
1

1

Clustering Algorithms
for general similarity measures

2

Types of general clustering methods

• agglomerative versus divisive algorithms
– agglomerative = bottom-up

• build up clusters from single objects
– divisive = top-down

• break up cluster containing all objects into
smaller clusters

– both agglomerative and divisive give hierarchies
– hierarchy can be trivial:

 1 (. .) . . . 2 ((. .) .) . .
 3 (((. .) .) .) . 4 ((((. .) .) .) .)

3

Similarity between clusters
Possible definitions:
I. similarity between most similar pair of objects

with one in each cluster
– called single link

.
 ^ ^

II. similarity between least similar pair objects,
one from each cluster

– called complete linkage
.

 ^ ^
4

Similarity between clusters, cont.

Possible definitions:

III. average of pairwise similarity between all pairs
of objects, one from each

– more computation

• Generally no representative point for a cluster;
– compare K-means

• If using Euclidean distance as metric
– centroid
– bounding box

5

General Agglomerative
• Uses any computable cluster similarity

measure sim(Ci, Cj)
• For n objects v1, …, vn, assign each to a

singleton cluster Ci = {vi}.
• repeat {

– identify two most similar clusters Cj and Ck (could
be ties – chose one pair)

– delete Cj and Ck and add (Cj U Ck) to the set of
clusters

 } until only one cluster
• Dendrograms diagram the sequence of

cluster merges.

6

Agglomerative: remarks
• Intro. to IR discusses in great detail for cluster similarity:

– single-link, complete-link, avg. of all pairs, centroid

• Uses priority queues to get time complexity
O((n2logn)*(time to compute cluster similarity))
– one priority queue for each cluster: contains similarities

to all other clusters plus bookkeeping info
– time complexity more precisely:

O((n2) *(time to compute object-object similarity) +
 (n2logn)*
 (time to compute sim(clusterz, clusterj U clusterk)
 if know sim(clusterz, clusterj)
 and sim(clusterz, clusterk)))

• Problem with priority queue?

2

7

Single pass agglomerative-like
Given arbitrary order of objects to cluster: v1, … vn

and threshold τ
 Put v1 in cluster C1 by itself
 For i = 2 to n {

 for all existing clusters Cj
 calculate sim(vi, Cj);
 record most similar cluster to vi as Cmax(i)
 if sim(vi, Cmax(i)) > τ add vi to Cmax(i)
 else create new cluster {vi}
}

8

Issues

• put vi in cluster after seeing only
v1, … vi-1

• not hierarchical
• tends to produce large clusters

– depends on τ
• depends on order of vi

9

Alternate perspective
for single-link algorithm

• Build a minimum spanning tree (MST) - graph alg.
– edge weights are pair-wise similarities
– since in terms of similarities, not distances, really want

maximum spanning tree
• For some threshold τ, remove all edges of

similarity < τ
• Tree falls into pieces => clusters

• Not hierarchical, but get hierarchy for sequence of τ

10

Hierarchical Divisive: Template
1. Put all objects in one cluster
2. Repeat until all clusters are singletons

a) choose a cluster to split
• what criterion?

b) replace the chosen cluster with the sub-clusters
• split into how many?
• how split?
• “reversing” agglomerative => split in two

• cutting operation: cut-based measures seem to
be a natural choice.

– focus on similarity across cut - lost similarity
• not necessary to use a cut-based measure

11

An Example

12

An Example: 1st cut

3

13

An Example: 2nd cut

14

An Example: stop at 3 clusters

15

Compare k-means result

16

Cut-based optimization

• weaken the connection between objects in
different clusters rather than strengthening
connection between objects within a cluster

• Are many cut-based measures
• We will look at one

17

Inter / Intra cluster costs
Given:
• V = {v1, …, vn}, the set of all objects
• A partitioning clustering C1, C2, … Ck of the objects:

V = Ui=1, …, k Ci .

Define:
• cutcost (Cp) = ∑ sim(vi, vj).

