Balanced tree: depth is $O(\lg n)$

Want update time as well as search time to be $O(\lg n)$.

Can’t keep all leaves within 1 in depth. Need more flexibility.

How to define balance?

How to restore balance after an insertion or deletion?
Restructuring primitive: \textit{Rotation}

Preserves symmetric order (searchability).
Changes some depths.
Complete: can transform any tree into any other tree on the same set of items.
Local: takes $O(1)$ time.
rotate at x

rotate at y

right

left
Balance

Each node \(x \) has an integer rank \(r(x) \). \(r(\text{null}) = -1 \).

Rank is a proxy for height.

rank difference of a child \(x \): \(\Delta r(x) = r(p(x)) - r(x) \)

Balance: restriction on rank differences

Notation: *i-child*: rank difference is \(i \).

node is i,j: rank differences of children are \(i, j \) (order unimportant)
AVL trees (Adelson-Velsky and Landis 1962): nodes are 1,1 or 1,2 (*not original dfn., but equivalent*)

\[h(x) = r(x) \]

Red-black trees (Bayer 1972 via Guibas and Sedgewick 1978): nodes are 1,1 or 0,1 or 0,0; leaves are 1,1; if \(x \) is a 0-child, \(p(x) \) is not a 0-child (0-children *red*, other nodes *black*)

\[r(x) \leq h(x) \leq 2r(x) + 1 \]

Left-leaning red-black trees (Bayer 1971 via Andersson 1993): red-black and each 0-child is a left child (no 0,0 nodes)

\[r(x) \leq h(x) \leq 2r(x) + 1 \]
Rank-balanced trees (Sen and Tarjan 2009):
Δr’s are 1 or 2; leaves are 1,1
→ \(r(x)/2 \leq h(x) \leq r(x) \)

Relaxed AVL (ravl) trees (Sen and Tarjan 2010):
Δr’s are positive
→ \(h(x) \leq r(x) \)

Many others, notably weight-balanced trees:
balance given by size ratio not rank difference.
AVL Trees

Each node is 1,1 or 1,2

→ $r(x) = h(x)$, $r(\text{leaf}) = 0$, $r(\text{unary node}) = 1$

Rank differences stored, not ranks: one bit per node, indicating whether Δr is 1 or 2. r’s are computable from Δr’s.

(vs original representation: store one of three states in each node: both subtrees have equal height, left subtree is higher by 1, or right subtree is higher by 1)
An AVL Tree. Numbers left of nodes are r’s (not stored). Numbers right of nodes are Δr’s (stored). Null nodes have $r = -1$ and $\Delta r = 1$ or 2 (r and Δr shown for two null nodes)
AVL-tree height bound

Fibonacci numbers

\[F_0 = 0, \ F_1 = 1, \ F_k = F_{k-1} + F_{k-2} \text{ for } k > 1 \]
\[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \ldots \]

Golden ratio \(\varphi = (1 + \sqrt{5})/2 \)

\[\varphi^2 = \varphi + 1 \]
\[\varphi^k \leq F_{k+2} \]
For any node \(x \), \(s(x) + 1 \geq F_{r(x)} + 3 \)

Proof by induction on \(r(x) \):

- \(s(\text{null}) + 1 = 0 + 1 = F_2 \)
- \(s(\text{leaf}) + 1 = 1 + 1 \geq F_3 \)

\(r(x) > 0: s(x) + 1 = s(\text{left}(x)) + 1 + s(\text{right}(x)) + 1 \geq F_{r(x)} + 2 + F_{r(x)} + 1 = F_{r(x)} + 3 \) since \(x \) is 1,1 or 1,2

\[
n + 1 \geq F_{h+3} \geq \varphi^{h+1} \rightarrow h \leq \log_\varphi(n + 1) - 1 \leq \log_\varphi n < 1.44043 \log n
\]
Balanced tree insertion

Bottom-up rebalancing: after an insert, restore balance by walking back up the search path, doing rank changes and rotations as needed.

Top-down rebalancing: restore balance top-down as search proceeds. Only works for certain definitions of balance (red-black, rank-balanced): needs extra flexibility.

AVL trees: bottom-up rebalancing after an insertion takes ≤ 2 rotations.
AVL-tree insertion

Give new node x a rank of 0. $\Delta r(x) = 0$ (bad) or 1.

To restore balance:

while x is a 0-child whose sibling is a 1-child **do**

$x \leftarrow p(x); \ r(x) \leftarrow r(x) + 1$

(Increase of $r(x)$ changes x from 0,1 to 1,2 but may make x a 0-child.)

if x is a 0-child whose sibling is not a 1-child **then**

apply the appropriate one of the following two transformations (one or two rotations and some rank changes):
numbers are Δr's
also two mirror-image cases
Insert A

numbers are Δr’s
Insert D
AVL-tree insertion: ≤ 2 rotations per insertion, worst-case.

What about promotions (rank increases)? $O(\lg n)$ worst-case but $O(1)$ amortized:

$\Phi = \#1,1$-nodes + $\#0,1$-nodes

Creation of a new node increases Φ by 1; each promotion decreases Φ by 1; last step increases Φ by at most 2: ≤ 3 promotions per insertion, amortized.
1,1-nodes are like 1 bits in binary addition:
 a 1 bit can cause a carry but becomes a 0;
 a 1,1-node can be promoted but becomes a 1,2-node: 1,1 \rightarrow 0,1 \rightarrow 1,2

Giving potential to bad nodes (0,1) as well as good ones clarifies the analysis.
Balanced tree deletion

Like insertion: rebalance either bottom-up after node deletion, or top-down during search (not always possible).

