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1 Santa Claus Problem

In the Santa Claus Problem (see Fig.1), or Max-Min Allocation Problem, there are m children
(later called players) and n presents (items), each item can be given to only one player. Each
player has an evaluation of the items, and the goal is to find an allocation that maximizes the min
value of happiness of players. More formally it is defined as:

Definition 1 (Santa Claus Problem). There are m players and n items, for every ¢ € [m] and
J € [n] the input specifies v;; > 0, which is i-th player’s evaluation of item j. An allocation is a
function f : [n] — [m], f(j) = ¢ iff item j is given to player i. Player i’s happiness is defined as
> Gif(j)=i Vigs and the goal is to find an allocation that optimizes the value
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Figure 1: A Santa-Claus Instance

A similar problem is the Load-Balancing Problem (Min-Max Allocation), where there’s a 2-
approximation algorithm via LP. The Santa Claus Problem with general evaluation functions is
difficult, and people are interested in special cases. In this lecture we’ll focus on the case where
vij € {0,v;}: each item j has a value vj;, and each player either want the item (v;; = v;) or do not
want the item (v;; = 0).

Bansal and Sviridenko [BS06] showed that this problem can be reduced to a combinatorial
question. In the combinatorial question (see Fig. 2), there are m players in m/l groups of size [.
Each group has [ — 1 big items (that has value k). Each player is interested in k small items (that
has value 1). Each small item is interested by at most [ players (the bipartite graph in Fig. 2 only
shows players and small items). Use S; to denote the set of small items player ¢ wants, the goal is
to pick a subset of players P C [m] where exactly one player is picked from each group, and then
for each i € P, pick a subset T; C S;, such that all T;’s are pairwise disjoint, and the min size of
the sets T; is maximized.
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Figure 2: The Combinatorial Question

Theorem 1 ([BS06]). If each T; contains at least vk elements, the integrality gap of configuration
LP is O(1/7). More over, if there’s an efficient algorithm that can pick such sets T;, there is an
efficient rounding algorithm that gives approzimation ratio O(1/v) for the problem.

A naive way to choose the sets is: randomly choose a player from each group, then for each
item randomly give it to a player who’s interested in the item. It’s easy to see that the expected
number of requests for any item is at most 1.

However, like in the balls and bins problem, many items will be requested log m/ loglog m times,
so this naive idea cannot give a constant approximation algorithm. [BS06] uses a similar idea to
achieve approximation ratio loglogm/logloglogm. In the next two sections we’ll see two proofs
showing v is always at least some constant. The last proof can be made explicit and efficient by
using explicit versions of Lovasz Local Lemma.

2 Proof I: Hypergraph Matching

The first proof by Asadpour, Feige and Saberi [AFS08| uses matchings in hypergraphs. To explain
the proof we need some definitions

Definition 2 (Hypergraph). A hypergraph H = (V, E) contains a vertex set V', and an (hyper-
Jedge set E, each e € E' is a subset of V.

Definition 3 (Hypergraph Matching). A matching of a hypergraph H is a subset M of edges,
where no two edges share a common vertex, i.e., Vej,es € M, e; Neg = P.

Definition 4 (Bipartite Hypergraph). A hypergraph H is bipartite if the vertex set is the disjoint
union of two sets U and V, and for all e € E, [eNnU| = 1.

Definition 5 (Perfect Matching). A perfect matching for a bipartite hypergraph H = (U UV, E)
is a matching M such that for any v € U, there is an edge e € M, u € e.

Definition 6 (Traversal). A traversal of a hyper graph H is a set of vertices that intersects every
hyperedge in H. 7(H) is the minimum size of a traversal of H.

An extension of Hall’s Theorem to hypergraphs is proved by Aharoni and Haxell [AHO0O],

Theorem 2. For a bipartite hypergraph H = (U UV, E), let C be a subset of U, define a new
hypergraph Ho = (V, E¢), where E¢ contains all edges that has a vertex in C' minus that vertex.
More formally Ec ={enNV :e€ E and eNC # ®}.

If for alle € E lenV| <r—1 and for all C CU 7(E¢c) > (2r — 3)(|C| — 1) then there exists a
perfect matching in H.



Notice that this theorem is Hall’s theorem when r = 2.

When we apply this Theorem to the combinatorial question, construct a graph H = (UUV, E)
as follows: U is the set of groups (|U| = m/l), V is the set of small items |V| = n. For any subset
T; of S;, if |T;| > ~k, then there’s an edge e = T; U {group of player i}.

In this case r = vk + 1. To bound the value of 7, take any subset C' C U, look at the graph
H¢, for any set S;, since all its subsets with at least vk items form hyper-edges, at least k — vk + 1
items must appear in traversal. There are |C| - [ such sets, but an item may be counted at most {
times, therefore
PR DI o) k1)

When v < 1/3, 7(H¢c) > (2r — 3)(|C| — 1) for any C. By Haxell’s Theorem there’s a perfect
matching, and this matching correspond to a way to allocate the items to players. So when v < 1/3
it’s always possible to allocate the items where at least vk items are given to one of the players in
each group.

