
COS 423 Lecture 12

Disjoint Sets and Compressed TreesDisjoint Sets and Compressed Trees

© Robert E. Tarjan 2011

Three problems

Maintenance of disjoint sets under union

Finding nearest common ancestors in a rooted

treetree

Finding maxima on tree paths

Disjoint set union

Devise a data structure for an intermixed

sequence of the following kinds of operations:

make-set(x) (x in no set): create a set {x}, with

root x.root x.

find(x): (x in a set): return the root of the set

containing x.

link(x, y) (x ≠ y): combine the sets whose roots

are x and y into a single set; choose x or y as

the root of the new set.

Each element is in at most one set (sets are

disjoint).

The root of a set serves to identify it, can store

information about the set (size, name, etc.)

ApplicationsApplications

Global greedy MST algorithm

FORTRAN compilers: COMMON and

EQUIVALENCE statements

Incremental connected components

Percolation

Additional operations

unite(x, y) (find(x) ≠ find(y)): link(find(x), find(y))

contingent-unite(x, y):

if find(x) = find(y) then return false

else {link(find(x), find(y)); return true}

make-set, contingent-unite suffice to implement

global greedy MST algorithm

Variant: named sets

make-set(x, g): create a set {x}, named g, with

root x

find-name(x): return the name of the set

containing x

unite(x, y, g) (find(x) ≠ find(y)): combine the sets

containing x and y; name the new set g

Nearest common ancestors

Given a rooted tree T and a set Q of pairs of

vertices (x, y), find the nearest common

ancestor nca(x, y) of each pair.

nca(e,h) = a
a

nca(e,h) = a

nca(f, m) = c

nca(c, l) = c

j lk

ge

b

a

c d

m

ihf

n

Maxima on tree paths

Given a tree T with edge weights and a set Q of

vertex pairs (x, y), find the maximum weight of

an edge on T(x, y) for each pair. an edge on T(x, y) for each pair.

Disjoint set implementation

Represent each set by a rooted tree, whose

nodes are the elements of the set, with the

set root the tree root, and each node x having

a pointer to its parent a(x). Store information a pointer to its parent a(x). Store information

about set (such as name) in root.

The shape of the tree is arbitrary.

n = #links, m = #finds, assume n = O(m)

Set operations

make-set(x): make x the root of a new one-node

tree: a(x) ← null

find(x): follow parent pointers from x to the tree

root: if a(x) = null then return xroot: if a(x) = null then return x

else return find(a(x))

link(x, y): make y the parent of x (or x the parent

of y): a(x) ← y (or a(y) ← x)

A bad sequence of links can create a tree that is

a path of n nodes, on which each find can take

Ω(n) time, totaling Ω(mn) time for m finds

Goal: reduce the amortized time per find:

reduce node depths

Improve links: linking by size or by rank

Improve finds: compress the trees

Linking by size: maintain the number of nodes in

each tree (store in root). Link root of smaller

tree to larger. Break a tie arbitrarily.

make-set(x): {a(x) ← x; s(x) ← 1}make-set(x): {a(x) ← x; s(x) ← 1}

link(x, y):

if s(x) < s(y) then {a(x) ← y; s(y) ← s(y) + s(x)}

else {a(y) ← x; s(x) ← s(x) + s(y)}

Linking by rank: Maintain an integer rank for each
root, initially 0. Link root of smaller rank to root
of larger rank. If tie, increase rank of new root by
1.

make-set(x): {a(x) ← x; r(x) ← 0}make-set(x): {a(x) ← x; r(x) ← 0}

link(x, y): {if r(x) = r(y) then r(y) ← r(y) + 1;

if r(x) < r(y) then a(x) ← y else a(y) ← x}

r(x) = h(x), the height of x

Linking by size and linking by rank have similar

efficiency. Linking by rank needs fewer bits

(lglgn for rank vs. lgn for size) and less time:

use linking by rank

For any x, r(a(x)) > r(x)

Proof: Immediate.Proof: Immediate.

#nodes of rank ≥k ≤ n/2k

Proof: Only roots increase in rank. Production

of one root of rank k + 1 consumes two roots

of rank k.