• intracost(Cp) = ∑ sim(vi, vj).

vi in Cp
vj in V-Cp

vi, vj in Cp

18

Cost of a clustering
total relative cut cost (C1, … , Ck) =

 ∑

• contribution each cluster:
ratio external similarity to internal similarity

Optimization
Find clustering C1, … , Ck that minimizes
 total relative cut cost(C1, … , Ck)

p=1

k cutcost (Cp)
intracost (Cp)

4

19

Simple example
• six objects
• similarity 1 if edge shown
• similarity 0 otherwise
• choice 1:

cost UNDEFINED + 1/4
• choice 2:

cost 1/1 + 1/3 = 4/3
• choice 3:

cost 1/2 + 1/2 = 1 *prefer balance

20

Hierarchical divisive revisited

• can use one of cut-based algorithms to
split a cluster

• how choose cluster to split next?
– if building entire tree, doesn’t matter
– if stopping a certain point, choose next

cluster based on measure optimizing
• e.g. for total relative cut cost, choose Ci with

largest cutcost(Ci) / intracost(Ci)

21

Divisive Algorithm:
Iterative Improvement; no hierarchy

1. Choose initial partition C1, … , Ck

2. repeat {
unlock all vertices
repeat {

choose some Ci at random
choose an unlocked vertex vj in Ci

move vj to that cluster, if any, such that move
gives maximum decrease in cost

lock vertex vj

} until all vertices locked
}until converge 22

Observations on algorithm
• heuristic
• uses randomness
• convergence usually improvement < some

chosen threshold between outer loop
iterations

• vertex “locking” insures that all vertices are
examined before examining any vertex twice

• there are many variations of algorithm
• can use at each division of hierarchical

divisive algorithm with k=2
– more computation than an agglomerative merge

23

Compare to k-means

• Similarities:
– number of clusters, k, is chosen in advance
– an initial clustering is chosen (possibly at random)
– iterative improvement is used to improve

clustering

• Important difference:
– divisive algorithm can minimize a cut-based cost

• total relative cut cost uses external and internal
measures

– k-means maximizes only similarity within a cluster
• ignores cost of cuts

24

Eigenvalues and clustering

General class of techniques for clustering a
graph using eigenvectors of adjacency matrix
(or similar matrix) called

Spectral clustering

First described in 1973

5

25

Spectral clustering: brief overview
Given: k: number of clusters
 nxn object-object sim. matrix S of non-neg. val.s
Compute:
1. Derive matrix L from S (straightforward computation)

– e.g. Laplacian: are variations in def.
2. find eigenvectors corresp. to k smallest eigenval.s of L
3. use eigenvectors to define clusters

– variety of ways to do this
– all involve another, simpler, clustering

• e.g. points on a line

Spectral clustering optimizes a cut measure
similar to total relative cut cost 26

Comparing clusterings

• Define external measure to
– comparing two clusterings as to similarity
– if one clustering “correct”, one clustering by an

algorithm, measures how well algorithm doing
• refer to “correct” clusters as classes

– “gold standard”
• refer to computed clusters as clusters

• External measure independent of cost
function optimized by algorithm

27

One measure: motivated by F-score in IR

• Given:
– a set of classes S1, … Sk of the objects

use to define relevance
– a computed clustering C1, … Ck of the objects

use to define retrieval

• Consider pairs of objects
– pair in same class, call “similar pair” ≡ relevant
– pair in different classes ≡ irrelevant
– pair in same clusters ≡ retrieved
– pair in different clusters ≡ not retrieved

• Use to define precision and recall 28

Clustering f-score

precision of the clustering w.r.t the gold standard =
similar pairs in the same cluster

pairs in the same cluster

recall of the clustering w.r.t the gold standard =
similar pairs in the same cluster

similar pairs

f-score of the clustering w.r.t the gold standard =
2*precision*recall
precision + recall

29

• always ≤ 1
• Perfect match computed clusters to classes

gives F-score = 1
• Symmetric

– Two clusterings {Ci} and {Kj}, neither “gold standard”
– treat {Ci} as if are classes and compute F-score of {Kj}

w.r.t. {Ci} = F-score{Ci}({Kj})

– treat {Kj} as if are classes and compute F-score of {Ci}
w.r.t. {Kj} = F-score{Kj}({Ci})

⇒ F-score{Ci}({Kj}) = F-score{Kj}({Ci})

Properties of cluster F-score

30

Clustering: wrap-up
• many applications

– application determines similarity between
objects

• menu of
– cost functions to optimizes
– similarity measures between clusters
– types of algorithms

• flat/hierarchical
• constructive/iterative

– algorithms within a type

