
COS 423 Lecture 2

On-line vs. Off-line Algorithms:

Competitive Analysis

Move-to-Front List Rearrangement

©Robert E. Tarjan, 2011

The skier’s dilemma: to rent or to buy

Number of ski trips is unknown: depends on

enjoyment, injuries, etc.

Goal: minimize $ spent

Off-line (knowing the future):

k = #trips, b = price to buy, r = price to rent

If b ≤ kr buy, otherwise rent.

But k is unknown!

Rule of thumb: rent until total spent would

exceed cost to buy, then buy.

No matter what k turns out to be, $ spent is at

most twice the minimum:most twice the minimum:

If kr < b, spending is kr (minimum).

If kr ≥ b, spending is at most 2b, minimum is b.

This strategy is 2-competitive.

In general, an algorithm is k-competitive among a
family of algorithms if its cost on any input is at

most k times the cost of the best algorithm in the
family on the specific input.

This concept gives us a robust way to measure the
efficiency of an on-line algorithm: we compare it
to the best off-line algorithm (which knows the
entire input sequence) and take the worst-case

performance ratio over all input sequences.

Example: self-adjusting lists

Dictionary: contains a set S of items, each with

associated information.

Operations:

Access(x): Determine if x is in S. If so,Access(x): Determine if x is in S. If so,

return x’s information.

Insert(x):(x not in S) Insert x and its information.

Delete(x):(x in S) Delete x and its information.

Implementations

• List

• Hash table

• Search Tree

• van Emde Boas Tree

List: simple but costly

Access is via sequential search: start from front,

traverse list until finding item or reaching end

of list. To insert an item, traverse list (to verify

item not present), add to end. To delete an

item, find it, remove it, move following items

forward one position.

Worst-case cost per access is n, average cost is

n/2 (if items equally likely).

A, S, F, G, Y, T

access G costs 4

A, S, F, G, Y, T

insert B costs 7

A, S, F, G, Y, T, B

delete G costs 7 (if array)

A, S, F, Y, T, B

What if items have differing access frequencies,

or access sequence has other kinds of locality,

such as a “working set”?

With fixed, independent access probabilities,

best list order is non-increasing by probability.best list order is non-increasing by probability.

We may well not know the probabilities, or they

may not be fixed and/or independent

Self-adjusting list: rearrange after each access

or update.

Our model: each swap of two adjacent items

costs one.costs one.

For simplicity, we ignore insertions and

deletions (results extend to cover them)

Update rules

Frequency count(FC): For each item, maintain a
count of accesses, keep items in non-
increasing order by frequency. After an access
of x, increment the count of x and move it
forward past items with a smaller count.forward past items with a smaller count.

Move-to-front(MF): Move an accessed item all
the way to the front.

Transpose(TR): Swap an accessed item with its
predecessor

List: A, N, X, D, K, U Access: K, X, U, N, X

MF: K, A, N, X, D, U 9 TR: A, N, X, K, D, U 6

X, K, A, N, D, U 7 A, X, N, K, D, U 4

U, X, K, A, N, D 11 A, X, N, K, U, D 7U, X, K, A, N, D 11 A, X, N, K, U, D 7

N, U, X, K, A, D 9 A, N, X, K, U, D 4

X, N, U, K, A, D 5 A, X, N, K, U, D 4

Each rule moves an accessed item zero or more
positions forward in the list. If item k from the
front is accessed, cost of FC is between k and
2k – 1 (inclusive), cost of MF is 2k – 1, cost of
TR is k if k = 1, otherwise k + 1.

If the number of accesses is large and the items
have fixed, independent access probabilities,
FC asymptotically minimizes the total access
cost. So does TR, which needs to maintain no
frequency counts or other extra information.

In practice: TR is terrible and MF often beats FC.

Typical access sequences display locality of

reference not exploited by FC or TR;

the fixed, independent probability

model is far from accurate.model is far from accurate.

Needed: a more accurate, more realistic, more

robust model.

Competitive Analysis

MF is 4-competitive with the optimum off-line
algorithm.

That is, on any access sequence, its cost is no That is, on any access sequence, its cost is no
more than 4 times the cost of any algorithm

on the given sequence.

(Assumptions: initial list order is the same for
MF and the adversary, each swap costs one,

no other rearrangement is possible.)

Proof

Given an arbitrary access sequence, we run MF

and OPT, a minimum-cost algorithm, on the

sequence concurrently. We define a potential

Φ that measures the difference between the

current list orders of MF and OPT. Φ is twice

the number of inversions, pairs of items

whose order is different in the two lists.

Φ = 0 initially; 0 ≤ Φ ≤ n(n – 1) always.

We run the algorithms concurrently as follows:

If x is the next item to be accessed, both
algorithms (1) access x without doing any
swaps, then (2) MF does its swaps, then (3)
OPT does its swaps.

We compare the amortized cost of MF for (1)
and (2) to the actual cost of OPT for (1). We and (2) to the actual cost of OPT for (1). We
compare the amortized cost of MF for (3) with
the actual cost of OPT for (3).

During (2), OPT has no actual cost; during (3) MF
has no actual cost. But Φ can change.

Consider access of x. Let x be k from the front in

the MF list and j from the front in the OPT list.

MF actual cost of (1) and (2) (MF access and

swaps) is 2k – 1. OPT actual cost of (1) and (2)

(OPT access but not swaps) is j.

Moving x to the front of MF’s list creates or Moving x to the front of MF’s list creates or

destroys one inversion for each item y

previously in front of x. To create an inversion,

y must precede x in OPT list.

1, 2, 3,…..., k – 1, k,… MF before

k, 1, 2, 3,.., k – 2, k – 1, … MF after

(items identified by position in MF list)

x1, x2,..., xj – 1, k,… OPT before

One inversion created or destroyed for each i, 0 < i < k.

One inversion created if i among x1,..., xj – 1: One inversion created if i among x1,..., xj – 1:

at most j – 1.

One inversion destroyed if i not among x1,..., xj – 1:

at least k – 1 – (j – 1) = k – j.

MF amortized cost of (1) and (2) ≤

2k – 1 (actual cost) + 2(j – 1) – 2(k – j) = 4j – 3 < 4j.

MF amortized cost of (1) and (2) ≤ 4j.

(3) Swaps by OPT: each swap costs OPT 1. The

MF amortized cost of a swap is either 2 or –2,

depending on whether it creates or destroys

an inversion. If OPT does s swaps, the MF an inversion. If OPT does s swaps, the MF

amortized cost of these swaps is ≤ 2s < 4s.

Thus the MF amortized cost of (1), (2), and (3) ≤

4j + 4s = 4 times the OPT actual cost of (1), (2),

and (3).

Almost done! Sum over all accesses:

MF total actual cost

≤ MF total amortized cost (Φ0 = 0, Φfinal ≥ 0)

≤ 4(OPT total actual cost).

If initial list orders differ, must add n(n – 1) If initial list orders differ, must add n(n – 1)

startup cost:

MF total cost ≤ 4(OPT total cost) + n(n – 1)

(why?)

Different cost models give different results,

some better, some worse:

if swapping any pair of items, adjacent or not,

costs 1, MF is only n-competitive. (Why?)

