COS 423 Lecture 3
Binary Search Trees

©Robert E. Tarjan 2011

Dictionary: contains a set S of items, each with
associated information.
Operations:
Access(x): Determine if xisin S. If so,
return x’s information.
Insert(x):(x not in S) Insert x and its
information.
Delete(x):(x in S) Delete x and its

information.

Binary Search

Universe of items (or of access keys or index values)
is totally ordered, allowing binary comparison

Binary search: Maintain S in sorted order.
To find x in S:
If S empty, stop (failure).
If S non-empty, compare x to some item y in S.
f x =y, stop (success).
fx<y,searchin{zin S|z < y}.

fx>y,searchin{zin S| z > y}.

Implementation:
Binary Search Tree

Binary tree: Each node x has a left child left(x)
and a right child right(x), either or both of
which can be null. Node x is the parent of
both of its children: p(left(x)) = p(right(x)) = x.

A node is binary, unary, or a leaf if it has 0, 1, or
2 null children, respectively.

n = #(non-null) nodes

Binary Tree Parameters

Depth (path length from top):

d(root) =0

d(left(x)) = d(right(x)) = d(x) + 1
Height (path length to bottom):

h(null) = -1

h(x) = 1 + max{h(left(x)), h(right(x))}
Size (number of nodes in subtree):

s(null) =0

s(x) =1 + s(left(x)) + s(right(x))

Binary tree representation

At a minimum, each node contains pointers to
its left and right children.

Depending on the application, each node x
holds additional information, e.g. an item and
its associated data; a pointer to p(x); size(x).

Binary Search Tree:
Internal representation

ltems (key plus data) in nodes, one per node, in
symmetric order (in-order): items in left subtree
are less, items in right subtree are greater.

To find an item takes O(d + 1) time, where d = depth
of item’s node, or of null node reached by search
if item is not in tree.

Binary Search Tree
Internal representation

Binary Search Tree:
External representation

Actual items (keys plus data) are in external
(previously null) nodes.

Internal (previously non-null) nodes hold dummy
items (keys only) to support search: on equality,
branch left.

All items are in symmetric order.
All searches stop at an external node.

Twice as many nodes, but some simplifications,
notably in deletion

Binary Search Tree
External representation

Insertion (internal)

Search. Replace null by node with item.
Insert R

Insertion (external)

Search. Replace external node by internal node
with two external children.

Insert R.

Insert R

Deletion

Lazy: Find item. Remove its data but leave its
node (with key) so search is still possible.

Eager: Find item. Remove node. Repair tree.
Internal representation:

f leaf, delete node (replace by null).

f unary, replace by other child.

f binary?

Delete E
Delete X

If binary, swap with successor (or predecessor).
Now leaf or unary node; delete. To find
successor, follow left path from right child.

Delete M:
Swap with P;
delete.

External representation:
deletion simpler

Delete node and parent; replace parent by
sibling.

Delete D
Delete Z

Best case

All leaves have depths within 1: depth _IgnJ.
(/g: base-two logarithm)

() (Q)
(B) (G) (V) (S)
ONONOHONOEONEORO

Can achieve if tree is static (insertion order
chosen by implementation, no deletions)

Worst case

Natural but bad insertion order: sorted.
Insert A,B,C,D, E, F G,..
Depth of tree is n — 1.

Worst-case access cost is n.
= |ist!