Generally more cases than insertion:
AVL trees: 8 cases (vs 6 for insert),
\[\Omega(\lg n)\] rotations (vs \(\leq 2\) for insert).
Rank-balanced trees

All nodes are 1,1, 1,2, or non-leaf 2,2

For any node \(x \), \(s(x) + 1 \geq 2^{r(x)/2} + 1 \)

Proof by induction on \(r(x) \):

- \(s(\text{leaf}) + 1 = 2; s(\text{unary}) + 1 = 3 > 2^{3/2} \)
- if \(x \) binary, \(s(x) + 1 = s(\text{left}(x)) + 1 + s(\text{right}(x)) + 1 \)
 \[\geq 2^{r(x)/2} + 2^{r(x)/2} = 2^{r(x)/2} + 1 \] since
 - \(x \) is 1,1 or 1,2 or 2,2 (2,2 worst)

\[n + 1 \geq 2^{h/2} + 1 \rightarrow \]

\[h \leq 2\lg(n + 1) - 1 \leq 2\lg n \] (vs. 1.44043\lg n for AVL trees)
Insertion: same bottom-up rebalancing algorithm as AVL trees: no 2,2’s created, but one can be destroyed.

Deletion of x (bottom-up): If x binary, swap with successor. Let $y = \rho(x)$ (unless x is root). If x now leaf, delete x and reduce $r(y)$ by one (*demote* y); otherwise (x unary), replace x by its child. Now y may be a 3-child (Δr too big).
To restore balance:

while *y* is a 3-child with sibling *z* a 2-child or 2,2

do { if *z* not a 2-child then *r(z)* ← *r(z) − 1*;

\[
y ← p(y);
\]

\[
r(y) ← r(y) − 1
\]

(one or two demotions; new *y* may be a 3-child)

if *y* is a 3-child with sibling not a 2-child and not 2,2 **then** apply the appropriate one of the following two transformations (one or two rotations and some rank changes):
single

rotate

numbers are Δr's

also two mirror-image cases

double

rotate
4 cases for deletion including 2 non-terminating
demotion cases (rank decreases) vs. 3 for
insertion (×2 for mirror-image cases = 8 vs. 6
for insertion)

At most 2 rotations, worst-case

Number of promotions/demotions per
insertion/deletion is $O(1)$ amortized:

$$\Phi = #1,1 + 2 \times #2,2$$
Deletion without rebalancing: a better alternative?

Simplifies deletion, but what happens to balance?

Critical idea: maintain and store ranks, **not** rank differences.

Storytime...
Relaxed AVL (ravl) trees

ravel: to clarify by separation into simpler pieces.

All rank differences are positive. Store with each node its rank, **not** its rank difference.

Ranks are defined by the operation sequence; *any* tree is possible!

Balanced?
Deletion: standard unbalanced deletion; node ranks do not change, but rank differences can.

Insertion: just like AVL-tree insertion:
Give new node x a rank of 0. \(\Delta r(x) = 0 \) (bad) or 1.
To restore balance:

```plaintext
while $x$ is a 0-child whose sibling is a 1-child do
  \{ $x \leftarrow p(x); \ r(x) \leftarrow r(x) + 1$ \}
  (Increase of $r(x)$ changes $x$ from 0,1 to 1,2 but may make $x$ a 0-child.)
if $x$ is a 0-child whose sibling is not a 1-child then
  apply the appropriate one of the following two transformations:
```

blue = Δr
black = changes in r

also two mirror-image cases
A ravl tree
numbers are ranks
\(\lg \lg n + O(1) \) bits per node
Delete D: swap with E, delete
Delete D: swap with E, delete.
Delete E: replace by child. Child’s rank does not change, but its rank difference increases.
Delete E: replace by child. Child’s rank does not change, but rank difference increases.
Insertion bounds for AVL trees hold for ravl trees: ≤2 rotations per insertion worst-case, ≤3 promotions per insertion amortized, even with intermixed deletions.

Height?

Not logarithmic in n, current tree size: tree can evolve to have arbitrary structure!
But only slowly.
height ≤ \lg_\varphi m, where \(m = \#\text{insertions} \)

Proof: Use potential function. If \(r(x) = k \),

\[
\Phi(x) = \begin{cases}
F_{k+2} & \text{if } 0,1 \\
F_{k+1} & \text{if } 0,j \text{ for } j > 1 \\
F_k & \text{if } 1,1 \\
0 & \text{otherwise}
\end{cases}
\]

\(\Phi(T) = \text{sum of node potentials} \)
Deletion does not increase Φ.

Insertion creates a 1,1-node of rank 0 ($\Phi = 0$), and changes the parent from 1,1 to 0,1 or 2,1 to 1,1 ($\Delta \Phi = 1$) or has no effect on Φ. Promotions and rotation cases cannot increase Φ (you check). Promotion of root of rank k converts a 1,1-node of rank k to a 1,2-node of rank $k + 1$, decreasing Φ by F_k.
If root has rank k, decrease in Φ due to root promotions is at least

$$\sum_{0 \leq i < k} F_{i+2} = F_{k+3} - 1.$$

Φ increases by at most 1 per insertion, always ≥ 0, drops by $F_{k+3} - 1 \geq F_{k+2} > \varphi^k$ as a result of root promotions $\rightarrow m > \varphi^k$.
In ravl trees, balancing steps are exponentially infrequent in rank.

Proof: truncate Φ (0 above rank k).

Also true of rank-balanced trees.
Ravl trees with $O(\lg n)$ height bound?

Rebuild occasionally, either all at once or incrementally: e.g. run a background tree traversal that deletes successive items and inserts them into a new tree.

Sorted insertions into an AVL tree, or a ravl tree, produce a tree with height $\lg n + O(1)$.