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Given a directed graph with source s, sink t, arc 

capacities u(v, w), and antisymmetric arc costs 

c(v, w) (= –c(w, v)), the cost of a pseudoflow f 

is Σ{f(v, w)c(v, w)| (v, w) ∈ E}/2.  (The factor of 

2 is to compensate for the double-counting 2 is to compensate for the double-counting 

due to negative flows.)

Goal: Find a maximum flow of minimum cost.



Equivalent problems

G has no source, no sink.  A circulation is a 
pseudoflow such that e(v) = 0 for all v.

Goal: Find a minimum-cost circulation

G is bipartite, all arcs from Y to X have capacity 0, 
all arcs from X to Y have capacity ∞ (or all arcs from X to Y have capacity ∞ (or 
sufficiently large), each vertex x ∈ X has a 
supply s(x), each vertex y ∈ Y has a demand
d(x), all supplies and demands ≥ 0

Transportation problem: Find a pseudoflow of 
minimum cost such that e(x) ≥ –s(x) if x ∈ X, 
e(y) = d(y) if y ∈ Y



From flow to circulation: Add arc from t to s of  
capacity Σu(s, v) and cost –Σ|c(v, w)|.  
Minimum-cost circulation gives a minimum-
cost maximum flow on original graph

From circulation to flow: Saturate all negative-
cost arcs to give a pseudoflow.  Give each arc a 
capacity = residual capacity.  Add a source scapacity = residual capacity.  Add a source s
with an arc to each vertex of positive excess, 
of capacity = excess, and a sink t with an arc 
from each vertex of negative excess, of 
capacity = – excess.  Minimum-cost maximum 
flow gives a minimum-cost circulation on 
original graph 



From transportation problem to flow: Add a 

source with an arc to each x ∈ X, of capacity 

s(x); add a sink with an arc from each y ∈ Y, of 

capacity d(y).  Minimum-cost maximum flow capacity d(y).  Minimum-cost maximum flow 

gives solution to transportation problem on 

original graph if value  Σd(y); if not, infeasible



From circulation to transportation problem: 

Construct a graph with one vertex v for each 

vertex v in original graph of supply Σu(v, w) 

and one vertex (v, w) of demand u(v, w) for 

each arc (v, w) in original graph, and arcs (v, each arc (v, w) in original graph, and arcs (v, 

(v, w)), (w, (v, w)), having costs 0 and c(v, w), 

respectively.  Solution to transportation gives 

minimum-cost circulation in original graph: 

flow on (v, w) = flow on (w, (v, w))   



Negative-cost cycles

Theorem: A circulation has minimum cost iff
there is no negative-cost residual cycle.

Proof: If there is such a cycle, the circulation is 
not minimum-cost.  If f is a circulation and f’ is not minimum-cost.  If f is a circulation and f’ is 
a circulation of smaller cost, consider f’ – f.  
This is a circulation, and it can be decomposed 
into cycles of flow, each of which is a residual 
cycle for f and at least one of which has 
negative cost.



Theorem: Let f be a flow of value F.  Among 

flows of value F, f has minimum cost iff f has 

no negative-cost residual cycle.no negative-cost residual cycle.

Proof: Like the proof of the previous theorem.



Cycle-canceling to find a minimum-

cost circulation

Start with the zero flow.  While there is a 

negative-cost residual cycle, choose such a 

cycle and send as much flow around it as 

possible.possible.

Termination?

#iterations?



Minimum-cost augmentations to find a 

minimum-cost flow

Requires that all arcs of positive capacity have 
non-negative cost

Start with the zero flow.  Repeatedly augment 
along a minimum-cost augmenting path.  Each along a minimum-cost augmenting path.  Each 
flow will have minimum cost among flows of 
the same value; no negative-cost residual cycle 
will ever exist; cost of augmenting path never 
decreases

Termination?

#iterations? 



Minimum-cost augmentation via 

Dijkstra’s algorithm

Maintain a price p(v) for each vertex v, initially 0.

