
COS 423 Lecture 16

Dominators in Digraphs

© Robert E. Tarjan 2011

Flowgraph: A directed graph with a start vertex s
such that every vertex is reachable from s

Vertex v dominates vertex w if v ≠ w and v is on
every path from s to w.

Domination is anti-symmetric: if v dominates w,
then w does not dominate v.then w does not dominate v.

Domination is transitive: if u dominates v and v

dominates w, then u dominates w.

Domination is complete: if both u and v
dominate w, then either u dominates v or v
dominates w

Anti-symmetry, transitivity, and completeness

imply that the dominators of any vertex w are

totally ordered by domination. Thus there is a

vertex v called the immediate dominator of w,

denoted by idom(w), that dominates w and is

dominated by all other dominators of w.dominated by all other dominators of w.

The immediate dominators define a tree D

rooted at r such that idom(w) is the parent of

w in D. Vertex v dominates w iff v is a proper

ancestor of w in D.

Flow graph

21

9

82

3

1

5

8

7

4

6

Dominator tree

2 3

1

4

5 97 8

6

Goal: given a flowgraph G = (V, E, s), find its

dominator tree

Applications

Global code optimization: Movement of code to

a dominating program block to reduce a dominating program block to reduce

redundant computation

Circuit testing: Identification of pairs of

equivalent line faults.

Theoretical biology: food web analysis

We assume n > 1. Since m ≥ n – 1, n = O(m) and

m > 0.

Naïve algorithm: For each vertex v ≠ s, delete vNaïve algorithm: For each vertex v ≠ s, delete v

and find all vertices still reachable from s.

Vertex v dominates all unreached vertices.

Running time = O(nm)

Delete 2: 5, 6, 7,8, 9 unreachable

Delete 5: 6 unreachable

21

9

82

3

1

5

8

7

4

6

Dominator tree

2 3

1

4

5 97 8

6

Tree update algorithm (less naïve but no faster):

Let D be any spanning tree rooted at s

p(x) = parent of x

nca(v, w) = nearest common ancestor of v, w nca(v, w) = nearest common ancestor of v, w

If for every arc (v, w), nca(v, w) is either w or

p(w), stop. Otherwise, choose an arc (v, w)

such that u = nca(v, w) is neither w nor p(w),

replace p(w) by u, and repeat.

Can represent D with just parent pointers. Each

test of an arc takes O(n) time, each update

takes O(1) time and reduces the depth of at

least one node by at least 1 → O(n3m) time

Can reduce time to O(n2m) by careful choice of

arcs to test: fast in practice on small graphsarcs to test: fast in practice on small graphs

Can reduce time to O(nm) by careful choice of

arcs to test and representation of D by child

sets as well as parent pointers

21

9

82

3

1

5

8

7

4

6

BFS tree

2 3

1

9 5

8

7

4

6

Dominator tree

2 3

1

4

5 97 8

6

Finding dominators faster?

O(m) is possible

O(mα(n, m/n)) is practical but a little

complicatedcomplicated

Here: an O(mlgn)-time algorithm that uses DFS +

finding minima on paths in the DFS tree

We need a better way to characterize immediate
dominators

Do a DFS to form a DFS tree T rooted at s. Let
p(v) be the parent of v in T, nca(v, w) the
nearest common ancestor of v, w. Order the
vertices in preorder.vertices in preorder.

Let sdom(v), the semi-dominator of v, be the
smallest vertex u such that there is a path from
u to v all of whose vertices except u are no
smaller than v

Let v ≠ s.

idom(v) is a proper ancestor of v in T

Since p(v) is a candidate for sdom(v), sdom(v) <pre v

Let P be a path from sdom(v) to v all of whose

vertices excluding sdom(v) are no smaller than vvertices excluding sdom(v) are no smaller than v

sdom(v) is a proper ancestor of v by the

preorder lemma (Lecture 14)

P avoids all ancestors of v that are not ancestors of

sdom(v); thus idom(v) is an ancestor of sdom(v)

Let rdom(v), the relative dominator of v, be a

vertex x ≠ sdom(v) on the path in T from

sdom(v) to v such that sdom(x) is minimum

(break a tie arbitrarily)

Dominators Lemma: If rdom(v) = v, then idom(v)

= sdom(v). Also, idom(v) = idom(rdom(v))

Proof: Suppose sdom(v) does dominate v. Let P

be a path from s to v that avoids sdom(v), let x

be the last vertex on P less than sdom(v), and

let y be the minimum vertex after x on P.

Then x is a candidate for sdom(y), so sdom(y)

<pre sdom(v) <pre y. But y is an ancestor of v by <pre sdom(v) <pre y. But y is an ancestor of v by

the preorder lemma, which implies that y is a

candidate for rdom(v). Since sdom(y) <pre

sdom(v), rdom(v) ≠ v. This gives the first part

of the lemma.

Proof (cont.): A path from s to rdom(v) can be
extended to v by adding the tree path from
rdom(v) to v. It follows that no proper
descendant of idom(rdom(v)) dominates v.
Suppose idom(rdom(v)) does not dominate v.
Let P be a path from s to v that avoids
idom(rdom(v)), let x be the last vertex on Pidom(rdom(v)), let x be the last vertex on P
less than idom(rdom(v)), and let y be the
minimum vertex after x on P. Then x is a
candidate for sdom(y), so sdom(y) <pre

idom(rdom(v)) <pre y. But y is an ancestor of v
by the preorder lemma.

