
COS 423 Lecture 6

Implicit Heaps

Pairing HeapsPairing Heaps

©Robert E. Tarjan 2011

Heap(priority queue): contains a set of items x,

each with a key k(x) from a totally ordered

universe, and associated information. We

assume no ties in keys.

Basic Operations: Basic Operations:

make-heap: Return a new, empty heap.

insert(x, H): Insert x and its info into heap H.

delete-min(H): Delete the item of min key

from H.

Additional Operations:

find-min(H): Return the item of minimum key

in H.

meld(H1, H2): Combine item-disjoint heaps

H1 and H2 into one heap, and return it.

decrease-key(x, k, H): Replace the key of item decrease-key(x, k, H): Replace the key of item

x in heap H by k, which is smaller than the

current key of x.

delete(x, H): Delete item x from heap H.

Assumption: Heaps are item-disjoint.

A heap is like a dictionary but no access by key;

can only retrieve the item of min key:

decrease-key(x, k, H) and delete(x, H) are given

a pointer to the location of x in heap H

Applications:Applications:

Priority-based scheduling and allocation

Discrete event simulation

Network optimization: Shortest paths,

Minimum spanning trees

Lower bound from sorting

Can sort n numbers by doing n inserts followed

by n delete-min’s.

Since sorting by binary comparisons takes

Ω(nlgn) comparisons, the amortized time for Ω(nlgn) comparisons, the amortized time for

either insert or delete-min must be Ω(lgn).

One can modify any heap implementation to

reduce the amortized time for insert to O(1) →

delete-min takes Ω(lgn) amortized time.

Our goal

O(lgn) amortized time for delete-min and delete

O(1) amortized time for all other operationsO(1) amortized time for all other operations

Binary search tree implementation

Represent a heap by a binary search tree, with

item order symmetric by key.

Need parent pointers for decrease-key, delete;

do a decrease-key as a delete followed by an

insert.

All operations except meld take O(lgn) time,

worst-case if tree is balanced, amortized if

self-adjusting.

Alternative: Heap-ordered tree

Heap order: k(p(x)) ≤ k(x) for all nodes x.

Defined for rooted trees, not just binary trees

Heap order → item in root has min key

→ find-min takes O(1) time

What tree structure? How to implement heap

operations?

Three heap implementations

Implicit heap: Very simple, fast, small space.

O(lgn) worst-case time per operation except

for meld.

Pairing heap: O(lgn) amortized time per

operation including meld, simple, self-

adjusting.

Rank-pairing heap: Achieves our goal.

Heap-ordered tree:

internal representation

Store items in nodes of a rooted tree, in heap

order.

Find-min: return item in root.

Insert: replace any null child by a new leaf Insert: replace any null child by a new leaf

containing the new item x. To restore heap

order, sift up: while x is not in the root and x

has key less than that in parent, swap x with

item in parent.

Delete-min or delete: Delete item. To restore

heap order, sift down: while empty node is not

a leaf, fill with item of smallest key in children.

Either delete empty leaf, or fill with item from

another leaf, sift moved item up, and delete

empty leaf. (Allows deletion of an arbitrary empty leaf. (Allows deletion of an arbitrary

leaf, so tree shape can be controlled)

Decrease-key: sift up.

Choice of leaf to add or delete is arbitrary: add

level-by-level, delete last-in, first-out.

A binary heap

Numbers in nodes are keys.

Numbers next to nodes are order of addition.

5

1
25 10

40
21

16 12

24 30

1

2

4

8 9

6

3

75

insert 7

5

25 10

40 16 12

1

2 3

40
21

16 12

24 730

4

8 9 10

6 75

delete-min: remove item in root, sift empty

node down

5

7 10

25 16 12

1

2 3

25
21

16 12

24 4030

4

8 9 10

6 75

End of sift-down

Swap item in last leaf

into empty leaf;

sift up.

7

21 10

25 16 12

1

2 3

25
24

16 12

4030

4

8 9 10

6 75

7

21 10

25 16 12

1

2 3

25
24

16 12

40 30

4

8 9

6 75

Implicit binary heap

Binary tree, nodes numbered in addition order

root = 1

children of v = 2v, 2v + 1

p(v) = v/2p(v) = v/2

→ no pointers needed! Can store in array

insert: add node n + 1 delete: delete node n

depth = lgn

5

7 10

25
21

16 12

1

2

4
6

3

75

24 4030

4

8 9 10

5 7 10 21 25 16 21 24 30 40

1 2 3 4 5 6 7 8 9 10

Each operation except meld takes O(lgn) time:

insert takes ≤lgn comparisons (likely O(1))

delete takes ≤2lgn comparisons (likely lgn +

O(1))

Can reduce comparisons (but not data Can reduce comparisons (but not data

movement) to lglgn worst-case for insert,

lgn + lglgn for delete

Instead of binary, can make tree d-ary. Some

evidence suggests 4-ary is best in practice.

Heap-ordered tree:

external representation

Store items in external nodes of a binary tree, in
any order.

To fill internal nodes, run a tournament: bottom-
up, fill each internal node with item of smaller up, fill each internal node with item of smaller
key in children.

Find-min: return root.

Primitive operation link: combine two trees by
creating a new root with old roots as children,
filling with item of smaller key in old roots.