→ r(x) ≤ lgn, find(x) takes O(lgn) time

Compression

compress(x) (a(a(x)) ≠ null): a(x) ← a(a(x))

Reduces depth of x, reducing find time for x and

increasing no find time; preserves setsincreasing no find time; preserves sets

Compression preserves r(a(x)) > r(x)

With compression, r(x) ≥ h(x), but not

necessarily equal

After a link that makes x a child of y, compress

each child of x (make the grandchildren of y

children of y). Each tree is flat: each node is a

root or a child of a root → find takes O(1)

Collapsing (fast find)

root or a child of a root → find takes O(1)

time. To implement: for each tree, maintain a

circular linked list of its nodes; during a link,

catenate lists

Collapsing: total time is O(n2 + m): each node

changes parent ≤n times

Collapsing with union by rank: total time is

O(nlgn + m): each node changes parent ≤lgn

times

But collapsing uses one extra pointer per node, But collapsing uses one extra pointer per node,

dominated by path compression (next) no

matter how links are done

Collapsing is too eager: better to do

compressions only on find paths

Path compression

During each find, make the root the parent of each

node on the find path, by doing compression

top-down along the find path

find(x): if a(x) = null then return x

else {if a(a(x)) ≠ null then a(x) ← find(a(x));

return a(x)}

Alternative implementations

Since parent of root is null, can use parent field

of root to store rank (or size), but violates

type, bad programming practice

Another use of parent of root: set equal to root Another use of parent of root: set equal to root

instead of null. Saves one test in find loop, but

does an unneeded assignment

make-set(x): {a(x)← x; r(x) ← 0}

find(x): {if a(a(x)) ≠ a(x) then a(x) ← a(a(x));

return a(x)}

Collapsing vs. path compression

For any sequence of operations and any linking

rule, path compression changes no more

parents than collapsing: path compression

dominates

Proof: Compare three scenarios: (i) no

compression, (ii) collapsing, (iii) path

compression. If in (iii) w becomes a parent of

v, then in (i) w becomes a proper ancestor of

v, and in (ii) w becomes a parent of v.

Depth-first traversal using named sets

Do a depth-first traversal of the tree T. For each

vertex x visited in preorder, maintain a set

Nearest common ancestors

vertex x visited in preorder, maintain a set

named x, containing x and all descendants of x

so far visited in postorder. If (x, y) is a query

pair with x visited second in preorder, nca(x, y)

is the name of the set containing y when x is

visited in preorder.

Implementation

C(x) = children of x, Q(x) = query pairs (x, y),

t = root of T

traverse(t) where traverse(x) =

{make-set(x, x);{make-set(x, x);

for (x, y) ∈ Q(x) do

if y in a set then nca(x, y) ← find-name(y)

for y ∈ C(x) do {traverse(y); unite(y, x, x)}}

Q = {(e, h), (f, m), (c, l)}

b

a

c d

j lk

ge

b c d

m

ihf

n

Q = {(e, h), (f, m), (c, l)}

b

a

c d

j lk

ge

b c d

m

ihf

n

Q = {(e, h), (f, m), (c, l)}

b

a

c d

j lk

ge

b c d

m

ihf

n

Q = {(e, h), (f, m), (c, l)}

b

a

c d

j lk

ge

b c d

m

ihf

n

Q = {(e, h), (f, m), (c, l)}

nca(c, l) = find-name(c) = c

b

a

c d

j lk

ge

b c d

m

ihf

n

Q = {(e, h), (f, m), (c, l)}

nca(f, m) = find-name(f) = c

b

a

c d

j lk

ge

b c d

m

ihf

n

Q = {(e, h), (f, m), (c, l)}

nca(e, h) = find-name(e) = a

b

a

c d

j lk

ge

b c d

m

ihf

n

Correctness of nca algorithm

Let (x, y) be a query pair, z = nca(x, y). Suppose x

is visited in preorder after y. All ancestors of y

that are proper descendants of z have been

visited in postorder by the time x is visited in visited in postorder by the time x is visited in

preorder, so they are all in the same set as z.

In particular, x is in the same set as z. When x

is visited in preorder, z has not yet been

visited in postorder, so find-name(y) = z.

