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The skier’s dilemma: to rent or to buy

Number of ski trips is unknown: depends on 

enjoyment, injuries, etc.

Goal: minimize $ spent

Off-line (knowing the future):

k = #trips, b = price to buy, r = price to rent

If b ≤ kr buy, otherwise rent.



But k is unknown!

Rule of thumb: rent until total spent would 

exceed cost to buy, then buy.

No matter what k turns out to be, $ spent is at 

most twice the minimum:most twice the minimum:

If kr < b, spending is kr (minimum).

If kr ≥ b, spending is at most 2b, minimum is b. 



This strategy is 2-competitive.

In general, an algorithm is k-competitive among a 
family of algorithms if its cost on any input is at 

most k times the cost of the best algorithm in the 
family on the specific input.

This concept gives us a robust way to measure the 
efficiency of an on-line algorithm: we compare it 
to the best off-line algorithm (which knows the 
entire input sequence) and take the worst-case 

performance ratio over all input sequences.   



Example: self-adjusting lists

Dictionary: contains a set S of items, each with   

associated information.

Operations:

Access(x): Determine if x is in S.  If so,Access(x): Determine if x is in S.  If so,

return x’s information.

Insert(x):(x not in S) Insert x and its information.

Delete(x):(x in S) Delete x and its information.



Implementations

• List

• Hash table

• Search Tree

• van Emde Boas Tree



List: simple but costly

Access is via sequential search: start from front, 

traverse list until finding item or reaching end 

of list.  To insert an item, traverse list (to verify 

item not present), add to end.  To delete an 

item, find it, remove it, move following items 

forward one position. 

Worst-case cost per access is n, average cost is 

n/2 (if items equally likely).



A, S, F, G, Y, T

access G costs 4

A, S, F, G, Y, T

insert B costs 7

A, S, F, G, Y, T, B

delete G costs 7 (if array)

A, S, F, Y, T, B 



What if items have differing access frequencies, 

or access sequence has other kinds of locality, 

such as a “working set”?

With fixed, independent access probabilities, 

best list order is non-increasing by probability.best list order is non-increasing by probability.

We may well not know the probabilities, or they 

may not be fixed and/or independent



Self-adjusting list: rearrange after each access 

or update.

Our model: each swap of two adjacent items 

costs one.costs one.

For simplicity, we ignore insertions and 

deletions (results extend to cover them)



Update rules

Frequency count(FC): For each item, maintain a 
count of accesses, keep items in non-
increasing order by frequency.  After an access 
of x, increment the count of x and move it 
forward past items with a smaller count.forward past items with a smaller count.

Move-to-front(MF): Move an accessed item all 
the way to the front.

Transpose(TR): Swap an accessed item with its 
predecessor 



List:  A, N, X, D, K, U       Access:   K, X, U, N, X

MF:  K, A, N, X, D, U   9     TR: A, N, X, K, D, U   6

X, K, A, N, D, U   7            A, X, N, K, D, U   4

U, X, K, A, N, D 11            A, X, N, K, U, D   7U, X, K, A, N, D 11            A, X, N, K, U, D   7

N, U, X, K, A, D   9            A, N, X, K, U, D   4

X, N, U, K, A, D   5            A, X, N, K, U, D   4     



Each rule moves an accessed item zero or more 
positions forward in the list.  If item k from the 
front is accessed, cost of FC is between k and 
2k – 1 (inclusive), cost of MF is 2k – 1, cost of 
TR is k if k = 1, otherwise k + 1.

If the number of accesses is large and the items 
have fixed, independent access probabilities, 
FC asymptotically minimizes the total access 
cost.  So does TR, which needs to maintain no 
frequency counts or other extra information. 



In practice: TR is terrible and MF often beats FC.

Typical access sequences display locality of  

reference not exploited by FC or TR;   

the fixed, independent probability   

model is far from accurate.model is far from accurate.

Needed: a more accurate, more realistic, more 

robust model.



Competitive Analysis

MF is 4-competitive with the optimum off-line 
algorithm.

That is, on any access sequence, its cost is no That is, on any access sequence, its cost is no 
more than 4 times the cost of any algorithm 

on the given sequence.

(Assumptions: initial list order is the same for 
MF and the adversary, each swap costs one, 

no other rearrangement is possible.)



Proof

Given an arbitrary access sequence, we run MF 

and OPT, a minimum-cost algorithm, on the 

sequence concurrently.  We define a potential 

Φ that measures the difference between the 

current list orders of MF and OPT.  Φ is  twice 

the number of inversions, pairs of items 

whose order is different in the two lists.

Φ = 0 initially; 0 ≤ Φ ≤ n(n – 1) always.



We run the algorithms concurrently as follows:

If x is the next item to be accessed, both 
algorithms (1) access x without doing any 
swaps, then (2) MF does its swaps, then (3) 
OPT does its swaps.

We compare the amortized cost of MF for (1) 
and (2) to the actual cost of OPT for (1).  We  and (2) to the actual cost of OPT for (1).  We  
compare the amortized cost of MF for (3) with 
the actual cost of OPT for (3).

During (2), OPT has no actual cost; during (3) MF 
has no actual cost.  But Φ can change.   



Consider access of x.  Let x be k from the front in 

the MF list and j from the front in the OPT list.

MF actual cost of (1) and (2) (MF access and 

swaps) is 2k – 1.  OPT actual cost of (1) and (2) 

(OPT access but not swaps) is j.

Moving x to the front of MF’s list creates or Moving x to the front of MF’s list creates or 

destroys one inversion for each item y

previously in front of x.  To create an inversion, 

y must precede x in OPT list.  



1, 2, 3,…..., k – 1, k,…             MF before 

k, 1, 2, 3,.., k – 2, k – 1, …      MF after

(items identified by position in MF list)

x1, x2,..., xj – 1, k,…                    OPT before

One inversion created or destroyed for each i, 0 < i < k.

One inversion created if i among x1,..., xj – 1: One inversion created if i among x1,..., xj – 1: 

at most j – 1.

One inversion destroyed if i not among x1,..., xj – 1:

at least k – 1 – (j – 1) = k – j.

MF amortized cost of (1) and (2) ≤

2k – 1 (actual cost) + 2(j – 1) – 2(k – j) = 4j – 3 < 4j.               



MF amortized cost of (1) and (2) ≤  4j.

(3) Swaps by OPT: each swap costs OPT 1.  The 

MF amortized cost of a swap is either 2 or –2, 

depending on whether it creates or destroys 

an inversion.  If OPT does s swaps, the MF an inversion.  If OPT does s swaps, the MF 

amortized cost of these swaps is ≤ 2s < 4s.

Thus the MF amortized cost of (1), (2), and (3) ≤ 

4j + 4s = 4 times the OPT actual cost of (1), (2), 

and (3). 



Almost done!  Sum over all accesses:

MF total actual cost

≤ MF total amortized cost (Φ0 = 0, Φfinal ≥ 0)

≤ 4(OPT total actual cost).

If initial list orders differ, must add n(n – 1)   If initial list orders differ, must add n(n – 1)   

startup cost:

MF total cost ≤ 4(OPT total cost) + n(n – 1)    

(why?)



Different cost models give different results, 

some better, some worse:

if swapping any pair of items, adjacent or not, 

costs 1, MF is only n-competitive.  (Why?)


