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Heap(priority queue): contains a set of items x, 

each with a key k(x) from a totally ordered 

universe, and associated information.  We 

assume no ties in keys.

Basic Operations: Basic Operations: 

make-heap: Return a new, empty heap.

insert(x, H): Insert x and its info into heap H.

delete-min(H): Delete the item of min key   

from H.



Additional Operations:

find-min(H): Return the item of minimum key 

in H.

meld(H1, H2): Combine item-disjoint heaps 

H1 and H2 into one heap, and return it.

decrease-key(x, k, H): Replace the key of item decrease-key(x, k, H): Replace the key of item 

x in heap H by k, which is smaller than the 

current key of x. 

delete(x, H): Delete item x from heap H.

Assumption: Heaps are item-disjoint.



A heap is like a dictionary but no access by key; 

can only retrieve the item of min key: 

decrease-key(x, k, H) and delete(x, H) are given 

a pointer to the location of x in heap H

Applications:Applications:

Priority-based scheduling and allocation 

Discrete event simulation

Network optimization: Shortest paths, 

Minimum spanning trees



Lower bound from sorting

Can sort n numbers by doing n inserts followed 

by n delete-min’s.

Since sorting by binary comparisons takes 

Ω(nlgn) comparisons, the amortized time for Ω(nlgn) comparisons, the amortized time for 

either insert or delete-min must be Ω(lgn).

One can modify any heap implementation to 

reduce the amortized time for insert to O(1) → 

delete-min takes Ω(lgn) amortized time.



Our goal

O(lgn) amortized time for delete-min and delete

O(1) amortized time for all other operationsO(1) amortized time for all other operations



Binary search tree implementation

Represent a heap by a binary search tree, with 

item order symmetric by key.

Need parent pointers for decrease-key, delete; 

do a decrease-key as a delete followed by an 

insert.

All operations except meld take O(lgn) time, 

worst-case if tree is balanced, amortized if 

self-adjusting.



Alternative: Heap-ordered tree

Heap order: k(p(x)) ≤ k(x) for all nodes x.  

Defined for rooted trees, not just binary trees

Heap order → item in root has min key

→ find-min takes O(1) time

What tree structure? How to implement heap 

operations? 



Three heap implementations

Implicit heap: Very simple, fast, small space.  

O(lgn) worst-case time per operation except 

for meld. 

Pairing heap: O(lgn) amortized time per 

operation including meld, simple, self-

adjusting.

Rank-pairing heap: Achieves our goal.



Heap-ordered tree:

internal representation

Store items in nodes of a rooted tree, in heap 

order.

Find-min: return item in root.

Insert: replace any null child by a new leaf Insert: replace any null child by a new leaf 

containing the new item x.  To restore heap 

order, sift up: while x is not in the root and x

has key less than that in parent, swap x with 

item in parent.  



Delete-min or delete: Delete item.  To restore 

heap order, sift down: while empty node is not 

a leaf, fill with item of smallest key in children.  

Either delete empty leaf, or fill with item from 

another leaf, sift moved item up, and delete 

empty leaf.  (Allows deletion of an arbitrary empty leaf.  (Allows deletion of an arbitrary 

leaf, so tree shape can be controlled)

Decrease-key: sift up.

Choice of leaf to add or delete is arbitrary: add 

level-by-level, delete last-in, first-out. 



A binary heap

Numbers in nodes are keys.

Numbers next to nodes are order of addition.
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delete-min: remove item in root, sift empty 

node down
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End of sift-down

Swap item in last leaf

into empty leaf;

sift up.
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Implicit binary heap

Binary tree, nodes numbered in addition order

root = 1 

children of v = 2v, 2v + 1

p(v) = v/2p(v) = v/2

→ no pointers needed! Can store in array

insert: add node n + 1       delete: delete node n

depth = lgn
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Each operation except meld takes O(lgn) time:

insert takes ≤lgn comparisons (likely O(1))

delete takes ≤2lgn comparisons (likely lgn +   

O(1))

Can reduce comparisons (but not data Can reduce comparisons (but not data 

movement) to lglgn worst-case for insert,

lgn + lglgn for delete

Instead of binary, can make tree d-ary.  Some 

evidence suggests 4-ary is best in practice.



Heap-ordered tree:

external representation

Store items in external nodes of a binary tree, in 
any order.

To fill internal nodes, run a tournament: bottom-
up, fill each internal node with item of smaller up, fill each internal node with item of smaller 
key in children.

Find-min: return root.