A link takes one comparison and O(1) time. We

will build all operations out of links and cuts.

8 6

6

First: alternative ways to represent tournaments

8 6

Full representation

5

7 5

7 5167
21

5

5

24 7 18

28 24 12 7 18 30 5 10

16

2721

Half-full representation

Store each item once,

at highest node 5

7

16
21

24 18

28 12 30 10

16

27

Left-full representation

Swap siblings to make

left children full 5

7

16
21

24 18

28 30 12 10

16

27

Heap-ordered representation

Heap-ordered tree, children

contain items that lost links,

most recent first

5

7 16 102716

1821

1027

24 30

12

28

Half-ordered representation

Binary tree: first child, next sibling

representation of heap-ordered

tree

5

7 16 1027

1821

24 30

12

28

Half-ordered representation

Half order: all items in left

subtree larger than

item in node

Half tree: root has

5

7

Half tree: root has

null right child 16

18

21

10

2724

30 1228

Linking half trees

One comparison, O(1) time

10 8 8+

10

A B

BA

Half-tree representation:

Left and right child pointers

Parent pointers if decrease-key, delete

allowed

Heap operations:

find-min: return item in rootfind-min: return item in root

make-heap: return a new, empty half tree

insert: create a new, one-node half tree, link

with existing half tree

meld: link two half trees

delete-min: Delete root. Cut edges along right

path down from new root. Roots of the

resulting half trees are the losers to the old

root. Must link these half trees.root. Must link these half trees.

How?

Delete-min 5

7

1621

18

10

2724

30 1228 28

Link half trees in pairs, top-down. Then take

bottom half tree and link with each new half

tree, bottom-up

Pairing heap

Delete-min 5

7

1621

18

10

2724

30 1228 28

After top-down

pairing links 7

16

18

21
10

27
24

30 1228 28

After bottom-up links
7

16

10

27

18

21

24

30 1228

28

Remaining heap operations:

decrease key of x in heap H: Remove x and its

left subtree (becomes a new half tree).

Replace x by its right child. Decrease k(x).

Link the old half tree with the new half tree Link the old half tree with the new half tree

rooted at x.

delete x in heap H: Decrease key of x to – ∞;

delete-min.

decrease key 18 to 11

Remove half tree rooted at 18

Replace by right child of 18
5

7

1621 16

18

21

10

2724

30 1228 28

Link old and new

half trees
5

7

11

30

1621

10

2724 12

28 28

5

7

11

30

1621

10

2724 12

28 28

Analysis of pairing heaps

Need to count links done during delete-min.

Delete-min is just like splaying, except for

(i) swapping of some left and right subtrees

and some nodes;and some nodes;

(ii) zig step, if one occurs, is at the bottom, not

the top;

(iii) no zig-zag steps.

→ Use the Φ used to analyze splay trees!

Bottom-up view of delete-min

1

3

6

4

2

9
D

C

B

A

3

6

4

2

5
D

C

B

A

3

6

5

2B

A

8

5

G

F

E

D

9

8

G

FE

D

4

5

9

8

G

FE

DC

3

6

4

5

8

2B

A
3

6

4

5

8

2

B A4

9

8

G

FE

DC

4

9

8

G

FE

DC

B A

Φ(x) = lg(s(x)) 0 ≤ Φ(x) ≤ lgn

Φ(T) = ΣΦ(x) 0 ≤ Φ(T)

Make-heap, find-min take O(1) actual time,

ΔΦ = 0 → O(1) amortized time

Insert, meld, decrease-key take O(1) actual time,Insert, meld, decrease-key take O(1) actual time,

ΔΦ ≤ 2lgn (at most two nodes increase in Φ)

→ O(lgn) amortized time

Delete-min: time = 1 + #links. Take bottom-up
view. Let x = root of bottom half tree, x’ =
root after link step (one or two links).

zig: 1 link, occurs at most once

ΔΦ(T) = Φ’(x) + Φ’(y) – Φ(x) – Φ(y)

≤ Φ’(x’) – Φ(x) ≤ 3(Φ’(x’) – Φ(x))

→ amortized time ≤ 3(Φ’(x’) – Φ(x)) + 1

x’ = x x’ = y

x

y

BA

y

x

B

A

y

x

AB

or

x’ = x x’ = y

zig-zig: 2 links

ΔΦ(T) = Φ’(y’) + Φ’(z’) – Φ(x) – Φ(y)

= Φ’(y’) + Φ’(z’) + Φ(x) – 2Φ(x) – Φ(y)

≤ Φ’(x’) + 2Φ’(x’) – 2 – 3Φ(x) by (*)

= 3Φ’(x’) – 3Φ(x) – 2

→ amortized time ≤ 3(Φ’(x’) – Φ(x)) → amortized time ≤ 3(Φ’(x’) – Φ(x))

x’

y’

z’
C

BA

z

x

A

B

C

y

Sum over all link steps. The sum telescopes,

since x’ in one step is x in the next step, giving

an amortized time for the delete-min of at

most 3(ΦF(xF) – Φ0(x0)) + 2, where x0 is the

initial x and xF is the final x, the root of the half

tree after all links.tree after all links.

→ amortized time of delete-min, delete is O(lgn)

O(lgn) is not a tight bound for decrease-key;

tight bound is unknown (Ω(lglgn))

