







#### Possible definitions:

- III. average of pairwise similarity between all pairs of objects, one from each
- Generally no representative point for a cluster; compare K-means
- If using Euclidean distance as metric

# **General Agglomerative**

- Uses any computable cluster similarity measure sim(C<sub>i</sub>, C<sub>j</sub>)
  For n objects v<sub>1</sub>, ..., v<sub>n</sub>, assign each to a singleton cluster C<sub>i</sub> = {v<sub>i</sub>}.
- repeat {
  - identify two most similar clusters C<sub>j</sub> and C<sub>k</sub> (could be ties chose one pair)
  - delete  $C_j$  and  $C_k$  and add (C\_j U C\_k) to the set of clusters
  - } until only one cluster
- Dendrograms diagram the sequence of cluster merges.



## Single pass agglomerative-like

#### Issues

- put  $v_i$  in cluster after seeing only  $v_1, \dots v_{i-1}$
- not hierarchical
- tends to produce large clusters depends on  $\tau$
- depends on order of v<sub>i</sub>

## Alternate perspective for single-link algorithm

- Build a minimum spanning tree (MST) graph alg. – edge weights are pair-wise similarities
  - since in terms of similarities, not distances, really want maximum spanning tree
- For some threshold τ, remove all edges of similarity < τ</li>
- Tree falls into pieces => clusters
- Not hierarchical, but get hierarchy for sequence of  $\boldsymbol{\tau}$

## Hierarchical Divisive: Template

8

10

- 1. Put all objects in one cluster
- 2. Repeat until all clusters are singletons
  - a) choose a cluster to splitwhat criterion?
  - b) replace the chosen cluster with the sub-clusters
    - split into how many?
    - how split?
    - "reversing" agglomerative => split in two
- cutting operation: cut-based measures seem to be a natural choice.
- focus on similarity across cut lost similarity
- not necessary to use a cut-based measure



















## Hierarchical divisive revisited

- can use one of cut-based algorithms to split a cluster
- how choose cluster to split next?
  - if building entire tree, doesn't matter
  - if stopping a certain point, choose next cluster based on measure optimizing
     e.g. for total relative cut cost, choose C<sub>i</sub> with largest cutcost(C<sub>i</sub>) / intracost(C<sub>i</sub>)

20

22

24

Divisive Algorithm: Iterative Improvement; no hierarchy 1. Choose initial partition C<sub>1</sub>, ..., C<sub>k</sub> 2. repeat { unlock all vertices repeat { choose some C<sub>i</sub> at random choose an unlocked vertex v<sub>j</sub> in C<sub>i</sub> move v<sub>j</sub> to that cluster, if any, such that move gives maximum decrease in cost lock vertex v<sub>j</sub> j until all vertices locked } until converge

## Observations on algorithm

- heuristic
- · uses randomness
- convergence usually improvement < some chosen threshold between outer loop iterations
- vertex "locking" insures that all vertices are examined before examining any vertex twice
- there are many variations of algorithm
- can use at each division of hierarchical divisive algorithm with k=2
- more computation than an agglomerative merge

### Compare to k-means

- Similarities:
  - number of clusters, k, is chosen in advance
  - an initial clustering is chosen (possibly at random)
  - iterative improvement is used to improve clustering
- Important difference:
  - divisive algorithm can minimize a cut-based cost
     total relative cut cost uses external and internal measures
  - k-means maximizes only similarity within a cluster
     ignores cost of cuts

23

## Eigenvalues and clustering

General class of techniques for clustering a graph using eigenvectors of adjacency matrix (or similar matrix) called

Spectral clustering

First described in 1973



#### Spectral clustering optimizes a cut measure similar to total relative cut cost 25

## Comparing clusterings

- Define external measure to
  - comparing two clusterings as to similarity
     if one clustering "correct", one clustering by an algorithm, measures how well algorithm doing
     refer to "correct" clusters as classes
    - "gold standard"
    - refer to computed clusters as clusters
- External measure independent of cost function optimized by algorithm

26

#### One measure: motivated by F-score in IR

- Given:
  - a set of classes  $S_1, \dots S_k$  of the objects
  - use to define relevance - a computed clustering C<sub>1</sub>, ... C<sub>k</sub> of the objects
  - a computed clustering  $C_1, \ldots C_k$  of the objects use to define retrieval

#### Consider pairs of objects

- pair in same class, call "similar pair"  $\equiv$  relevant
- pair in different classes  $\equiv$  irrelevant
- pair in same clusters  $\equiv$  retrieved
- pair in different clusters  $\equiv$  not retrieved

• Use to define precision and recall



precision of the clustering w.r.t the gold standard = <u># similar pairs in the same cluster</u> <u># pairs in the same cluster</u>

recall of the clustering w.r.t the gold standard = <u># similar pairs in the same cluster</u> <u># similar pairs</u>

*f-score* of the clustering w.r.t the gold standard =
2\*precision\*recall
precision + recall

#### 28

30

### Properties of cluster F-score

27

29

- always  $\leq 1$
- Perfect match computed clusters to classes gives F-score = 1
- Symmetric
  - $\begin{array}{l} \mbox{ Two clusterings } \{C_i\} \mbox{ and } \{K_j\}, \mbox{ neither "gold standard"} \\ \mbox{ treat } \{C_i\} \mbox{ as if are classes and compute F-score of } \{K_j\} \\ \mbox{ w.r.t. } \{C_i\} = F\mbox{-score }_{\{C_i\}}(\{K_i\}) \end{array}$
  - treat {K<sub>j</sub>} as if are classes and compute F-score of {C<sub>i</sub>} w.r.t. {K<sub>j</sub>} = F-score<sub>[Kj]</sub>({C<sub>i</sub>})

 $\Rightarrow F\text{-score}_{\{Ci\}}(\{K_j\}) = F\text{-score}_{\{Kj\}}(\{C_i\})$ 

Clustering: wrap-up

- many applications
  - application determines similarity between objects
- · menu of
  - cost functions to optimizes
  - similarity measures between clusters
  - types of algorithms
    - flat/hierarchical
    - constructive/iterative
  - algorithms within a type