Define the reduced cost c*(v, w) of arc (v, w)  to 

be c(v, w) + p(v) – p(w)

Compute cheapest residual paths using reduced Compute cheapest residual paths using reduced 

costs; subtract costs of cheapest paths from 

prices; augment

All reduced costs remain non-negative: arcs on 

augmenting path have reduced cost 0 after 

price update 



O(nlgn + m) time per augmentation, vs. O(nm), 

polynomial-time if all capacities are 

polynomial in n. 

For minimum-cost maximum-size bipartite 

matching, this gives an O(n2lgn + nm)-time matching, this gives an O(n2lgn + nm)-time 

algorithm: transportation problem with 

supplies and demands 1, maximize demand 

satisfaction at minimum cost.  Flow remains 

integral, at most n augmentations.



Can augment along all paths of a given cost at 

once: compute residual graph containing all 

arcs on minimum-cost augmenting paths 

(zero-reduced-cost arcs), find a maximum flow 

on this graph, add to current flowon this graph, add to current flow

Polynomial-time if all arc costs are polynomial in 

n.

But what if costs and capacities are huge?



Polynomial time via cycle-canceling

Cancel & tighten algorithm: Maintain prices 

but allow reduced costs to be slightly 

negative (≥ –ε)  Cancel cycles all of whose negative (≥ –ε)  Cancel cycles all of whose 

arcs have negative reduced cost.  Once no 

such cycle exists, change prices to reduce 

negativity 



Canceling a cycle can add new residual arcs, but 

they all have positive reduced cost.  Each 

cancelation saturates at least one arc of 

negative reduced cost → ≤m cancellations 

between price changes

Once no cancellation is possible, subgraph S of 

arcs having negative reduced cost is acyclic: 

can reduce maximum negativity by adjusting 

prices appropriately



Price update (tighten step): Compute, for each 
vertex v, the maximum number of arcs h(v) on 
a path to v in S: h(v) = 0 if no incoming arcs, 
max{h(x)|(x, v) in S} + 1 if some incoming arc

For each vertex v, set p(v) ← p(v) – h(v)ε/n.  This 
increases the cost of every negative-reduced-
cost arc by at least ε/n, and decreases the cost cost arc by at least ε/n, and decreases the cost 
of every non-negative-reduced-cost arc by at 
most (n – 1)ε/n (0 ≤ h(v) ≤ n – 1)

→ After the price update, we can replace ε by 
ε(1 – 1/n)  



After n tighten steps, ε has decreased by a 

constant factor

Assume integer prices.  Start with all prices zero 

and ε = –C, where C is the negative of the and ε = –C, where C is the negative of the 

most-negative arc price.  After O(nlg(nC)) 

tightenings, ε < 1/n.  Then we are done!

#cancellations: ≤m per tightening = O(nmlg(nC)) 



Lemma: If every residual arc has reduced cost 

greater than –1/n, then there is no negative-

cost residual cycle

Proof: The reduced cost of a cycle equals its 

original cost.  Since the reduced cost of a cycle original cost.  Since the reduced cost of a cycle 

must be greater than –1 and integral, it must 

be non-negative.



Finding cycles to cancel

Do a DFS along negative-reduced-cost arcs.  If no 

negative-cost arc out of a vertex, delete the 

vertex.  If a back arc is traversed, cancel the 

corresponding cycle and start over.  After at 

most n arc traversals and O(n) time, either a most n arc traversals and O(n) time, either a 

cycle is canceled or a vertex is deleted

→ O(nm) time for all cancellations between two 

tightenings

→ O(n2mlg(nC)) total time



With the right data structure (link/cut trees), can 

reduce the running time to O(nmlgnlg(nC))

Strongly polynomial bound on cancellations?



Given a circulation, how to choose prices to 

minimize ε, what is minimum ε?

Mean cycle cost: total cost/#arcs



Lemma: Minimum ε = – minimum mean cycle 

cost

Proof: Exercise

Can compute minimum mean cycle cost and 

corresponding prices in O(nm) time: do this 

every n tightening stepsevery n tightening steps

Then every O(nlgn) tightening steps, one more 

arc becomes fixed: in the future, its flow never 

changes

→ O(nm2logn) cancellations 



Conceptually simple, strongly polynomial 

algorithm: Repeatedly cancel a cycle of 

minimum mean cost, until there is no minimum mean cost, until there is no 

negative-cost cycle 


