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Flowgraph: A directed graph with a start vertex s
such that every vertex is reachable from s

Vertex v dominates vertex w if v ≠ w and v is on 
every path from s to w.

Domination is anti-symmetric: if v dominates w, 
then w does not dominate v.then w does not dominate v.

Domination is transitive: if u dominates v and v 

dominates w, then u dominates w.

Domination is complete: if both u and v
dominate w, then either u dominates v or v
dominates w



Anti-symmetry, transitivity, and completeness 

imply that the dominators of any vertex w are 

totally ordered by domination.  Thus there is a 

vertex v called the immediate dominator of w, 

denoted by idom(w), that dominates w and is 

dominated by all other dominators of w.dominated by all other dominators of w.

The immediate dominators define a tree D

rooted at r such that idom(w) is the parent of 

w in D.  Vertex v dominates w iff v is a proper 

ancestor of w in D.
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Goal: given a flowgraph G = (V, E, s), find its 

dominator tree

Applications

Global code optimization: Movement of code to 

a dominating program block to reduce a dominating program block to reduce 

redundant computation

Circuit testing: Identification of pairs of 

equivalent line faults.

Theoretical biology: food web analysis



We assume n > 1.  Since m ≥ n – 1, n = O(m) and 

m > 0.

Naïve algorithm: For each vertex v ≠ s, delete vNaïve algorithm: For each vertex v ≠ s, delete v

and find all vertices still reachable from s.  

Vertex v dominates all unreached vertices.

Running time = O(nm) 



Delete 2: 5, 6, 7,8, 9 unreachable

Delete 5: 6 unreachable
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Tree update algorithm (less naïve but no faster): 

Let D be any spanning tree rooted at s

p(x) = parent of x

nca(v, w) = nearest common ancestor of v, w nca(v, w) = nearest common ancestor of v, w 

If for every arc (v, w),  nca(v, w) is either w or 

p(w), stop.  Otherwise, choose an arc (v, w) 

such that u = nca(v, w) is neither w nor p(w), 

replace p(w) by u, and repeat. 



Can represent D with just parent pointers.  Each 

test of an arc takes O(n) time, each update 

takes O(1) time and reduces the depth of at 

least one node by at least 1 → O(n3m) time

Can reduce time to O(n2m) by careful choice of 

arcs to test: fast in practice on small graphsarcs to test: fast in practice on small graphs

Can reduce time to O(nm) by careful choice of 

arcs to test and representation of D by child 

sets as well as parent pointers
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BFS tree
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Finding dominators faster?

O(m) is possible

O(mα(n, m/n)) is practical but a little 

complicatedcomplicated

Here: an O(mlgn)-time algorithm that uses DFS + 

finding minima on paths in the DFS tree



We need a better way to characterize immediate 
dominators

Do a DFS to form a DFS tree T rooted at s.  Let 
p(v) be the parent of v in T, nca(v, w) the 
nearest common ancestor of v, w.  Order the 
vertices in preorder.vertices in preorder.

Let sdom(v), the semi-dominator of v, be the 
smallest vertex u such that there is a path from 
u to v all of whose vertices except u are no 
smaller than v



Let v ≠ s.  

idom(v) is a proper ancestor of v in T

Since p(v) is a candidate for sdom(v), sdom(v) <pre v

Let P be a path from sdom(v) to v all of whose 

vertices excluding sdom(v) are no smaller than vvertices excluding sdom(v) are no smaller than v

sdom(v) is a proper ancestor of v by the 

preorder lemma (Lecture 14)

P avoids all ancestors of v that are not ancestors of 

sdom(v); thus idom(v) is an ancestor of sdom(v)



Let rdom(v), the relative dominator of v, be a 

vertex x ≠ sdom(v) on the path in T from 

sdom(v) to v such that sdom(x) is minimum

(break a tie arbitrarily)

Dominators Lemma: If rdom(v) = v, then idom(v) 

= sdom(v).  Also, idom(v) = idom(rdom(v))



Proof:  Suppose sdom(v) does dominate v.  Let P

be a path from s to v that avoids sdom(v), let x

be the last vertex on P less than sdom(v), and 

let y be the minimum vertex after x on P.  

Then x is a candidate for sdom(y), so sdom(y) 

<pre sdom(v) <pre y.  But y is an ancestor of v by <pre sdom(v) <pre y.  But y is an ancestor of v by 

the preorder lemma, which implies that y is a 

candidate for rdom(v).  Since sdom(y) <pre

sdom(v), rdom(v) ≠ v.  This gives the first part 

of the lemma.



