Coping with NP-Completeness

Siddhartha Sen Questions: sssix@cs.princeton.edu

Some figures obtained from Introduction to Algorithms, 2nd ed., by CLRS

Coping with intractability

Many NPC problems are important in industry and must be solved

Methods for coping:

- Special cases
- Average case
- Approximation algorithms
- Intelligent brute force
- Heuristics

Special cases

2-CNF-SAT can be solved in p-time, but 3-CNF-SAT and higher are NPC Uses strongly connected components

VERTEX-COVER for bipartite graphs can be solved in p-time, but NPC in general

Uses maximum matching

Approximation algorithms

Returns near-optimal solution to a minimization/maximization problem

Algorithm has approximation ratio $\rho(n) \ge 1$ if cost *C* of solution is within factor $\rho(n)$ of cost *C** of optimal solution, for any input of size *n*: Maximization: $0 < C \le C^*$, ratio is C^*/C

Minimization: $0 < C^* \leq C$, ratio is C/C^*

Types of approximation algorithms

 ρ (*n*) may be:

- Constant, e.g. 2
- Growing function of input size *n*, e.g. log *n*
- Approximation scheme: $(1 + \varepsilon)$ for fixed $\varepsilon > 0$

Approximation scheme that runs in p-time in n, e.g. $O(n^{2/\epsilon})$, is a **polynomial-time approximation scheme** (PTAS)

If additionally p-time in $1/\epsilon$, e.g. $O((1/\epsilon)^2 n^3)$, it is a **fully** polynomial-time approximation scheme

Approximate VERTEX-COVER

VERTEX-COVER = { $\langle G, k \rangle$: graph G = (V, E) has vertex cover of size k}

Optimization version: Find vertex cover of G of minimum size

Idea: Find maximal matching greedily

APPROX-VC (G)

- *C* ← 0
- E' = E

while $E' \neq \emptyset$

Select from E' an arbitrary edge (u, v)

 $C \leftarrow C \cup \{u, v\}$

Remove from E' every edge incident to u or v return C

Theorem. APPROX-VC is a p-time 2-approximation algorithm for VERTEX-COVER

Proof. Running time is O(E). *C* is vertex cover since edge only removed if has endpoint in *C*. Show $|C| \le 2|C^*|$.

Let A be set of edges selected from E'

A is a (maximal) matching since no two edges share common endpoint $\Rightarrow |C^*| \ge |A|$

Each selected edge has neither endpoint in *C*, so |C| = 2|A| $\Rightarrow |A| \le |C^*| \le |C| = 2|A|$

Similar idea of lower-bounding optimal solution (when unknown) used in competitive analysis

Approximate TSP

TSP = { $\langle G, d, k \rangle$: G = (V, E) is a complete graph, d is cost function from $V \times V \rightarrow Z$, $k \in Z$, and G has tour of cost at most k}

Tour is cycle that visits each vertex exactly once

Optimization version: Find a minimum tour of GUse d(L) to denote total cost of edges in L

Assume triangle inequality: $d(x, y) + d(y, z) \ge d(x, z)$

Idea: Find a minimum spanning tree

APPROX-TSP (G)

Select arbitrary vertex $r \in V$ to be root

- Find a minimum spanning tree T from r in G
- Let C be list of vertices from preorder walk of T return C

Theorem. APPROX-TSP is a p-time 2-approximation algorithm for TSP

Proof. Runtime is time to find MST + preorder traversal, i.e. p-time. C is tour because includes all vertices (definition of MST). Show $d(C) \le 2d(C^*)$

Removing one edge from C^* gives spanning tree, so $d(T) \le d(C^*)$

Full walk of T traverses each edge twice; since C is contracted version of full walk, $d(C) \le 2d(T)$ By triangle inequality, can delete any vertex from full walk without increasing cost

1.5-approximation for TSP

Let O be set of odd-degree vertices in T; find minimum-cost perfect matching M over O O is connected by complete graph and |O| is even, so perfect matching exists

Find Eulerian tour on *T* U *M*, delete repeated vertices *T* U *M* is connected, has even-degree vertices only, so Eulerian tour exists

