
COS 423 Lecture 22

Minimum-cost matchings and flowsMinimum-cost matchings and flows

© Robert E. Tarjan 2011

Given a directed graph with source s, sink t, arc

capacities u(v, w), and antisymmetric arc costs

c(v, w) (= –c(w, v)), the cost of a pseudoflow f

is Σ{f(v, w)c(v, w)| (v, w) ∈ E}/2. (The factor of

2 is to compensate for the double-counting 2 is to compensate for the double-counting

due to negative flows.)

Goal: Find a maximum flow of minimum cost.

Equivalent problems

G has no source, no sink. A circulation is a
pseudoflow such that e(v) = 0 for all v.

Goal: Find a minimum-cost circulation

G is bipartite, all arcs from Y to X have capacity 0,
all arcs from X to Y have capacity ∞ (or all arcs from X to Y have capacity ∞ (or
sufficiently large), each vertex x ∈ X has a
supply s(x), each vertex y ∈ Y has a demand
d(x), all supplies and demands ≥ 0

Transportation problem: Find a pseudoflow of
minimum cost such that e(x) ≥ –s(x) if x ∈ X,
e(y) = d(y) if y ∈ Y

From flow to circulation: Add arc from t to s of
capacity Σu(s, v) and cost –Σ|c(v, w)|.
Minimum-cost circulation gives a minimum-
cost maximum flow on original graph

From circulation to flow: Saturate all negative-
cost arcs to give a pseudoflow. Give each arc a
capacity = residual capacity. Add a source scapacity = residual capacity. Add a source s
with an arc to each vertex of positive excess,
of capacity = excess, and a sink t with an arc
from each vertex of negative excess, of
capacity = – excess. Minimum-cost maximum
flow gives a minimum-cost circulation on
original graph

From transportation problem to flow: Add a

source with an arc to each x ∈ X, of capacity

s(x); add a sink with an arc from each y ∈ Y, of

capacity d(y). Minimum-cost maximum flow capacity d(y). Minimum-cost maximum flow

gives solution to transportation problem on

original graph if value Σd(y); if not, infeasible

From circulation to transportation problem:

Construct a graph with one vertex v for each

vertex v in original graph of supply Σu(v, w)

and one vertex (v, w) of demand u(v, w) for

each arc (v, w) in original graph, and arcs (v, each arc (v, w) in original graph, and arcs (v,

(v, w)), (w, (v, w)), having costs 0 and c(v, w),

respectively. Solution to transportation gives

minimum-cost circulation in original graph:

flow on (v, w) = flow on (w, (v, w))

Negative-cost cycles

Theorem: A circulation has minimum cost iff
there is no negative-cost residual cycle.

Proof: If there is such a cycle, the circulation is
not minimum-cost. If f is a circulation and f’ is not minimum-cost. If f is a circulation and f’ is
a circulation of smaller cost, consider f’ – f.
This is a circulation, and it can be decomposed
into cycles of flow, each of which is a residual
cycle for f and at least one of which has
negative cost.

Theorem: Let f be a flow of value F. Among

flows of value F, f has minimum cost iff f has

no negative-cost residual cycle.no negative-cost residual cycle.

Proof: Like the proof of the previous theorem.

Cycle-canceling to find a minimum-

cost circulation

Start with the zero flow. While there is a

negative-cost residual cycle, choose such a

cycle and send as much flow around it as

possible.possible.

Termination?

#iterations?

Minimum-cost augmentations to find a

minimum-cost flow

Requires that all arcs of positive capacity have
non-negative cost

Start with the zero flow. Repeatedly augment
along a minimum-cost augmenting path. Each along a minimum-cost augmenting path. Each
flow will have minimum cost among flows of
the same value; no negative-cost residual cycle
will ever exist; cost of augmenting path never
decreases

Termination?

#iterations?

Minimum-cost augmentation via

Dijkstra’s algorithm

Maintain a price p(v) for each vertex v, initially 0.

