COS 423 Lecture 16
Dominators in Digraphs

© Robert E. Tarjan 2011
Flowgraph: A directed graph with a start vertex s such that every vertex is reachable from s

Vertex v **dominates** vertex w if $v \neq w$ and v is on every path from s to w.

Domination is **anti-symmetric**: if v dominates w, then w does not dominate v.

Domination is **transitive**: if u dominates v and v dominates w, then u dominates w.

Domination is **complete**: if both u and v dominate w, then either u dominates v or v dominates w.
Anti-symmetry, transitivity, and completeness imply that the dominators of any vertex w are totally ordered by domination. Thus there is a vertex v called the immediate dominator of w, denoted by $idom(w)$, that dominates w and is dominated by all other dominators of w.

The immediate dominators define a tree D rooted at r such that $idom(w)$ is the parent of w in D. Vertex v dominates w iff v is a proper ancestor of w in D.
Dominator tree
Goal: given a flowgraph $G = (V, E, s)$, find its dominoator tree

Applications

Global code optimization: Movement of code to a dominating program block to reduce redundant computation

Circuit testing: Identification of pairs of equivalent line faults.

Theoretical biology: Food web analysis
We assume $n > 1$. Since $m \geq n - 1$, $n = O(m)$ and $m > 0$.

Naïve algorithm: For each vertex $v \neq s$, delete v and find all vertices still reachable from s. Vertex v dominates all unreached vertices.

Running time $= O(nm)$
Delete 2: 5, 6, 7, 8, 9 unreachable
Delete 5: 6 unreachable
Dominator tree
Tree update algorithm (less naïve but no faster):

Let D be any spanning tree rooted at s

$p(x) = \text{parent of } x$

$nca(v, w) = \text{nearest common ancestor of } v, w$

If for every arc (v, w), $nca(v, w)$ is either w or $p(w)$, stop. Otherwise, choose an arc (v, w) such that $u = nca(v, w)$ is neither w nor $p(w)$, replace $p(w)$ by u, and repeat.
Can represent D with just parent pointers. Each test of an arc takes $O(n)$ time, each update takes $O(1)$ time and reduces the depth of at least one node by at least 1 $\rightarrow O(n^3m)$ time

Can reduce time to $O(n^2m)$ by careful choice of arcs to test: fast in practice on small graphs

Can reduce time to $O(nm)$ by careful choice of arcs to test and representation of D by child sets as well as parent pointers
Dominator tree
Finding dominators faster?

$O(m)$ is possible
$O(m\alpha(n, \lceil m/n \rceil))$ is practical but a little complicated

Here: an $O(mlgn)$-time algorithm that uses DFS + finding minima on paths in the DFS tree
We need a better way to characterize immediate dominators

Do a DFS to form a DFS tree T rooted at s. Let $p(v)$ be the parent of v in T, $nca(v, w)$ the nearest common ancestor of v, w. Order the vertices in preorder.

Let $sdom(v)$, the *semi-dominator* of v, be the smallest vertex u such that there is a path from u to v all of whose vertices except u are no smaller than v
Let \(v \neq s \).

\(idom(v) \) is a proper ancestor of \(v \) in \(T \)

Since \(p(v) \) is a candidate for \(sdom(v) \), \(sdom(v) <_{pre} v \)

Let \(P \) be a path from \(sdom(v) \) to \(v \) all of whose vertices excluding \(sdom(v) \) are no smaller than \(v \)

\(sdom(v) \) is a proper ancestor of \(v \) by the preorder lemma (Lecture 14)

\(P \) avoids all ancestors of \(v \) that are not ancestors of \(sdom(v) \); thus \(idom(v) \) is an ancestor of \(sdom(v) \)
Let \(\text{rdom}(v) \), the *relative dominator* of \(v \), be a vertex \(x \neq \text{sdom}(v) \) on the path in \(T \) from \(\text{sdom}(v) \) to \(v \) such that \(\text{sdom}(x) \) is minimum (break a tie arbitrarily).

Dominators Lemma: If \(\text{rdom}(v) = v \), then \(\text{idom}(v) = \text{sdom}(v) \). Also, \(\text{idom}(v) = \text{idom}(\text{rdom}(v)) \).
Proof: Suppose $sdom(v)$ does dominate v. Let P be a path from s to v that avoids $sdom(v)$, let x be the last vertex on P less than $sdom(v)$, and let y be the minimum vertex after x on P. Then x is a candidate for $sdom(y)$, so $sdom(y) <_{pre} sdom(v) <_{pre} y$. But y is an ancestor of v by the preorder lemma, which implies that y is a candidate for $rdom(v)$. Since $sdom(y) <_{pre} sdom(v)$, $rdom(v) \neq v$. This gives the first part of the lemma.
Proof (cont.): A path from s to $rdom(v)$ can be extended to v by adding the tree path from $rdom(v)$ to v. It follows that no proper descendant of $idom(rdom(v))$ dominates v. Suppose $idom(rdom(v))$ does not dominate v. Let P be a path from s to v that avoids $idom(rdom(v))$, let x be the last vertex on P less than $idom(rdom(v))$, and let y be the minimum vertex after x on P. Then x is a candidate for $sdom(y)$, so $sdom(y) <_{pre} idom(rdom(v)) <_{pre} y$. But y is an ancestor of v by the preorder lemma.
Proof(cont.): If y were an ancestor of $rdom(v)$, then $idom(rdom(v))$ would not dominate $rdom(v)$; thus y is a proper descendant of $rdom(v)$. But then y is a candidate for $rdom(v)$, which implies $sdom(rdom(v)) \leq_{pre} sdom(y) <_{pre} idom(rdom(v))$, and again $idom(rdom(v))$ cannot dominate $rdom(v)$, a contradiction. This gives the second part of the lemma.
Dominators algorithm

