
COS 423 Lecture 4

Balanced Binary Search TreesBalanced Binary Search Trees

©Robert E. Tarjan 2011

Balanced tree: depth is O(lgn)

Want update time as well as search time to be

O(lgn).

Can’t keep all leaves within 1 in depth. Need

more flexibility.more flexibility.

How to define balance?

How to restore balance after an insertion or

deletion?

Restructuring primitive:

Rotation

Preserves symmetric order (searchability).

Changes some depths.

Complete: can transform any tree into any other Complete: can transform any tree into any other

tree on the same set of items.

Local: takes O(1) time.

rotate at x rotate at y
y x

z z

right

left

x y

A B

C A

B C

Balance

Each node x has an integer rank r(x). r(null) = –1.

Rank is a proxy for height.

rank difference of a child x: Δr(x) = r(p(x)) – r(x)

Balance: restriction on rank differencesBalance: restriction on rank differences

Notation: i-child: rank difference is i.

node is i,j: rank differences of children are i, j

(order unimportant)

AVL trees (Adelson-Velsky and Landis 1962): nodes
are 1,1 or 1,2 (not original dfn., but equivalent)

→ h(x) = r(x)

Red-black trees (Bayer 1972 via Guibas and
Sedgewick 1978): nodes are 1,1 or 0,1 or 0,0;
leaves are 1,1; if x is a 0-child, p(x) is not a 0-child
(0-children red, other nodes black)(0-children red, other nodes black)

→ r(x) ≤ h(x) ≤ 2r(x) + 1

Left-leaning red-black trees (Bayer 1971 via
Andersson 1993): red-black and each 0-child is a
left child (no 0,0 nodes)

→ r(x) ≤ h(x) ≤ 2r(x) + 1

Rank-balanced trees (Sen and Tarjan 2009):

Δr’s are 1 or 2; leaves are 1,1

→ r(x)/2 ≤ h(x) ≤ r(x)

Relaxed AVL (ravl) trees (Sen and Tarjan 2010):

Δr’s are positiveΔr’s are positive

→ h(x) ≤ r(x)

Many others, notably weight-balanced trees:

balance given by size ratio not rank difference.

AVL Trees

Each node is 1,1 or 1,2

→ r(x) = h(x), r(leaf) = 0, r(unary node) = 1

Rank differences stored, not ranks: one bit per
node, indicating whether Δr is 1 or 2. r’s are
computable from Δr’s. computable from Δr’s.

(vs original representation: store one of three
states in each node: both subtrees have equal
height, left subtree is higher by 1, or right
subtree is higher by 1)

An AVL Tree. Numbers left of nodes are r’s (not
stored). Numbers right of nodes are Δr’s
(stored). Null nodes have r = –1 and Δr = 1 or
2 (r and Δr shown for two null nodes)

F

PD2 32

4

1P

X

R

D

C E

Q

Y

H

A0

1 0

0

1 0

21

2 3

MG 001

1

2 1

2 2

1

1

21 1

1

–1 1

2
–1

AVL-tree height bound

Fibonacci numbers

F0 = 0, F1 = 1, Fk = Fk – 1 + Fk – 2 for k > 1

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,…

Golden ratio φ = (1 + √5)/2

φ2 = φ + 1 φk ≤ Fk + 2

For any node x, s(x) + 1 ≥ Fr(x) + 3

Proof by induction on r(x):

s(null) + 1 = 0 + 1 = F2

s(leaf) + 1 = 1 + 1 ≥ F3

r(x) > 0: s(x) + 1 = s(left(x)) + 1 + s(right(x)) + 1 ≥r(x) > 0: s(x) + 1 = s(left(x)) + 1 + s(right(x)) + 1 ≥

Fr(x) + 2 + Fr(x) + 1 = Fr(x) + 3 since x is 1,1 or 1,2

n + 1 ≥ Fh + 3 ≥ φh + 1 →

h ≤ lgφ(n + 1) – 1 ≤ lgφn < 1.44043lgn

Balanced tree insertion

Bottom-up rebalancing: after an insert, restore
balance by walking back up the search path,
doing rank changes and rotations as needed.

Top-down rebalancing: restore balance top-Top-down rebalancing: restore balance top-
down as search proceeds. Only works for
certain definitions of balance (red-black, rank-
balanced): needs extra flexibility.

AVL trees: bottom-up rebalancing after an
insertion takes ≤2 rotations.

AVL-tree insertion

Give new node x a rank of 0. Δr(x) = 0 (bad) or 1.