7(He) >

3 Proof II: Lovasz Local Lemma

3.1 Overview

This proof is given by Feige [Fei08]. The proof considers system of sets defined as follows.

Definition 7 ((k,l,3) system). A (k,l,3) system is a system of sets, where each set (sometimes
called player) has size k, sets are partitioned into groups of size [, each element (sometimes called
item) is contained in at most Sl sets. We say a (k, [, 3) system is ~y feasible if there’s an allocation
such that each group has a player who gets at least vk items.

Notice that (k,, 3) system do not specify the value of n and m. Some cases of (k, [, 3) systems
are easy: when k is a constant, finding a matching in the bipartite graph defined by groups and
items will give a v = 1/k = (1) allocation. When [ is a constant, use Hall’s Theorem or pick
a random set from each group will give a v = 1/80 = Q(1) allocation (in all the systems we are
considering [ is always bounded by a constant).

The proof relies on the following two lemmas to do reductions between (k,[, 3) systems.

Lemma 3 (Reduce-l). There exists a constant C, whenl >k > C, a (k,l,3) system can be reduced
to a (k,l', ") system where if the new system is v feasible, the original system is also ~y feasible.

' <log’l, 3 < B(1 + oy)-

Lemma 4 (Reduce-k). There exists a constant C, when k > 1 > C, a (k,l,3) system can be

reduced to a (K',1,3) system where if original system is not «y feasible, then the new system is not

Y feasible. K < k/2, o' = (1 + 2Ek)

Using the two Lemmas it’s easy to show the following theorem:

Theorem 5. There exists € > 0 such that any (k,l,1) system is € feasible.

Proof. (sketch)

By induction, when k < C or [ < C the problem falls into one of the easy cases. Otherwise if
I > k use Reduce-l, if k > [ use Reduce-k until one of the easy cases is reached. It’s easy to prove
the ratio between the original system and the new system is bounded by a constant (the overhead
in Reduce-l only depends on [ and the overhead in Reduce-k only depends on k, it’s enough to
prove that two product series converge to a finite value, for more detail see [Fei08]). O



3.2 Reduce-]

The basic idea in proving Reduce-l and Reduce-k is sampling. For Reduce-I, sample some sets
(players) from each group; for Reduce-k, randomly throw out half of the items. However in both
cases we need to make sure that no bad events happen. We do this by using Lovasz Local Lemma

Lemma 6 (Lovdsz Local Lemma). For a collection A of (bad) events, if there exists function
z: A— R that satisfies Pr[A] < z(A) [Iger(a)(1 —z(B)) (T(A) is the set of events that event A
depends on), then

Prinacad] > J] (1 - 2(4))
AcA

Now we prove Lemma Reduce-I.

Proof. (Reduce-1)
Sample I’ = log® [ sets from each group, let d be the degree of an arbitrary item. It’s easy to
see in the new system,

Eld] < 8l

Since the sampling only has negative correlations (between sets within the same group), Chernoff
Bounds can be applied to get

1 3
P 1+ —)pl < —log®!
r[d > ( logl)m] e

For each item, the event that its degree is larger than (1 + @)Bl’ is a bad event. Each bad

events depend on at most 31 -1 -k < [* other events, because this event depends on the choice of
Bl groups, each group has [ sets and each set affects k other events. By the symmetric version of
Lovéasz Local Lemma, there always exists a way to find a new system and reduce [. If the new
system is feasible, exactly the same solution will work for the original system because the new
system is only a subset of the original system.

This application of Lovasz Local Lemma can be made efficient by the algorithm of Moser and
Tardos [MT09]. O

3.3 Reduce-k

Proof. (Reduce-k)

For reduce k, we remove each item with probability 1/2, and we want to prove if the new system
is 7/ feasible the original system is v feasible. This is not easy because the value of the new system
is not directly related to the value of the old system.

To see the actual relationship, we fix a way of choosing sets from groups, then the problem
reduces to a bipartite graph matching problem (one side of the graph is the groups, the other side
is the items), and we can apply Hall’s Theorem. Consider the contrapositive, if the old system is
not v feasible, then for any way of choosing sets, by Hall’s Theorem, there is a set of players of
size ¢ where the number of neighbors is less than vk - i. Since we are removing each item with
probability 1/2 independently, we would expect the number of neighbors in the new system is also
small (< 4'k’i), which by Hall’s Theorem will show that the SAME WAY of picking players is
not good for the new system. (this kind of analysis also shows the way to get explicit allocation



for original system from explicit allocation for the new system: just choose the same sets and run
matching/max flow algorithm)

We define two kinds of bad events. To analyze the degree of dependence, we consider the overlap
graph on sets (players), two sets are connected in the graph if and only if they are not disjoint (i.e.
contain the same item). B is the event that some set has less than &' = (1 — 1°8%)k

5 items. B; is

the event for a connected collection of sets from distinct groups of size 4, such that the number of
neighbors in the original system is less than - k-4, but in the new system the number of neighbors
is at least (1 + %) - k/2 - i neighbors.

