

→ total time for concurrent greedy with

cleanup is O(min{n2, mlgn})

Is O(nlgn + m) fastest? (Is sorting inherent in

MST-finding?)

