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Balanced tree: depth is O(lgn)

Want update time as well as search time to be 

O(lgn).

Can’t keep all leaves within 1 in depth.  Need 

more flexibility.more flexibility.

How to define balance?

How to restore balance after an insertion or 

deletion?



Restructuring primitive:

Rotation

Preserves symmetric order (searchability).

Changes some depths.

Complete: can transform any tree into any other Complete: can transform any tree into any other 

tree on the same set of items.

Local: takes O(1) time.
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Balance

Each node x has an integer rank r(x). r(null) = –1.

Rank is a proxy for height.

rank difference of a child x: Δr(x) = r(p(x)) – r(x)

Balance: restriction on rank differencesBalance: restriction on rank differences

Notation: i-child: rank difference is i.

node is i,j: rank differences of children are i, j

(order unimportant)



AVL trees (Adelson-Velsky and Landis 1962): nodes 
are 1,1 or 1,2 (not original dfn., but equivalent )

→ h(x) = r(x)

Red-black trees (Bayer 1972 via Guibas and 
Sedgewick 1978): nodes are 1,1 or 0,1 or 0,0; 
leaves are 1,1; if x is a 0-child, p(x) is not a 0-child 
(0-children red, other nodes black)(0-children red, other nodes black)

→ r(x) ≤ h(x) ≤ 2r(x) + 1 

Left-leaning red-black trees (Bayer 1971 via 
Andersson 1993): red-black and each 0-child is a 
left child (no 0,0 nodes)

→ r(x) ≤ h(x) ≤ 2r(x) + 1 



Rank-balanced trees (Sen and Tarjan 2009):

Δr’s are 1 or 2; leaves are 1,1

→ r(x)/2 ≤ h(x) ≤ r(x)

Relaxed AVL (ravl) trees (Sen and Tarjan 2010): 

Δr’s are positiveΔr’s are positive

→ h(x) ≤ r(x)

Many others, notably weight-balanced trees: 

balance given by size ratio not rank difference.



AVL Trees

Each node is 1,1 or 1,2

→ r(x) = h(x), r(leaf) = 0, r(unary node) = 1 

Rank differences stored, not ranks: one bit per 
node, indicating whether Δr is 1 or 2.  r’s are 
computable from Δr’s.  computable from Δr’s.  

(vs original representation: store one of three 
states in each node: both subtrees have equal 
height, left subtree is higher by 1, or right 
subtree is higher by 1)   



An AVL Tree.  Numbers left of nodes are r’s (not 
stored).  Numbers right of nodes are Δr’s
(stored).  Null nodes have r = –1 and Δr = 1 or 
2 (r and Δr shown for two null nodes) 
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AVL-tree height bound

Fibonacci numbers

F0 = 0, F1 = 1, Fk = Fk – 1 + Fk – 2 for k > 1

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,…

Golden ratio φ = (1 + √5)/2 

φ2 = φ + 1               φk ≤ Fk + 2



For any node x, s(x) + 1 ≥ Fr(x) + 3 

Proof by induction on r(x):

s(null) + 1 = 0 + 1 = F2

s(leaf) + 1 = 1 + 1 ≥ F3

r(x) > 0: s(x) + 1 = s(left(x)) + 1 + s(right(x)) + 1 ≥r(x) > 0: s(x) + 1 = s(left(x)) + 1 + s(right(x)) + 1 ≥

Fr(x) + 2 + Fr(x) + 1 = Fr(x) + 3 since x is 1,1 or 1,2

n + 1 ≥ Fh + 3 ≥ φh + 1 →

h ≤ lgφ(n + 1) – 1 ≤ lgφn < 1.44043lgn



Balanced tree insertion

Bottom-up rebalancing: after an insert, restore 
balance by walking back up the search path, 
doing rank changes and rotations as needed.

Top-down rebalancing: restore balance top-Top-down rebalancing: restore balance top-
down as search proceeds.  Only works for 
certain definitions of balance (red-black, rank-
balanced): needs extra flexibility.

AVL trees: bottom-up rebalancing after an 
insertion takes ≤2 rotations.



AVL-tree insertion

Give new node x a rank of 0.  Δr(x) = 0 (bad) or 1.

To restore balance:

while x is a 0-child whose sibling is a 1-child do

{x ←p(x); r(x) ← r(x) + 1}{x ←p(x); r(x) ← r(x) + 1}

(Increase of r(x) changes x from 0,1 to 1,2 but  

may make x a 0-child.)

if x is a 0-child whose sibling is not a 1-child then

apply the appropriate one of the following two 

transformations (one or two rotations and   

some rank changes):
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Insert A                                           numbers are Δr’s
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Insert D
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AVL-tree insertion: ≤2 rotations per insertion, 

worst-case.

What about promotions(rank increases)?

O(lgn) worst-case but O(1) amortized:

Φ = #1,1-nodes + #0,1-nodes

Creation of a new node increases Φ by 1; each Creation of a new node increases Φ by 1; each 

promotion decreases Φ by 1; last step 

increases Φ by at most 2: ≤3 promotions per 

insertion, amortized.  



1,1-nodes are like 1 bits in binary addition: 

a 1 bit can cause a carry but becomes a 0;

a 1,1-node can be promoted but becomes a 

1,2-node: 1,1 → 0,1 → 1,2

Giving potential to bad nodes (0,1) as  

well as good ones clarifies the analysis.



Balanced tree deletion

Like insertion: rebalance either bottom-up after 

node deletion, or top-down during search (not 

always possible).

Generally more cases than insertion:Generally more cases than insertion:

AVL trees: 8 cases (vs 6 for insert),

Ω(lgn) rotations (vs ≤2 for insert). 