Primitive operation link: combine two trees by 
creating a new root with old roots as children, 
filling with item of smaller key in old roots.



A link takes one comparison and O(1) time.  We 

will build all operations out of links and cuts.
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Full representation
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Half-full representation

Store each item once,

at highest node 5
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Left-full representation

Swap siblings to make

left children full 5
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Heap-ordered representation

Heap-ordered tree, children

contain items that lost links,

most recent first 
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Half-ordered representation

Binary tree: first child, next sibling 

representation of heap-ordered

tree
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Half-ordered representation

Half order: all items in left

subtree larger than 

item in node

Half tree: root has
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Linking half trees

One comparison, O(1) time
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Half-tree representation:

Left and right child pointers

Parent pointers if decrease-key, delete

allowed

Heap operations:

find-min: return item in rootfind-min: return item in root

make-heap: return a new, empty half tree

insert: create a new, one-node half tree, link 

with existing half tree 

meld: link two half trees



delete-min: Delete root.  Cut edges along right  

path down from new root.  Roots of the 

resulting half trees are the losers to the old 

root.  Must link these half trees.root.  Must link these half trees.

How? 
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Link half trees in pairs, top-down.  Then take 

bottom half tree and link with each new half 

tree, bottom-up

Pairing heap
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After top-down

pairing links 7
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After bottom-up links
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Remaining heap operations: 

decrease key of x in heap H: Remove x and its 

left subtree (becomes a new half tree).   

Replace x by its right child.  Decrease k(x).  

Link the old half tree with the new half tree Link the old half tree with the new half tree 

rooted at x.

delete x in heap H: Decrease key of x to – ∞; 

delete-min.



decrease key 18 to 11

Remove half tree rooted at 18

Replace by right child of 18
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Link old and new

half trees
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Analysis of pairing heaps

Need to count links done during delete-min.

Delete-min is just like splaying, except for 

(i) swapping of some left and right subtrees

and some nodes;and some nodes;

(ii) zig step, if one occurs, is at the bottom, not    

the top;

(iii) no zig-zag steps.

→ Use the Φ used to analyze splay trees!



Bottom-up view of delete-min

1

3

6

4

2

9
D

C

B

A

3

6

4

2

5
D

C

B

A

3

6

5

2B

A

8

5

G

F

E

D

9

8

G

FE

D

4

5

9

8

G

FE

DC



3

6

4

5

8

2B

A
3

6

4

5

8

2

B A4

9

8

G

FE

DC

4

9

8

G

FE

DC

B A



Φ(x) = lg(s(x))         0 ≤ Φ(x) ≤ lgn

Φ(T) = ΣΦ(x)           0 ≤ Φ(T)

Make-heap, find-min take O(1) actual time,

ΔΦ = 0 → O(1) amortized time

Insert, meld, decrease-key take O(1) actual time,Insert, meld, decrease-key take O(1) actual time,

ΔΦ ≤ 2lgn (at most two nodes increase in Φ)

→ O(lgn) amortized time

Delete-min: time = 1 + #links.  Take bottom-up 
view.  Let x = root of bottom half tree,  x’ = 
root after link step (one or two links).



zig: 1 link, occurs at most once

ΔΦ(T) = Φ’(x) + Φ’(y) – Φ(x) – Φ(y)

≤ Φ’(x’) – Φ(x) ≤ 3(Φ’(x’) – Φ(x))

→ amortized time ≤ 3(Φ’(x’) – Φ(x)) + 1
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zig-zig: 2 links

ΔΦ(T) = Φ’(y’) + Φ’(z’) – Φ(x) – Φ(y)

= Φ’(y’) + Φ’(z’) + Φ(x) – 2Φ(x) – Φ(y)

≤ Φ’(x’) + 2Φ’(x’) – 2 – 3Φ(x) by (*)

= 3Φ’(x’) – 3Φ(x) – 2

→ amortized time ≤ 3(Φ’(x’) – Φ(x)) → amortized time ≤ 3(Φ’(x’) – Φ(x)) 
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Sum over all link steps.  The sum telescopes, 

since x’ in one step is x in the next step, giving 

an amortized time for the delete-min of at 

most  3(ΦF(xF) – Φ0(x0)) + 2, where x0 is the 

initial x and xF is the final x, the root of the half 

tree after all links.tree after all links.

→ amortized time of delete-min, delete is O(lgn)

O(lgn) is not a tight bound for decrease-key; 

tight bound is unknown (Ω(lglgn))