To restore balance:

while x is a 0-child whose sibling is a 1-child do

{x ←p(x); r(x) ← r(x) + 1}{x ←p(x); r(x) ← r(x) + 1}

(Increase of r(x) changes x from 0,1 to 1,2 but

may make x a 0-child.)

if x is a 0-child whose sibling is not a 1-child then

apply the appropriate one of the following two

transformations (one or two rotations and

some rank changes):

y

x

w

D

C

BA

x

yw

A B C D

0
2

2
1

1 1

1 1

single

numbers are Δr’s

also two mirror-image cases

rotate

y

x

w

w

yx

A

B C

A B C D

D
0

2

1
2 1 1

1 1

double

also two mirror-image cases

rotate

Insert A numbers are Δr’s

G

P

X

E

C F K1 2 12

2 1

R

Q

YB

1

1

1 2MH 11

A0

21

11

G

P

X

E

C F K1 2 12

2 1

R

Q

YB

2

1

1 2MH 11

A1

20

11

G

P

X

E

B F K1 2 12

2 1

R

Q

YA

1

1

1 2MH 11
C11

1 1 1

Insert D

G

P

X

E

B F K1 2 12

2 1

R

Q

YA

1

1

1 2MH 11
C11

1 1

1

D

1

0

G

P

X

E

B F K0 2 12

2 1

R

Q

YA

1

1 2MH 11
C12

2

1

D

1

1

G

P

X

C

B
E K1 12

2 1

2

1

R

Q

YA

1

1 2MH 11D11
2

F

AVL-tree insertion: ≤2 rotations per insertion,

worst-case.

What about promotions(rank increases)?

O(lgn) worst-case but O(1) amortized:

Φ = #1,1-nodes + #0,1-nodes

Creation of a new node increases Φ by 1; each Creation of a new node increases Φ by 1; each

promotion decreases Φ by 1; last step

increases Φ by at most 2: ≤3 promotions per

insertion, amortized.

1,1-nodes are like 1 bits in binary addition:

a 1 bit can cause a carry but becomes a 0;

a 1,1-node can be promoted but becomes a

1,2-node: 1,1 → 0,1 → 1,2

Giving potential to bad nodes (0,1) as

well as good ones clarifies the analysis.

Balanced tree deletion

Like insertion: rebalance either bottom-up after

node deletion, or top-down during search (not

always possible).

Generally more cases than insertion:Generally more cases than insertion:

AVL trees: 8 cases (vs 6 for insert),

Ω(lgn) rotations (vs ≤2 for insert).

Rank-balanced trees

All nodes are 1,1, 1,2, or non-leaf 2,2

For any node x, s(x) + 1 ≥ 2r(x)/2 + 1

Proof by induction on r(x):

s(leaf) + 1 = 2; s(unary) + 1 = 3 > 23/2s(leaf) + 1 = 2; s(unary) + 1 = 3 > 23/2

if x binary, s(x) + 1 = s(left(x)) + 1 + s(right(x)) + 1

≥ 2r(x)/2 + 2r(x)/2 = 2r(x)/2 + 1 since

x is 1,1 or 1,2 or 2,2 (2,2 worst)

n + 1 ≥ 2h/2 + 1 →

h ≤ 2lg(n + 1) – 1 ≤ 2lgn (vs. 1.44043lgn for AVL
trees)

Insertion: same bottom-up rebalancing

algorithm as AVL trees: no 2,2’s created, but

one can be destroyed.

Deletion of x (bottom-up): If x binary, swap with Deletion of x (bottom-up): If x binary, swap with

successor. Let y = p(x) (unless x is root). If x

now leaf, delete x and reduce r(y) by one

(demote y); otherwise (x unary), replace x by

its child. Now y may be a 3-child (Δr too big).

To restore balance:

while y is a 3-child with sibling z a 2-child or 2,2

do { if z not a 2-child then r(z) ← r(z) – 1;

y ←p(y); r(y) ← r(y) – 1}

(one or two demotions; new y may be a 3-

child)child)

if y is a 3-child with sibling not a 2-child and not

2,2 then apply the appropriate one of the

following two transformations (one or two

rotations and some rank changes):

v

z

u

D

C

BA

z

vu

A B C D

1
3

1

2 1

2

single

numbers are Δr’s

also two mirror-image cases

rotatey

y

v

z

u

w

yx

A

B C

A B C D

D
1

3

1
2 2 2

1 1

double

also two mirror-image cases

rotate

y

y

4 cases for deletion including 2 non-terminating

demotion cases (rank decreases) vs. 3 for

insertion (××××2 for mirror-imagecases = 8 vs. 6

for insertion)

At most 2 rotations, worst-case

Number of promotions/demotions per Number of promotions/demotions per

insertion/deletion is O(1) amortized:

Φ = #1,1 + 2××××#2,2

Deletion without rebalancing:

a better alternative?