Define the reduced cost c*(v, w) of arc (v, w) to

be c(v, w) + p(v) – p(w)

Compute cheapest residual paths using reduced Compute cheapest residual paths using reduced

costs; subtract costs of cheapest paths from

prices; augment

All reduced costs remain non-negative: arcs on

augmenting path have reduced cost 0 after

price update

O(nlgn + m) time per augmentation, vs. O(nm),

polynomial-time if all capacities are

polynomial in n.

For minimum-cost maximum-size bipartite

matching, this gives an O(n2lgn + nm)-time matching, this gives an O(n2lgn + nm)-time

algorithm: transportation problem with

supplies and demands 1, maximize demand

satisfaction at minimum cost. Flow remains

integral, at most n augmentations.

Can augment along all paths of a given cost at

once: compute residual graph containing all

arcs on minimum-cost augmenting paths

(zero-reduced-cost arcs), find a maximum flow

on this graph, add to current flowon this graph, add to current flow

Polynomial-time if all arc costs are polynomial in

n.

But what if costs and capacities are huge?

Polynomial time via cycle-canceling

Cancel & tighten algorithm: Maintain prices

but allow reduced costs to be slightly

negative (≥ –ε) Cancel cycles all of whose negative (≥ –ε) Cancel cycles all of whose

arcs have negative reduced cost. Once no

such cycle exists, change prices to reduce

negativity

Canceling a cycle can add new residual arcs, but

they all have positive reduced cost. Each

cancelation saturates at least one arc of

negative reduced cost → ≤m cancellations

between price changes

Once no cancellation is possible, subgraph S of

arcs having negative reduced cost is acyclic:

can reduce maximum negativity by adjusting

prices appropriately

Price update (tighten step): Compute, for each
vertex v, the maximum number of arcs h(v) on
a path to v in S: h(v) = 0 if no incoming arcs,
max{h(x)|(x, v) in S} + 1 if some incoming arc

For each vertex v, set p(v) ← p(v) – h(v)ε/n. This
increases the cost of every negative-reduced-
cost arc by at least ε/n, and decreases the cost cost arc by at least ε/n, and decreases the cost
of every non-negative-reduced-cost arc by at
most (n – 1)ε/n (0 ≤ h(v) ≤ n – 1)

→ After the price update, we can replace ε by
ε(1 – 1/n)

After n tighten steps, ε has decreased by a

constant factor

Assume integer prices. Start with all prices zero

and ε = –C, where C is the negative of the and ε = –C, where C is the negative of the

most-negative arc price. After O(nlg(nC))

tightenings, ε < 1/n. Then we are done!

#cancellations: ≤m per tightening = O(nmlg(nC))

Lemma: If every residual arc has reduced cost

greater than –1/n, then there is no negative-

cost residual cycle

Proof: The reduced cost of a cycle equals its

original cost. Since the reduced cost of a cycle original cost. Since the reduced cost of a cycle

must be greater than –1 and integral, it must

be non-negative.

Finding cycles to cancel

Do a DFS along negative-reduced-cost arcs. If no

negative-cost arc out of a vertex, delete the

vertex. If a back arc is traversed, cancel the

corresponding cycle and start over. After at

most n arc traversals and O(n) time, either a most n arc traversals and O(n) time, either a

cycle is canceled or a vertex is deleted

→ O(nm) time for all cancellations between two

tightenings

→ O(n2mlg(nC)) total time

With the right data structure (link/cut trees), can

reduce the running time to O(nmlgnlg(nC))

Strongly polynomial bound on cancellations?

Given a circulation, how to choose prices to

minimize ε, what is minimum ε?

Mean cycle cost: total cost/#arcs

Lemma: Minimum ε = – minimum mean cycle

cost

Proof: Exercise

Can compute minimum mean cycle cost and

corresponding prices in O(nm) time: do this

every n tightening stepsevery n tightening steps

Then every O(nlgn) tightening steps, one more

arc becomes fixed: in the future, its flow never

changes

→ O(nm2logn) cancellations

Conceptually simple, strongly polynomial

algorithm: Repeatedly cancel a cycle of

minimum mean cost, until there is no minimum mean cost, until there is no

negative-cost cycle