Rank-balanced trees

All nodes are 1,1, 1,2, or non-leaf 2,2

For any node x, s(x) + 1 ≥ 2r(x)/2 + 1

Proof by induction on r(x):

s(leaf) + 1 = 2; s(unary) + 1 = 3 > 23/2s(leaf) + 1 = 2; s(unary) + 1 = 3 > 23/2

if x binary, s(x) + 1 = s(left(x)) + 1 + s(right(x)) + 1

≥ 2r(x)/2 + 2r(x)/2 = 2r(x)/2 + 1 since

x is 1,1 or 1,2 or 2,2 (2,2 worst)      

n + 1 ≥ 2h/2 + 1 →

h ≤ 2lg(n + 1) – 1 ≤ 2lgn (vs. 1.44043lgn for AVL 
trees)



Insertion: same bottom-up rebalancing 

algorithm as AVL trees: no 2,2’s created, but 

one can be destroyed.

Deletion of x (bottom-up): If x binary, swap with Deletion of x (bottom-up): If x binary, swap with 

successor.  Let y = p(x) (unless x is root).  If x 

now leaf, delete x and reduce r(y) by one 

(demote y); otherwise (x unary), replace x by 

its child.  Now y may be a 3-child (Δr too big). 



To restore balance:

while y is a 3-child with sibling z a 2-child or 2,2  

do { if z not a 2-child then r(z) ← r(z) – 1;

y ←p(y); r(y) ← r(y) – 1}

(one or two demotions; new y may be a 3-

child)child)

if y is a 3-child with sibling not a 2-child and not 

2,2 then apply the appropriate one of the 

following two transformations (one or two 

rotations and some rank changes):
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4 cases for deletion including 2 non-terminating 

demotion cases (rank decreases) vs. 3 for 

insertion (××××2 for mirror-imagecases = 8 vs. 6 

for insertion)

At most 2 rotations, worst-case

Number of promotions/demotions per Number of promotions/demotions per 

insertion/deletion is O(1) amortized:

Φ = #1,1 + 2××××#2,2



Deletion without rebalancing:

a better alternative? 

Simplifies deletion, but what happens to 

balance?

Critical idea: maintain and store ranks, not rank Critical idea: maintain and store ranks, not rank 

differences.

Storytime…



Relaxed AVL (ravl) trees

ravel: to clarify by separation into simpler pieces.

All rank differences are positive.  Store with each 
node its rank, not its rank difference.node its rank, not its rank difference.

Ranks are defined by the operation sequence; any 

tree is possible!

Balanced?



Deletion: standard unbalanced deletion; node ranks 
do not change, but rank differences can.

Insertion: just like AVL-tree insertion:

Give new node x a rank of 0.  Δr(x) = 0 (bad) or 1.

To restore balance:

while x is a 0-child whose sibling is a 1-child do

{x ←p(x); r(x) ← r(x) + 1}{x ←p(x); r(x) ← r(x) + 1}

(Increase of r(x) changes x from 0,1 to 1,2 but  

may make x a 0-child.)

if x is a 0-child whose sibling is not a 1-child then

apply the appropriate one of the following two 

transformations:



y

x

w

D

C

BA

x

yw

A B C D

0
≥2

2
1

1 ≥1

1 1

single

also two mirror-image cases

rotate
–1 

blue = Δr

black = changes in r

y

x

w

w

yx

A

B C

A B C D

D
0 ≥2

1
2 1 ≥1

1 1

double

rotate –1 

+1



A ravl tree

numbers are ranks

lglgn + O(1) bits per node 
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Delete D: swap with E, delete
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Delete D: swap with E, delete.

Delete E: replace by child.  Child’s rank does not 

change, but its rank difference increases.
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Delete E: replace by child.  Child’s rank does not 

change, but rank difference increases.
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Insertion bounds for AVL trees hold for ravl

trees: ≤2 rotations per insertion worst-case,

≤3 promotions per insertion amortized, even 

with intermixed deletions.

Height?Height?

Not logarithmic in n, current tree size: tree can 

evolve to have arbitrary structure!

But only slowly.



height ≤ lgφm, where m = #insertions 

Proof: Use potential function.  If r(x) = k, 

Φ(x) = Fk + 2 if 0,1

Fk + 1 if 0,j for j > 1k + 1

Fk if 1,1

0 otherwise

Φ(T) = sum of node potentials 



Deletion does not increase Φ.

Insertion creates a 1,1-node of rank 0 (Φ = 0), 

and changes the parent from 1,1 to 0,1 or

2,1 to 1,1 (ΔΦ = 1) or has no effect on Φ.  2,1 to 1,1 (ΔΦ = 1) or has no effect on Φ.  

Promotions and rotation cases cannot 

increase Φ (you check).  Promotion of root of 

rank k converts a 1,1-node of rank k to a 1,2-

node of rank k + 1, decreasing Φ by Fk.



If root has rank k, decrease in Φ due to root 

promotions is at least

Σ{Fi + 2|0 ≤ i < k} = Fk + 3 – 1. 

Φ increases by at most 1 per insertion,Φ increases by at most 1 per insertion,

always ≥ 0, drops by Fk + 3 – 1 ≥ Fk + 2 > φk

as a result of root promotions → m > φk.



In ravl trees, balancing steps are  

exponentially infrequent in rank.

Proof: truncate Φ (0 above rank k).

Also true of rank-balanced trees.



Ravl trees with O(lgn) height bound?

Rebuild occasionally, either all at once or 

incrementally: e.g. run a background tree 

traversal that deletes successive items and 

inserts them into a new tree.

Sorted insertions into an AVL tree, or a ravl tree, 

produce a tree with height lgn + O(1).


