
COS 423 Lecture 3

Binary Search TreesBinary Search Trees

©Robert E. Tarjan 2011

Dictionary: contains a set S of items, each with

associated information.

Operations:

Access(x): Determine if x is in S. If so,

return x’s information.return x’s information.

Insert(x):(x not in S) Insert x and its

information.

Delete(x):(x in S) Delete x and its

information.

Binary Search

Universe of items (or of access keys or index values)

is totally ordered, allowing binary comparison

Binary search: Maintain S in sorted order.

To find x in S:

If S empty, stop (failure).

If S non-empty, compare x to some item y in S.

If x = y, stop (success).

If x < y, search in {z in S|z < y}.

If x > y, search in {z in S| z > y}.

Implementation:

Binary Search Tree

F

MD

X

P

B E

Binary tree: Each node x has a left child left(x)

and a right child right(x), either or both of

which can be null. Node x is the parent of

both of its children: p(left(x)) = p(right(x)) = x.

A node is binary, unary, or a leaf if it has 0, 1, or

2 null children, respectively.

n = #(non-null) nodes

Binary Tree Parameters

Depth (path length from top):

d(root) = 0

d(left(x)) = d(right(x)) = d(x) + 1

Height (path length to bottom):

h(null) = –1

h(x) = 1 + max{h(left(x)), h(right(x))}

Size (number of nodes in subtree):

s(null) = 0

s(x) = 1 + s(left(x)) + s(right(x))

Binary tree representation

At a minimum, each node contains pointers to

its left and right children.

Depending on the application, each node xDepending on the application, each node x

holds additional information, e.g. an item and

its associated data; a pointer to p(x); size(x).

Binary Search Tree:

Internal representation

Items (key plus data) in nodes, one per node, in

symmetric order (in-order): items in left subtree

are less, items in right subtree are greater.are less, items in right subtree are greater.

To find an item takes O(d + 1) time, where d = depth

of item’s node, or of null node reached by search

if item is not in tree.

Binary Search Tree

Internal representation

F

MD

X

P

B E

Binary Search Tree:

External representation

Actual items (keys plus data) are in external
(previously null) nodes.

Internal (previously non-null) nodes hold dummy
items (keys only) to support search: on equality, items (keys only) to support search: on equality,
branch left.

All items are in symmetric order.

All searches stop at an external node.

Twice as many nodes, but some simplifications,
notably in deletion

G

MD

Binary Search Tree

External representation

Y

P

B E

B D E G

P

M

Z

Y

Insertion (internal)

Search. Replace null by node with item.

Insert R
F

MD

X

P

B E

R

Insertion (external)
Search. Replace external node by internal node

with two external children.

Insert R. G

MD

Y

P

B E

B D E G

P

M

Z

Y

Insert R

G

MD

Y

P

B E

B D E G

P

M

Z

R

R Y

Deletion

Lazy: Find item. Remove its data but leave its

node (with key) so search is still possible.

Eager: Find item. Remove node. Repair tree.

Internal representation: Internal representation:

If leaf, delete node (replace by null).

If unary, replace by other child.

If binary?

Delete E

Delete X

F

MD

X

P

B E

R

F

MD

PB

R

If binary, swap with successor (or predecessor).

Now leaf or unary node; delete. To find

successor, follow left path from right child.

Delete M:

Swap with P;

F

MD
Swap with P;

delete. X

R

B E

P

Q

Y

G

F

PD

X

R

B E

Q

Y

G

External representation:

deletion simpler

Delete node and parent; replace parent by

sibling.

Delete D

Delete Z

G

MD
Delete Z

Y

P

B E

B D E G

P

M

Z

R

R Y

G

MD

PEB

E G P

M

R

R Y

Best case

All leaves have depths within 1: depth lgn.
(lg: base-two logarithm)

E Q

K

Can achieve if tree is static (insertion order

chosen by implementation, no deletions)

E

MB

F I L O RD TA

G S

Q

C JH P U

Worst case

Natural but bad insertion order: sorted.

Insert A, B, C, D, E, F, G,…

Depth of tree is n – 1.

Worst-case access cost is n.
A

B

= list!
B

C

D

E

F

G