Compute $sdom(v)$ for every vertex $v \neq s$.
Compute $rdom(v)$ for every vertex $v \neq s$.
Set $idom(s) = \text{null}$. Visit vertices $v \neq s$ in an order such that $p(v)$ is visited before v, e.g. preorder

\[\text{visit}(v):\]
\[\text{if } rdom(v) = v \text{ then } idom(v) \leftarrow sdom(v)\]
\[\text{else } idom(v) \leftarrow idom(rdom(v))\]
DFS tree and non-tree arcs

tree arcs
forward arcs
cross arcs
back arcs
Semi-dominators

1

2

3

4

5

6

7

8

9

9: 2
8: 2
7: 2
6: 5
5: 2
4: 2
3: 1
2: 1
Relative dominators

9: 2, 9
8: 2, 5
7: 2, 5
6: 5, 6
5: 2, 5
4: 2, 3
3: 1, 2
2: 1, 2
Immediate dominators

9: 2, 9, 2
8: 2, 5, 2
7: 2, 5, 2
6: 5, 6, 5
5: 2, 5, 2
4: 2, 3, 1
3: 1, 2, 1
2: 1, 2, 1
Dominator tree
Correctness: From the dominators lemma; if \(rdom(v) \neq v \), then \(rdom(v) \) is a proper ancestor of \(v \), hence visited before \(v \)

How to compute semi-dominators and relative dominators?

The relative dominators are path-minima on \(T \), with semi-dominators as weights
The computation of semi-dominators can also be done by finding path minima on T

Indeed we can compute both semi-dominators and relative dominators in one integrated path minima computation
For an arc \((u, v)\), let \(z = nca(u, v)\)

If \(u = z\), let \(r(u, v) = u\).

If \(u \neq z\), let \(r(u, v)\) be a vertex \(x \neq z\) on the path in \(T\) from \(z\) to \(u\) such that \(sdom(x)\) is minimum (break a tie arbitrarily)

Lemma: \(sdom(v) = \min_{pre}\{r(u, v) | (u, v) \in E\}\)

Proof: Exercise
This lemma allows us to compute semi-dominators in reverse preorder from path minima of known or previously computed values: If \((u, v)\) is an arc such that \(u\) is not an ancestor of \(v\), and \(x \neq nca(u, v)\) is on the path in \(T\) from \(nca(u, v)\) to \(u\), then \(x >_{pre} v\), since \(x \leq_{pre} v\) implies \(x\) is an ancestor of \(v\).

We visit the vertices in reverse preorder, maintaining a compressed version of the part of \(D\) visited so far: all \((\rho(v), v)\) with \(v\) visited.
Computation of semi-dominators

\[
\text{for } v \in V \text{ do } a(v) \leftarrow \text{null}; \\
\text{for } v \in V - s \text{ in reverse preorder do} \\
\quad \{sdom(v) \leftarrow \min_{pre}\{sfind(u) | (u, v) \in E\} ; \\
\quad a(v) \leftarrow p(v); \ pmin(v) \leftarrow sdom(v)\}
\]

\[a(v): \text{parent of } v \text{ in compressed forest}\]

\[pmin(v): \text{path min of } v \text{ in compressed forest}\]
\textit{sfind}(x):
\begin{align*}
 \text{if } a(x) &= \text{null} \text{ then return } x \\
 \text{else } \{ \text{if } a(a(x)) \neq \text{null } \text{ then} & \\
 \{ pmin(x) \leftarrow \min_{pre}\{pmin(x), sfind(a(x))\}; & \\
 a(x) \leftarrow a(a(x)); & \\
 \text{return } pmin(x) \}\} & \\
\end{align*}
Computation of semi-dominators and relative dominators with optimization

for \(v \in V \) do \(\{ a(v) \leftarrow \text{null}; R(v) \leftarrow \{ \} \} \);
for \(v \in V - s \) in reverse preorder do
 for \(u \in R(v) \) do \(\text{rdom}(u) \leftarrow \text{sfind}(u) \);
 \(\text{sdom}(v) \leftarrow \min_{pre} \{ \text{sfind}(u) | (u, v) \in E \} \);
 \(a(v) \leftarrow p(v) \); \(\text{pmin}(v) \leftarrow \text{sdom}(v) \);
 if \(p(v) = \text{sdom}(v) \) then \(\text{rdom}(v) \leftarrow v \) else
 \(R(\text{sdom}(v) \leftarrow R(\text{sdom}(v) \cup \{v\}) \);
for \(u \in R(s) \) do \(\text{rdom}(u) \leftarrow \text{sfind}(u) \)
3-pass dominators algorithm

Do a depth-first search. Number vertices in preorder and build DFS tree

Compute $sdom$ and $rdom$ by visiting the vertices in reverse preorder

Compute $idom$ by visiting the vertices in preorder

Running time = $O(mlgn)$: path compression with naïve linking
Faster Versions

\(O(m \alpha(n, \lceil m/n \rceil)) \): Add linking by rank to the path min data structure (not entirely straightforward)

\(O(m) \): Build optimal algorithms for very small subproblems (much less straightforward)