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Dictionary: contains a set S of items, each with   

associated information.

Operations:

Access(x): Determine if x is in S.  If so,

return x’s information.return x’s information.

Insert(x):(x not in S) Insert x and its 

information.

Delete(x):(x in S) Delete x and its 

information.



Binary Search

Universe of items (or of access keys or index values) 

is totally ordered, allowing binary comparison

Binary search: Maintain S in sorted order.

To find x in S: 

If S empty, stop (failure).

If S non-empty, compare x to some item y in S.  

If x = y, stop (success).  

If x < y, search in {z in S|z < y}.

If x > y, search in {z in S| z > y}.



Implementation:

Binary Search Tree
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Binary tree: Each node x has a left child left(x) 

and a right child right(x), either or both of 

which can be null.  Node x is the parent of 

both of its children: p(left(x)) = p(right(x)) = x.

A node is binary, unary, or a leaf if it has 0, 1, or 

2 null children, respectively.

n = #(non-null) nodes



Binary Tree Parameters

Depth (path length from top): 

d(root) = 0

d(left(x)) = d(right(x)) = d(x) + 1

Height (path length to bottom):

h(null) = –1

h(x) = 1 + max{h(left(x)), h(right(x))}

Size (number of nodes in subtree):

s(null) = 0

s(x) = 1 + s(left(x)) + s(right(x)) 



Binary tree representation

At a minimum, each node contains pointers to 

its left and right children.

Depending on the application, each node xDepending on the application, each node x

holds additional information, e.g. an item and 

its associated data; a pointer to p(x); size(x).



Binary Search Tree:

Internal representation

Items (key plus data) in nodes, one per node, in 

symmetric order (in-order): items in left subtree

are less, items in right subtree are greater.are less, items in right subtree are greater.

To find an item takes O(d + 1) time, where d = depth 

of item’s node, or of null node reached by search 

if item is not in tree.



Binary Search Tree

Internal representation
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Binary Search Tree:

External representation

Actual items (keys plus data) are in external 
(previously null) nodes.

Internal (previously non-null) nodes hold dummy 
items (keys only) to support search: on equality, items (keys only) to support search: on equality, 
branch left.

All items are in symmetric order.

All searches stop at an external node.

Twice as many nodes, but some simplifications, 
notably in deletion
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Insertion (internal)

Search.  Replace null by node with item.
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Insertion (external)
Search. Replace external node by internal node 

with two external children.
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Insert R
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Deletion 

Lazy: Find item.  Remove its data but leave its 

node (with key) so search is still possible.

Eager: Find item.  Remove node.  Repair tree.

Internal representation: Internal representation: 

If leaf, delete node (replace by null).

If unary, replace by other child.

If binary?
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If binary, swap with successor (or predecessor).  

Now leaf or unary node; delete.  To find 

successor, follow left path from right child.

Delete M: 

Swap with P;
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External representation: 

deletion simpler

Delete node and parent; replace parent by 

sibling.
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Best case

All leaves have depths within 1: depth lgn.
(lg: base-two logarithm)
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Worst case

Natural but bad insertion order: sorted.

Insert A, B, C, D, E, F, G,…

Depth of tree is n – 1.

Worst-case access cost is n.
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