If no bad events happen and the new system is 4 feasible, it means there’s a choice of players
(one from each group), such that for any subset C' of these players the number of neighbors (items)
is at least (14 i‘;i—:) -k/2-|C|, and since B; does not happen, the number of neighbors in the original
system is also large. By Hall’s Theorem we know the same choice of players will give a y allocation.

Again, because of negative correlations Chernoff Bounds can be applied, and we have

Pr[By] < e 08"k

PI“[BZ‘] < e—c-i-long

Number of B; events that a B; event depends on is bounded by k3l ways to choose one of the
sets in B; (this set must intersect with the sets of B;), and then Bkl < k3 choices for other sets in
Bj (because Bj; is connected and the degree in overlap graph is Skl). See Fig. 3 for illustration. In
conclusion, the number is no more than ik°).

Bkl choices

1k 31 choices

Figure 3: Counting the number of dependent sets

Set z(B;) = e “*1°8k for some large enough ¢, then for any event i

a:(Bl) . H(l _ e—cj logk)jko(i) > e—cilagk > PI“[Bi]
J
therefore by Lovasz Local Lemma there exists a way to reduce k.
Notice that in the new system the size of each set may be greater than k', but this can be
handled easily by truncating each set to have only the first &’ items. This operation will not affect
the analysis for v because it will only make the new system worse. O



3.4 Explicit construction of Reduce-k

The algorithm by Moser and Tardos does not work for Reduce-k, because the number of bad events
is super-polynomial. In a recent paper Haeupler, Saha and Srinivasan [HSS10] gave a new algorithm
that works in this situation. Their algorithm relies on the following theorem

Theorem 7. If the FIX procedure in Moser Tardos algorithm is applied to a subset of the events,
and B is an event that FIX has not been applied to, then

Pr[B]
Heerp(l —2(C))

Intuitively this theorem says applying FIX to a subset of the events will not change the prob-
ability of other events by too much, and the proof follows from the induction in the proof for
non-constructive version of LLL in previous lecture.

The next theorem shows that when there’s slack in the assumption of LLL, the expected number
of calls to FIX is almost linear to the number of variables (does not depend on the number of events)

Pr[B happens in the output of the algorithm| <

Theorem 8. If there exists assignments x such that for some € > 0

VAe A Pi[A]<(1-ez(4) J[ -x(B)),
BeTl'(A)

thenT =) ,c 4 2(A) = O(nlog(1/6)), where n is the number of variables and 6 = minge 4{Pr[A]}.
Let F be the number of calls to FIX, then

BIF] = 0(" log ),

and

Pr[F > AE[F]] < e W

For the bound on T' = > z(A), consider each variable v, let A be an event that depends on v.
Then since

§<PrlA] <z(4) [ (1—-x(B)
BeT(A)

The sum of (B) cannot be much larger than log(1/0), that is > pcp(a) 2(B) < O(log(1/0)).
Notice I'(A) contains all events that depend on v, take the sum over all variables v we get the
bound of T. The expected number of FIX calls follows from “witness tree” analysis in Moser-
Tardos algorithm in the previous lecture, the intuition is since there’s a slack of (1 —€), larger trees
become exponentially unlikely to happen in the algorithm.

If we only apply FIX to the events whose probability is larger than some inversed polynomial,
then by the previous theorem the algorithm will be efficient, we still need to show that this will
give a good assignment of the variables with high probability.

Theorem 9. Suppose log1/6 < poly(n) (0 is still the minimum value of probabilities). Suppose
further that there is a fized constant € € (0,1) and an assignment x such that

VAe A PrA]'" <az(4) [ -=x=(B)),
BeT'(A)



then for any constant ¢, let p = n~(ct¢)/e (¢ is some fized constant), A" be the set of all
events with probability at least p, running Moser-Tardos algorithm on all events in A’ gives a good

assignment with probability at least 1 —n=¢.

Proof. Clearly none of the events in A" will happen. For event B € A\ A’, by Theorem 7,

Pr[B happens in the output] < Pr|B]
r ppens in utput] < ,
HCeF(B)(l —z(C))

but we also know Pr[B] < p = n~(¢t¢)/¢ therefore Pr[B]=¢ > nct¢

Pr[B| . CBLE < o B
HCGF(B)(l—SC(C'))S (B) Pr[B]" < 2(B) .

By union bound,

Pr[assignment is good] > 1 — Z Pr[B happens in output|

BeA\A'
>1- Z z(B)n=¢¢
BeA\A
>1- Z z(B)n~¢¢
BeA
> 1—nlog(1/8)z(B)n=¢¢
>1—-n"°.
(we take ¢’ to be larger than 1+ log(1/0)/logn) O

Finally we apply this new algorithm to Reduce-k, clearly the two kinds of slacks are satisfied,
and we can enumerate events in A easily, so there’s an algorithm that runs in polynomial time
and produce a good assignment with high probability. Since both Reduce-I and Reduce-k are
explicit and efficient now, there’s an algorithm that produces v allocation for some fixed v > 0 with
high probability in polynomial time, and the special case of Santa Claus Problem has a constant
approximation algorithm.
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