Simplifies deletion, but what happens to

balance?

Critical idea: maintain and store ranks, not rank Critical idea: maintain and store ranks, not rank

differences.

Storytime…

Relaxed AVL (ravl) trees

ravel: to clarify by separation into simpler pieces.

All rank differences are positive. Store with each
node its rank, not its rank difference.node its rank, not its rank difference.

Ranks are defined by the operation sequence; any

tree is possible!

Balanced?

Deletion: standard unbalanced deletion; node ranks
do not change, but rank differences can.

Insertion: just like AVL-tree insertion:

Give new node x a rank of 0. Δr(x) = 0 (bad) or 1.

To restore balance:

while x is a 0-child whose sibling is a 1-child do

{x ←p(x); r(x) ← r(x) + 1}{x ←p(x); r(x) ← r(x) + 1}

(Increase of r(x) changes x from 0,1 to 1,2 but

may make x a 0-child.)

if x is a 0-child whose sibling is not a 1-child then

apply the appropriate one of the following two

transformations:

y

x

w

D

C

BA

x

yw

A B C D

0
≥2

2
1

1 ≥1

1 1

single

also two mirror-image cases

rotate
–1

blue = Δr

black = changes in r

y

x

w

w

yx

A

B C

A B C D

D
0 ≥2

1
2 1 ≥1

1 1

double

rotate –1

+1

A ravl tree

numbers are ranks

lglgn + O(1) bits per node

F

PD 3

4

2 P

X

R

D

C E

Q

Y

H

A0

1 2

3

MG

0

0 0

2

0

01

1

Delete D: swap with E, delete

F

PD 3

4

2 P

X

R

D

C E

Q

Y

H

A0

1 2

3

MG

0

0 0

2

0

01

1

Delete D: swap with E, delete.

Delete E: replace by child. Child’s rank does not

change, but its rank difference increases.

F

PE 3

4

2 P

X

R

E

C

Q

Y

H

A0

1 2

3

MG0 0

2

0

01

1

Delete E: replace by child. Child’s rank does not

change, but rank difference increases.

F

P3

4

P

X

R

C

Q

Y

H

A0

1 2

3

MG0 0

0

01

1

Insertion bounds for AVL trees hold for ravl

trees: ≤2 rotations per insertion worst-case,

≤3 promotions per insertion amortized, even

with intermixed deletions.

Height?Height?

Not logarithmic in n, current tree size: tree can

evolve to have arbitrary structure!

But only slowly.

height ≤ lgφm, where m = #insertions

Proof: Use potential function. If r(x) = k,

Φ(x) = Fk + 2 if 0,1

Fk + 1 if 0,j for j > 1k + 1

Fk if 1,1

0 otherwise

Φ(T) = sum of node potentials

Deletion does not increase Φ.

Insertion creates a 1,1-node of rank 0 (Φ = 0),

and changes the parent from 1,1 to 0,1 or

2,1 to 1,1 (ΔΦ = 1) or has no effect on Φ. 2,1 to 1,1 (ΔΦ = 1) or has no effect on Φ.

Promotions and rotation cases cannot

increase Φ (you check). Promotion of root of

rank k converts a 1,1-node of rank k to a 1,2-

node of rank k + 1, decreasing Φ by Fk.

If root has rank k, decrease in Φ due to root

promotions is at least

Σ{Fi + 2|0 ≤ i < k} = Fk + 3 – 1.

Φ increases by at most 1 per insertion,Φ increases by at most 1 per insertion,

always ≥ 0, drops by Fk + 3 – 1 ≥ Fk + 2 > φk

as a result of root promotions → m > φk.

In ravl trees, balancing steps are

exponentially infrequent in rank.

Proof: truncate Φ (0 above rank k).

Also true of rank-balanced trees.

Ravl trees with O(lgn) height bound?

Rebuild occasionally, either all at once or

incrementally: e.g. run a background tree

traversal that deletes successive items and

inserts them into a new tree.

Sorted insertions into an AVL tree, or a ravl tree,

produce a tree with height lgn + O(1).

