
COS 423 Lecture 19

Graph MatchingGraph Matching

© Robert E. Tarjan 2011



Given an undirected graph, a matching is a set 
of edges, no two sharing a vertex.  A vertex is 
matched if it has an end in the matching, free

if not.  A matching is perfect if all vertices are 
matched.

Goal: In a given graph, find a matching 
containing as many edges as possible: a 
maximum-size matching

Special case: Find a perfect matching (or verify 
that there is none)



Generalization to weighted matching: each edge 

has a weight

Goal: Find a matching of maximum total weight.

Variants: Find a perfect matching of maximum Variants: Find a perfect matching of maximum 

(or minimum) total weight; among maximum-

size matchings, find one of maximum (or 

minimum) total weight



Important special case: bipartite graphs

A graph is bipartite if its vertices can be colored 

with two colors such that each edge has ends 

of different colors

Four versions of matching

unweighted, bipartite

unweighted, general

weighted, bipartite: assignment problem

weighted, general



A bipartite graph

Solid edges are a matching

(maximal but not maximum)

A B C

A maximal matching is one to which no 
additional edge can be added

FED



Another matching, perfect hence maximum

A B C

FED



A nonbipartite graph

Does this graph have a perfect matching?

A B C

FED

G H



No: Each of A, G, H must be matched to D or E

A B C

FED

G H



Efficient matching algorithm?

Iterative improvement: Start with any matching.  

Find a way to improve it by making local 

changes.  Repeat until no improvement is changes.  Repeat until no improvement is 

possible.  Hope: Any local maximum is a global 

maximum



Alternating path: a path whose edges are 

alternately in and out of the matching

Augmenting path: an alternating path between 

two free vertices

Augmentation: given an augmenting path, Augmentation: given an augmenting path, 

change its unmatched edges to matched and 

vice-versa, increasing the size of the matching 

by one



A, F free

A B C D E F

A, F matched

A B C D E F



Augmenting path algorithm

Start with the empty matching.  While there is 
an augmenting path, do an augmentation.

Theorem: A matching has maximum size iff
there is no augmenting paththere is no augmenting path

Proof: to follow

How to find augmenting paths?

How to choose augmenting paths?



augmenting path                after augmentation

C, E, B, F

A B C A B C

FED FED



Matching Theorem: Let M be any matching, let 

M’ be a maximum-size matching, and let k = 

|M’| – |M|.  Then M has k vertex-disjoint 

augmenting paths

Proof: Let M’ ⊕ M be the symmetric difference 

of M’ and M, the set of edges in M’ or M but of M’ and M, the set of edges in M’ or M but 

not both.  Each vertex is incident to at most  

two edges in M’ ⊕ M.  The connected 

components of the subgraph induced by the 

edges in M’ ⊕ M are thus simple paths and 

simple cycles.



Proof (cont.):  On each such path or cycle, edges 

of M’ and M alternate.  Each cycle contains 

the same number of edges in M’ as in M.  

Each path contains the same number of edges 

in M’ as in M to within one.  A path that 

contains one more edge of M’ than M is an 

augmenting path for M.  In M’ ⊕ M there are augmenting path for M.  In M’ ⊕ M there are 

exactly k more edges in M’ than edges in M.  

Thus the subgraph induced by the edges in M’

⊕ M contains k vertex-disjoint augmenting 

paths for M (and no augmenting paths for M’). 



Corollary: If M is a matching whose size is k less 

than maximum, then M has an augmenting 

path of at most n/k vertices.

Both the theorem and its corollary are true for 

all graphs, not just bipartite ones



Algorithm for bipartite graphs

Let X, Y be the bipartition of the vertices.

Begin with the empty matching.

Direct all edges from X to Y.

while ∃free vertex x in X do

{search from x until reaching a free vertex in Y or {search from x until reaching a free vertex in Y or 

finishing search;

if free vertex in Y reached then augment and  

reverse directions of all arcs on the  

augmenting path

else delete all visited vertices}



Proof of correctness: Exercise.

Must show that deleted vertices can never be 

on an augmenting path

Can also search from all free vertices in XCan also search from all free vertices in X

simultaneously (stay tuned) 



Search from A, find A, D, augment

A B C

FED



Search from B, find B, D, A, E, augment

A B C

FED



Search from C, find C, E, A, D, B, F, augment

A B C

FED



Search from C; find C, E, A, D, B, F; augment

A B C

O(m) time per search, O(nm) total time

FED



Faster: Hopcroft-Karp algorithm

Do a BFS from all free vertices in X concurrently 

(add all to initial queue) to form a layered 

subgraph L containing all shortest augmenting 

paths: truncate the search at the level of first 

free vertex in Y reached.  Find vertex-disjoint free vertex in Y reached.  Find vertex-disjoint 

augmenting paths in L by DFS, at most one 

(tree) path per start vertex.   Augment along 

all paths found (one phase).

Repeat until BFS finds no augmenting path. 



BFS from A, B, C;  L is entire graph

DFS finds paths A, D; B, E; augment

A B C

FED



After first phase, matching is maximal: no edge 

can be added

A B C

BFS from C to form L

FED



DFS from C finds C, E, B, F; augment

A B C

02

FED

1 3



A B C

FED



O(m) time per phase, ≤(2n)½ + 1 phases

→ O(n½m) total time

Proof:  Each phase takes O(m) time.  Consider a 

given phase, and let d(v) be the minimum given phase, and let d(v) be the minimum 

number of edges on an alternating path from 

a free vertex in X to v, just before the phase.  

Each arc (v, w) satisfies d(w) ≤ d(v) + 1, with 

equality if the arc is in L.  Let k be the fewest 

number of arcs on an augmenting path. 



Proof (cont.): Once L is constructed, it contains 

every free vertex in Y reachable from a free 

vertex in X by an augmenting path of k

vertices.  Each arc (v, w) on an augmenting 

path found by the algorithm has d(w) = d(v) + 

1.  The augmentation reverses the arc, so that 1.  The augmentation reverses the arc, so that 

d(v) = d(w) – 1.  Suppose that, after the 

augmentations, there were an augmenting 

path of k or fewer edges.  Then all such edges 

would have to be in L when L was first built, 

and the path would be found by the DFS. 



Proof (cont.): We conclude that after the phase, 

any augmenting path contains at least k + 2 

edges.  (The number of edges on an 

augmenting path is odd.)

Each phase except the last one does at least one 

augmentation.  After j phases, the length of augmentation.  After j phases, the length of 

the shortest augmenting path is at least 1 + 2j.  

By the corollary to the Matching Theorem, the 

current matching is within n/(1 + 2j) of 

maximum size, so there can be at most n/(1 + 

2j) + 1 additional phases. 



Proof (cont.): Thus the total number of phases is 

at most j + n/(1 + 2j) + 1.  Choosing j = (n/2)½, 

we conclude that the number of phases is at 

most (2n)½ + 1.

No faster method is known, although with this 

method the total length of all augmenting 

paths is O(nlgn): Could there be an O(n2lgn)-

time algorithm? 