Proof (cont.): A path from s to rdom(v) can be 
extended to v by adding the tree path from 
rdom(v) to v.  It follows that no proper 
descendant of idom(rdom(v)) dominates v.  
Suppose idom(rdom(v)) does not dominate v.  
Let P be a path from s to v that avoids 
idom(rdom(v)), let x be the last vertex on Pidom(rdom(v)), let x be the last vertex on P
less than idom(rdom(v)), and let y be the 
minimum vertex after x on P.  Then x is a 
candidate for sdom(y), so sdom(y) <pre

idom(rdom(v)) <pre y.  But y is an ancestor of v
by the preorder lemma. 



Proof(cont.): If y were an ancestor of rdom(v), 

then idom(rdom(v)) would not dominate 

rdom(v); thus y is a proper descendant of 

rdom(v).  But then y is a candidate for 

rdom(v), which implies sdom(rdom(v)) ≤pre

sdom(y) < idom(rdom(v)), and again 
pre

sdom(y) <pre idom(rdom(v)), and again 

idom(rdom(v)) cannot dominate rdom(v), a 

contradiction.  This gives the second part of 

the lemma.



Dominators algorithm

Compute sdom(v) for every vertex v ≠ s.

Compute rdom(v) for every vertex v ≠ s.

Set idom(s) = null.  Visit vertices v ≠ s in an order 

such that p(v) is visited before v, e.g. preordersuch that p(v) is visited before v, e.g. preorder

visit(v):

if rdom(v) = v then idom(v) ← sdom(v)

else idom(v) ← idom(rdom(v))
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tree arcs

forward arcs

cross arcs

back arcs
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9: 2, 9, 2
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Correctness: From the dominators lemma; if 

rdom(v) ≠ v, then rdom(v) is a proper ancestor 

of v, hence visited before v

How to compute semi-dominators and relative 

dominators?dominators?

The relative dominators are path-minima on T, 

with semi-dominators as weights   



The computation of semi-dominators can also 

be done by finding path minima on T

Indeed we can compute both semi-dominators 

and relative dominators in one integrated path and relative dominators in one integrated path 

minima computation 



For an arc (u, v), let z = nca(u, v)

If u = z, let r(u, v) = u.  

If u ≠ z, let r(u, v) be a vertex x ≠ z on the path in 

T from z to u such that sdom(x) is minimumT from z to u such that sdom(x) is minimum

(break a tie arbitrarily)

Lemma: sdom(v) = minpre{r(u, v)| (u, v)∈ E}

Proof: Exercise



This lemma allows us to compute semi-

dominators in reverse preorder from path 

minima of known or previously computed 

values:  If (u, v) is an arc such that u is not an 

ancestor of v, and x ≠ nca(u, v) is on the path 

in T from nca(u, v) to u, then x >pre v, since xin T from nca(u, v) to u, then x >pre v, since x

≤pre v implies x is an ancestor of v.

We visit the vertices in reverse preorder, 

maintaining a compressed version of the part 

of D visited so far: all (p(v), v) with v visited.    



for v ∈ V do a(v) ← null;

for v ∈ V – s in reverse preorder do

{sdom(v) ←minpre{sfind(u)|(u, v) ∈E};

a(v) ← p(v); pmin(v) ← sdom(v)}

Computation of semi-dominators

a(v) ← p(v); pmin(v) ← sdom(v)}

a(v): parent of v in compressed forest

pmin(v): path min of v in compressed forest 



sfind(x):

if a(x) = null then return x

else {if a(a(x)) ≠ null then

{pmin(x) ← minpre{pmin(x), sfind(a(x)))};  {pmin(x) ← minpre{pmin(x), sfind(a(x)))};  

a(x) ← a(a(x)};

return pmin(x)}



Computation of semi-dominators and 

relative dominators with optimization

for v ∈ V do {a(v) ← null; R(v) ← { }};

for v ∈ V – s in reverse preorder do

{for u ∈ R(v) do rdom(u) ← sfind(u);

sdom(v) ←min {sfind(u)|(u, v) ∈E};sdom(v) ←minpre{sfind(u)|(u, v) ∈E};

a(v) ← p(v); pmin(v) ← sdom(v);

if p(v) = sdom(v) then rdom(v) ← v else

R(sdom(v) ← R(sdom(v) ∪ {v}};

for u ∈ R(s) do rdom(u) ← sfind(u)



3-pass dominators algorithm

Do a depth-first search.  Number vertices in 

preorder and build DFS tree

Compute sdom and rdom by visiting the vertices 

in reverse preorderin reverse preorder

Compute idom by visiting the vertces in 

preorder

Running time = O(mlgn): path compression with 

naïve linking



Faster Versions

O(mα(n, m/n): Add linking by rank to the path 

min data structure (not entirely straightforward)

O(m): Build optimal algorithms for very small 

subproblems (much less straightforward)