Proof(cont.): If y were an ancestor of rdom(v),

then idom(rdom(v)) would not dominate

rdom(v); thus y is a proper descendant of

rdom(v). But then y is a candidate for

rdom(v), which implies sdom(rdom(v)) ≤pre

sdom(y) < idom(rdom(v)), and again
pre

sdom(y) <pre idom(rdom(v)), and again

idom(rdom(v)) cannot dominate rdom(v), a

contradiction. This gives the second part of

the lemma.

Dominators algorithm

Compute sdom(v) for every vertex v ≠ s.

Compute rdom(v) for every vertex v ≠ s.

Set idom(s) = null. Visit vertices v ≠ s in an order

such that p(v) is visited before v, e.g. preordersuch that p(v) is visited before v, e.g. preorder

visit(v):

if rdom(v) = v then idom(v) ← sdom(v)

else idom(v) ← idom(rdom(v))

21

9

82

3

1

5

8

7

4

6

tree arcs

forward arcs

cross arcs

back arcs

2

1

DFS tree and non-tree arcs

back arcs

8

3

64

5 9

7

9: 2

8: 2

7: 2

6: 5

2

1

Semi-dominators

6: 5

5: 2

4: 2

3: 1

2: 1

8

3

64

5 9

7

9: 2, 9

8: 2, 5

7: 2, 5

6: 5, 6

2

1

Relative dominators

6: 5, 6

5: 2, 5

4: 2, 3

3: 1, 2

2: 1, 2

8

3

64

5 9

7

9: 2, 9, 2

8: 2, 5, 2

7: 2, 5, 2

6: 5, 6, 5

2

1

Immediate dominators

6: 5, 6, 5

5: 2, 5, 2

4: 2, 3, 1

3: 1, 2, 1

2: 1, 2, 1

8

3

64

5 9

7

Dominator tree

2 3

1

4

5 97 8

6

Correctness: From the dominators lemma; if

rdom(v) ≠ v, then rdom(v) is a proper ancestor

of v, hence visited before v

How to compute semi-dominators and relative

dominators?dominators?

The relative dominators are path-minima on T,

with semi-dominators as weights

The computation of semi-dominators can also

be done by finding path minima on T

Indeed we can compute both semi-dominators

and relative dominators in one integrated path and relative dominators in one integrated path

minima computation

For an arc (u, v), let z = nca(u, v)

If u = z, let r(u, v) = u.

If u ≠ z, let r(u, v) be a vertex x ≠ z on the path in

T from z to u such that sdom(x) is minimumT from z to u such that sdom(x) is minimum

(break a tie arbitrarily)

Lemma: sdom(v) = minpre{r(u, v)| (u, v)∈ E}

Proof: Exercise

This lemma allows us to compute semi-

dominators in reverse preorder from path

minima of known or previously computed

values: If (u, v) is an arc such that u is not an

ancestor of v, and x ≠ nca(u, v) is on the path

in T from nca(u, v) to u, then x >pre v, since xin T from nca(u, v) to u, then x >pre v, since x

≤pre v implies x is an ancestor of v.

We visit the vertices in reverse preorder,

maintaining a compressed version of the part

of D visited so far: all (p(v), v) with v visited.

for v ∈ V do a(v) ← null;

for v ∈ V – s in reverse preorder do

{sdom(v) ←minpre{sfind(u)|(u, v) ∈E};

a(v) ← p(v); pmin(v) ← sdom(v)}

Computation of semi-dominators

a(v) ← p(v); pmin(v) ← sdom(v)}

a(v): parent of v in compressed forest

pmin(v): path min of v in compressed forest

sfind(x):

if a(x) = null then return x

else {if a(a(x)) ≠ null then

{pmin(x) ← minpre{pmin(x), sfind(a(x)))}; {pmin(x) ← minpre{pmin(x), sfind(a(x)))};

a(x) ← a(a(x)};

return pmin(x)}

Computation of semi-dominators and

relative dominators with optimization

for v ∈ V do {a(v) ← null; R(v) ← { }};

for v ∈ V – s in reverse preorder do

{for u ∈ R(v) do rdom(u) ← sfind(u);

sdom(v) ←min {sfind(u)|(u, v) ∈E};sdom(v) ←minpre{sfind(u)|(u, v) ∈E};

a(v) ← p(v); pmin(v) ← sdom(v);

if p(v) = sdom(v) then rdom(v) ← v else

R(sdom(v) ← R(sdom(v) ∪ {v}};

for u ∈ R(s) do rdom(u) ← sfind(u)

3-pass dominators algorithm

Do a depth-first search. Number vertices in

preorder and build DFS tree

Compute sdom and rdom by visiting the vertices

in reverse preorderin reverse preorder

Compute idom by visiting the vertces in

preorder

Running time = O(mlgn): path compression with

naïve linking

Faster Versions

O(mα(n, m/n): Add linking by rank to the path

min data structure (not entirely straightforward)

O(m): Build optimal algorithms for very small

subproblems (much less straightforward)