Triangle inequality lets us delete vertices

Why is this a 1.5 approximation? $d(T) \le d(C^*)$ as before

Show $d(M) \leq d(C^*)/2$, see below

 $\Rightarrow d(T \cup M) \leq 1.5d(C^*)$

Let C_0^* be optimal tour of O, let $e_1, e_2, ..., e_{2k}$ be its edge set (Eulerian path). Both $e_1, e_3, ..., e_{2k-1}$ and $e_2, e_4, ..., e_{2k}$ are perfect matchings, so one has cost $\leq d(C_0^*)/2 \leq d(C^*)/2$

PTAS for SUBSET-SUM

SUBSET-SUM = { $\langle S, t \rangle : S \subset \mathbb{N}, t \in \mathbb{N} \text{ and } \exists a$ subset $S' \subseteq S$ s.t. $t = \sum_{s \in S'} s$ }

Optimization version: Find subset whose sum is closest to *t* without exceeding *t*

Idea: Maintain list of sums of all subsets so far, but trim list APPROX-SUBSET-SUM(S, t, ε)

- $1 n \leftarrow |S|$
- 2 $L_0 \leftarrow \langle 0 \rangle$
- 3 for $i \leftarrow 1$ to n
- 4 **do** $L_i \leftarrow \mathsf{MERGE}(L_{i-1}, L_{i-1} + x_i)$
- $-5 \quad L_i \leftarrow \text{TRIM}(L_i, c/2n)$
 - 6 remove from L_i every element > t
 - 7 **return** largest value z^* in L_n

APPROX-SUBSET-SUM(S, t, ε)

- $1 n \leftarrow |S|$
- 2 $L_0 \leftarrow \langle 0 \rangle$
- 3 for $i \leftarrow 1$ to n
- 4 **do** $L_i \leftarrow \mathsf{MERGE}(L_{i-1}, L_{i-1} + x_i)$
- 5 $L_i \leftarrow \text{TRIM}(L_i, \varepsilon/2n)$
- 6 remove from L_i every element > t
- 7 **return** largest value z^* in L_n

TRIM removes every y in L_i for which $\exists z$ still in L_i s.t.:

$$\frac{y}{1 + \frac{\varepsilon}{2n}} \le z \le y$$

• $S = \{104, 102, 201, 101\}, t = 308, \varepsilon = 0.40, \varepsilon/2n = 0.05$

line 2:	L ₀	=	$\langle 0 \rangle$
line 4:	L ₁	=	〈0, 104〉
line 5:	L_1	=	〈0, 104〉
line 6:	L_1	=	〈0, 104〉
line 4:	L_2	=	〈0, 102, 104, 206〉
line 5:	L_2	=	〈0, 102, 206〉
line 6:	L_2	=	〈0, 102, 206〉
line 4:	L ₃	=	<0, 102, 201, 206, 303, 407>
line 5:	L ₃	=	<0, 102, 201, 303, 407>
line 6:	L ₃	=	〈0, 102, 201, 303〉
line 4:	L_4	=	<0, 101, 102, 201, 203, 302, 303, 404>
line 5:	L_4	=	〈0, 101, 201, 302, 404〉
line 6:	L_4	=	〈0, 101, 201, 302〉

Theorem. APPROX-SUBSET-SUM is a fully PTAS for SUBSET-SUM

Proof. If y^* is optimal solution, need to show $y^*/z^* \le 1 + \varepsilon$. By induction on *i* and recalling trimming equation, can show:

$$\frac{y}{\left(1+\frac{\varepsilon}{2n}\right)^{i}} \leq z \leq y$$
$$\Rightarrow \frac{y^{*}}{z^{*}} \leq \left(1+\frac{\varepsilon}{2n}\right)^{n}$$
$$\leq e^{\frac{\varepsilon}{2}}$$
$$\leq 1+\frac{\varepsilon}{2}+\left(\frac{\varepsilon}{2}\right)^{2}$$
$$\leq 1+\varepsilon$$

To show p-time, bound length of L_i . After trimming, successive elements z, z' must satisfy $z'/z > 1 + \varepsilon/2n \Longrightarrow$ size of L_i is at most:

$$\log_{1+\varepsilon/2n} t + 2 = \frac{\ln t}{\ln(1+\varepsilon/2n)} + 2$$
$$\leq \frac{2n(1+\varepsilon/2n)\ln t}{\varepsilon} + 2$$
$$\leq \frac{4n\ln t}{\varepsilon} + 2$$