
Building a Simple Web 
Proxy

Wednesday, February 17, 2010



A Brief History of 
HTTP

• Mar 1989 - "Information Management: A Proposal"

• Oct 1990 - "WorldWideWeb" coined

• Oct 1994 - W3C founded

• May 1996 - RFC 1945 (HTTP 1.0)

• June 1999 - RFC 2616 (HTTP 1.1)
Wednesday, February 17, 2010

http://www.w3.org/History/1989/proposal.html
http://www.w3.org/History/1989/proposal.html


Anatomy of HTTP 1.0

Web Client Web ServerConnect: Request

Response: Close

GET / HTTP/1.0
Host: www.yahoo.com
CRLF

HTTP/1.0 200 OK
Date: Tue, 16 Feb 2010 19:21:24 GMT 
Content-Type: text/html;
CRLF
<html><head>
<title>Yahoo!</title>

Wednesday, February 17, 2010

http://www.yahoo.com
http://www.yahoo.com


Anatomy of HTTP 1.0

Web Client Web ServerConnect: Request

Response: Close

GET / HTTP/1.0
Host: www.yahoo.com
CRLF

HTTP/1.0 200 OK
Date: Tue, 16 Feb 2010 19:21:24 GMT 
Content-Type: text/html;
CRLF
<html><head>
<title>Yahoo!</title>

Request Line
Request Header
Request Delimiter

Response Status
Response Header

Response Delimiter
Response Body

Wednesday, February 17, 2010

http://www.yahoo.com
http://www.yahoo.com


HTTP 1.1 vs 1.0

• Additional Methods (PUT, DELETE, TRACE, 
CONNECT + GET, HEAD, POST)

• Additional Headers

• Transfer Coding (chunk encoding)

• Persistent Connections (content-length 
matters)

• Request Pipelining

Wednesday, February 17, 2010



Why Use a Proxy?

Caching

Content Filtering

Privacy

Wednesday, February 17, 2010



Building a Simple Web 
Proxy

• Forward client requests to the remote 
server and return response to the client

• Handle HTTP 1.0 (GET)

• Single-threaded, non-caching web proxy

• ./proxy <port>

Wednesday, February 17, 2010



Handling Requests

• What you need from a client request: host, 
port, and URI path
GET http://www.princeton.edu:80/ HTTP/1.0

or
GET / HTTP/1.0
Host: www.princeton.edu:80

• What you send to a remote server:
GET / HTTP/1.0
Host: www.princeton.edu:80
(Additional headers, if any...)

• Check request line and header format
Wednesday, February 17, 2010

http://www.princeton.edu
http://www.princeton.edu
http://www.princeton.edu
http://www.princeton.edu
http://www.princeton.edu
http://www.princeton.edu


Handling Responses

Web Client Web Server
Parse Request: Host, Port, Path

Simple Proxy

Forward Response to Client
Including Errors

Wednesday, February 17, 2010



Handling Errors

• Method != GET: Not Implemented (501)

• Unparseable request: Bad Request (400)

• Keep parsing simple: no need for regex 

• Postel’s law: Be liberal in what you accept, 
and conservative in what you send
convert HTTP 1.1 request to HTTP 1.0
convert \r to \r\n
etc...

Wednesday, February 17, 2010



Testing Your Proxy

• Telnet to your proxy and issue a request
> ./proxy 5000
> telnet localhost 5000
Trying 127.0.0.1...
Connected to localhost.localdomain 
(127.0.0.1).
Escape character is '^]'.
GET http://www.google.com/ HTTP/1.0

(HTTP response...)

• Direct your browser to use your proxy

• Use the supplied proxy_tester.py

Wednesday, February 17, 2010

http://www.google.com
http://www.google.com


Proxy Guidance

• Assignment page

• Assignment FAQ

• RFC 1945 (HTTP 1.0)

• Google, wikipedia, man pages

• Must build on Friend 010 machines

• Submission name = file name

Wednesday, February 17, 2010


