
Coping with NP-Completeness

Siddhartha Sen

Questions: sssix@cs.princeton.edu

Some figures obtained from Introduction to Algorithms, 2nd ed., by CLRS

Coping with intractability

Many NPC problems are important in industry
and must be solved

Methods for coping:
• Special cases

• Average case

• Approximation algorithms

• Intelligent brute force

• Heuristics

Special cases

2-CNF-SAT can be solved in p-time, but 3-CNF-
SAT and higher are NPC

Uses strongly connected components

VERTEX-COVER for bipartite graphs can be
solved in p-time, but NPC in general

Uses maximum matching

Approximation algorithms

Returns near-optimal solution to a
minimization/maximization problem

Algorithm has approximation ratio (n)  1 if
cost C of solution is within factor (n) of cost
C* of optimal solution, for any input of size n:

Maximization: 0 < C  C*, ratio is C*/C

Minimization: 0 < C*  C, ratio is C/C*

Types of approximation algorithms

(n) may be:

• Constant, e.g. 2

• Growing function of input size n, e.g. log n

• Approximation scheme: (1 + ) for fixed  > 0

Approximation scheme that runs in p-time in n, e.g. O(n2/),
is a polynomial-time approximation scheme (PTAS)

If additionally p-time in 1/, e.g. O((1/)2n3), it is a fully
polynomial-time approximation scheme

Approximate VERTEX-COVER

VERTEX-COVER = {G, k : graph G = (V, E) has
vertex cover of size k}

Optimization version: Find vertex cover of G of
minimum size

Idea: Find maximal matching greedily

APPROX-VC (G)

C 0

E’ = E

while E’  Ø

Select from E’ an arbitrary edge (u, v)

C C U {u, v}

Remove from E’ every edge incident to u or v

return C

Theorem. APPROX-VC is a p-time 2-approximation
algorithm for VERTEX-COVER

Proof. Running time is O(E). C is vertex cover since edge
only removed if has endpoint in C. Show |C|  2|C*|.

Let A be set of edges selected from E’
A is a (maximal) matching since no two edges share common
endpoint |C*|  |A|

Each selected edge has neither endpoint in C, so |C| = 2|A|
|A|  |C*|  |C| = 2|A|

Similar idea of lower-bounding optimal solution (when
unknown) used in competitive analysis

Approximate TSP

TSP = {G, d, k : G = (V, E) is a complete graph, d is cost
function from V  V Z, k  Z, and G has tour of cost
at most k}
Tour is cycle that visits each vertex exactly once

Optimization version: Find a minimum tour of G
Use d(L) to denote total cost of edges in L

Assume triangle inequality:
d(x, y) + d(y, z)  d(x, z)

Idea: Find a minimum spanning tree

APPROX-TSP (G)

Select arbitrary vertex r  V to be root

Find a minimum spanning tree T from r in G

Let C be list of vertices from preorder walk of T

return C

APPROX-TSP’s
solution

Optimal
solution

Theorem. APPROX-TSP is a p-time 2-approximation
algorithm for TSP

Proof. Runtime is time to find MST + preorder
traversal, i.e. p-time. C is tour because includes all
vertices (definition of MST). Show d(C)  2d(C*)

Removing one edge from C* gives spanning tree, so
d(T)  d(C*)

Full walk of T traverses each edge twice; since C is
contracted version of full walk, d(C)  2d(T)
By triangle inequality, can delete any vertex from full
walk without increasing cost

1.5-approximation for TSP

Let O be set of odd-degree vertices in T; find
minimum-cost perfect matching M over O

O is connected by complete graph and |O| is even, so
perfect matching exists

Find Eulerian tour on T U M, delete repeated vertices

T U M is connected, has even-degree vertices only, so
Eulerian tour exists

Triangle inequality lets us delete vertices

Why is this a 1.5 approximation?

d(T)  d(C*) as before

Show d(M)  d(C*)/2, see below

 d(T U M)  1.5d(C*)

Let CO* be optimal tour of O, let e1, e2,…, e2k be
its edge set (Eulerian path). Both e1, e3,…, e2k-1

and e2, e4,…, e2k are perfect matchings, so one
has cost  d(CO*)/2  d(C*)/2

PTAS for SUBSET-SUM

SUBSET-SUM = {S, t : S  N, t  N and  a
subset S’ ⊆ S s.t. t = sS’ s}

Optimization version: Find subset whose sum is
closest to t without exceeding t

Idea: Maintain list of sums of all subsets so far,
but trim list

APPROX-SUBSET-SUM(S, t, )

1 n |S|

2 L0  0

3 for i 1 to n

4 do Li  MERGE(Li-1, Li-1 + xi)

5 Li TRIM(Li, /2n)

6 remove from Li every element > t

7 return largest value z* in Ln

APPROX-SUBSET-SUM(S, t, )

1 n |S|

2 L0  0

3 for i 1 to n

4 do Li  MERGE(Li-1, Li-1 + xi)

5 Li TRIM(Li, /2n)

6 remove from Li every element > t

7 return largest value z* in Ln

TRIM removes every y in Li for which  z still in Li s.t.:

.
yz

y

n




2
1 

• S = {104, 102, 201, 101}, t = 308,  = 0.40,
/2n = 0.05

line 2: L0 = 〈0〉

line 4: L1 = 〈0, 104〉

line 5: L1 = 〈0, 104〉

line 6: L1 = 〈0, 104〉

line 4: L2 = 〈0, 102, 104, 206〉

line 5: L2 = 〈0, 102, 206〉

line 6: L2 = 〈0, 102, 206〉

line 4: L3 = 〈0, 102, 201, 206, 303, 407〉

line 5: L3 = 〈0, 102, 201, 303, 407〉

line 6: L3 = 〈0, 102, 201, 303〉

line 4: L4 = 〈0, 101, 102, 201, 203, 302, 303, 404〉

line 5: L4 = 〈0, 101, 201, 302, 404〉

line 6: L4 = 〈0, 101, 201, 302〉

Theorem. APPROX-SUBSET-SUM is a fully PTAS for
SUBSET-SUM

Proof. If y* is optimal solution, need to show y*/z*  1
+ . By induction on i and recalling trimming
equation, can show:

 
n

i

n

nz

y

yz
y














2
1

*

*

1
2

























1

22
1

2

2e

To show p-time, bound length of Li. After
trimming, successive elements z, z’ must
satisfy z’/z > 1 + /2n size of Li is at most:

2
ln4

2
ln)2/1(2

2
)2/1ln(

ln
2log 2/1






















tn

tnn

n

t
tn