Maxima on tree paths

Let T be a tree with edge weights. Build the
corresponding Borůvka tree B. Associate the
weight of each edge (v, p(v)) in B with child node
v: c(v) = c(v, p(v)). Build a compressed copy of B
during a depth-first traversal. Find path maxima during a depth-first traversal. Find path maxima
using compression steps that update node
weights:

c-compress(v) (a(a(v)) ≠ a(v)):

{c(v) ← max{c(v), c(a(v))}; a(v) ← a(a(v))}

Let (x, y) be a query pair and z = nca(x, y)

Then B(x, y) = B(x, z) & B(z, y) where “&” is
catenation of paths → max on B(x, y) =
max{max on B(x, z), max on B(z, y)}

max on B(x, y) is unaffected by compress(v)
unless z = a(v) before the compression

If path maxima are found in proper order, can
use path compression to help find them

Path compression with weight updates

c-find(x):

if a(x) = null then return x

else {if a(a(x)) ≠ null then

{c(x) ← max{c(x), c(a(x)); a(x) ← c-find(a(x))};

return a(x)}return a(x)}

Path max algorithm is similar to nca algorithm,

but does naïve linking and one or two finds

per query, computing path-max(x, y) during

postorder visit to nca(x, y)

C(x) = children of x in B

Q(x) = query pairs (x, y)

t = root of T

S(z) = query pairs (x, y) such that z = nca(x, y),

computed by the algorithm

traverse(t) where traverse(x) =

{make-set(x); S(x) ← { };

for (x, y) ∈ Q(x) do

if y in a set then add (x, y) to S(c-find(y));

for y ∈ C(x) do {traverse(y); a(y) ← x}

for (v, w) in S(x) do

{z ← c-find(v);

if w = x then path-max(v, w) ← c(v)

else path-max(v, w)← max{c(v), c(w)}}

Q = {(e, h), (f, m), (c, l)}

b

a

c d

32 10
36

j lk

ge

b c d

m

ihf

n

27

13 40

38 25

15

6

1830

10

Q = {(e, h), (f, m), (c, l)}

S(c) = {(c, l)}

b

a

c d

32 10
36

j lk

ge

b c d

m

ihf

n

27

13 40

38 25

15

6

1830

10

Q = {(e, h), (f, m), (c, l)}

S(c) = {(c, l), (f, m)}

b

a

c d

32 1036

j lk

ge

b c d

m

ihf

n

27

13 40

38 25

15

6

1830

10

Q = {(e, h), (f, m), (c, l)}

S(c) = {(c, l), (f, m)}

b

a

c d

32 1036

j lk

ge

b c d

m

ihf

n

27

13 40

38 25

15

6

1830

10

Q = {(e, h), (f, m), (c, l)}

S(c) = {(c, l), (f, m)}

S(a) = {(e, h)}

b

a

c d

32 1036

32

j lk

ge

b c d

m

ihf

n

13 40

38 25

15

6

1830

10

32

Q = {(e, h), (f, m), (c, l)}

S(c) = {(c, l), (f, m)}

S(a) = {(e, h)}

b

a

c d

32 1036

32

path-max(c, l) =30

j lk

ge

b c d

m

ihf

n

13 40

38 25

15

6

18
30

10

32

Q = {(e, h), (f, m), (c, l)}

S(c) = {(c, l), (f, m)}

S(a) = {(e, h)}

b

a

c d

32 10

32

36

path-max(c, l) =30, path-max(f, m) = 38

j lk

ge

b c d

m

ihf

n

13 40

38 25

15

6

18
30

10

32

Q = {(e, h), (f, m), (c, l)}

S(c) = {(c, l), (f, m)}

S(a) = {(e, h)}

b

a

c d

32 1036

32

path-max(c, l) =30, path-max(f, m) = 38,

path-max(e, h) = 36

j lk

ge

b c d

m

ihf

n

13 40

38 25

15
18

30

10

32

36

Correctness: If x is a vertex visited in preorder
but not yet in postorder, then x is the root of a
set containing all its descendants that have
been visited in postorder. When x is visited in
postorder, it is the root of a set containing all
its descendants. Let (x, y) be a query pair with
z = nca(x, y) and y visited first in preorder. Then
z = c-find(y) when x is visited in preorder, z = c-find(y) when x is visited in preorder,
because the nca algorithm is correct. Thus (x,
y) is added to S(z). If y ≠ z, after c-find(y) a(y) =
z and c(y) is the maximum weight of an edge
on B(y, z). When z is visited in postorder, after
c-find(x), a(x) = z and c(x) is the maximum
weight of an edge on B(z, x).

Balls in the air

How efficient is path compression, with or

without linking by rank?

How many comparisons needed to find path How many comparisons needed to find path

maxima?

