
Lecture 20 — Homomorphic Encryption 2: Two party secure

computation.

Boaz Barak

April 14, 2010

Multi-party secure computation We’ve considered a great many cryptographic applications
in this course, encryption, signatures, coin tossing, commitments, zero knowledge, private
information retrieval,... and there are more such as electronic elections, electronic auctions,
etc.. that we didn’t consider.

Today we consider one framework that captures all of them.

Cryptography in the presence of a completely trusted party We observe that all the cryp-
tographic problems we considered become trivial if there is a completely trusted party F that
has a secure private channel to every one of the participants:

Coin tossing The participants ask F to toss a coin, F tosses it and broadcasts the result.

Authenticated Encryption Alice sends a message x to F and asks to relay it to Bob and
no one else, F relays x to Bob and tells him this message was received from Alice.

Zero knowledge To prove that she knows x such that C(x) = 1, Alice sends C, x to F . F
verifies that C(x) = 1, then sends only C to Bob that it can guarantee that there is x
such that C(x) = 1.

And here are some we didn’t consider:

Electronic voting Everyone sends their votes to F , that announces the winner.

Electronic auctions Everyone sends their bids to F , that announces who was the highest
bidder, and what was the value of the second highest bid.

Poker F chooses a random permutation of the 52 cards, sends each party their cards, parties
send their choices to F that announces the public information and sends to individual
parties their secret cards, etc..

Yao’s Miliionaire’s problem Alice and Bob want to compare who has a higher salary.
Alice sends her salary x to F , and Bob sends his salary y to F , F announces whether
x > y or not.

(In fact, we allow here for the possibility of Alice and/or Bob to cheat in the number
they provide F , but at least they will not learn more than this one bit about the other
person’s salary, one can also think of a functionality that gets as input a public key of
say the IRS, and checks that x and y are signed with this key.)

1

Distributed signature and decryption Three parties each has strings s1, s2, s3 and a
public message x, they all send their strings to F that broadcasts a signature on x
using the key s1 ⊕ s2 ⊕ s3. One can similarly have F decrypt a ciphertext using the a
secret key obtained by the XOR of the inputs.

Virtual trusted party The notion of secure multi-party computation is to allow k parties to
create a virtual trusted party out of thin air. The basic setting is assuming that these parties
have identities and can talk privately and securely to one another (e.g., there is a public key
infrastructure) though this has been generalized to weaker notions as well. There are many
variants of the definition and the one we’ll use is the following. Below for simplicity we assume
that F is a deterministic stateless function: that is F takes input xi from the ith party, and
after receiving all inputs, sends the output yj to the jth party, where (y1, .., yk) = F(x1, ..., xk).
We’ll remark later how to generalize this for randomized and stateful functionalities.

Let F : ({0, 1}n)k → ({0, 1}n)k be some function. A k-party protocol is a secure function
evaluation protocol for F if for every subset S ([k] and coordinated cheating strategy A∗

for the parties in S, there exists a simulator SIM and a set of inputs {xi}i∈S such that:

Correctness For every set of inputs {xi}i∈S , if the parties in S follow the protocol, then

we have a guarantee that for every i ∈ S, the output the ith party obtains is either
f(x1...xk)i or ⊥. Here S denotes [k] \ S.

Simulation For every set of inputs {xi}i∈S , if SIM obtains as output {f(x1...xk)i}i∈S and
a parameter ε > 0 then SIM runs in poly(1/ε, n, k)-time and the output of SIM is
computationally indistinguishable from the view of all the parties in S in an interaction
where for every i, if i ∈ S then the ith party follows the protocol and uses xi as input,
and if i ∈ S then the ith party follows the coordinated strategy A∗.

(It is possible to combine the two conditions together in one requirement, though we will not
follow this route.)

The validity requirement ensures that the cheating parties have no control over the output the
honest parties receive beyond their obvious power to choose their own inputs. The ability to
cause the output to be ⊥ comes from the fact that it’s always possible for an attacker to halt
the protocol and stop communicating. In fact, it is possible in certain settings (in particular
when |S| < k/2) to get rid of that possibility, but we will not go into these variants.

The simulation requirement ensures that the cheating parties do not learn anything about
the honest parties’ inputs beyond what F tells them in the “ideal” setting.

Honest but curious simulation Just like zero knowledge, there is a simpler, but still interesting
variant where we don’t assume that A∗ deviates from the protocol, but rather just want to
make sure the parties in S don’t learn anything about the inputs of the other parties aside
from what F provides. We’ll focus on this variant today.

Obtaining randomized or stateful functionalities To obtain the coin tossing functionality,
consider F(x1, x2) = x1 ⊕ x2. If one party chooses its bit at random then it’s guaranteed
that the outcome is random (or ⊥), no matter what the other party does. This can be
generalized to any randomized functionality, by having additional inputs r1, . . . , rk to all the
parties, where the honest parties choose them at random, and having F use r1 ⊕ · · · ⊕ rk for
its random tape.

2

For stateful functionalities, F can broadcast after each step its state in an encrypted and
authenticated form, and require this state to be provided in the next step (aborting if all the
parties didn’t provide F the same state). Similar to the above, the secret key used can be
generated as r1 ⊕ · · · ⊕ rk where ri is chosen at random by the ith party.

We see that multi-party computation can basically solve every cryptographic task possible.
Thus the following theorem is pretty amazing:

Fundamental Theorem of Cryptography (Yao 82, Goldreich-Micali-Wigderson 87) Assuming
trapdoor permutations exist, for every polynomial-size F : ({0, 1}n)k → ({0, 1}n)k, there ex-
ists a secure multiparty protocol for F .

What’s left Did this theorem finish all there is to be done in cryptography? Below are a few
reasons why cryptography is still an active research area...

Efficiency: the biggest caveat with this theorem was that the protocol is quite inefficient,
requiring running a fairly complex mini-protocol for each gate of the circuit for F . In-
deed, there has been a lot of research on obtaining efficient variants of this theorem
for specific functionalities that arise in practice (we’ll talk about voting protocols, see
link on website on Danish sugar beets auction). Indeed, this is a common theme in
cryptography— first people come up with a polynomial time but fairly impractical so-
lution for a problem, and only much later more efficient solutions are discovered. But
here the very generality of the problem seem to hinder truly efficient solutions (though
there have been significant improvements in this regard).

We remark that the homomorphic encryption based protocols we’ll see will have an
important efficiency advantage over the original protocol, in the sense that we will not
have communication proportional to the number of gates in C. As I mentioned, these
were only discovered only last year.

Interaction, infrastructure: in real life we sometimes want to restrict the interaction to
be of a certain form, such as a single message from sender to receiver, as in encryption.
Indeed, there are variants of this theorem with reduced interaction requirements. Also,
the assumption of private secure channels between the parties is not always justified,
since not every party has public keys, though again there are by now variants of this
theorem with reduced assumptions on authentication.

Composition, rationality, leakage: While the security requirements of multi-party pro-
tocol seem quite impressive, they do suffer from an important problem which is that
they do not guarantee security when multiple instances of this or other protocols are
run simultaneously. (As I mentioned in the context of zero knowledge, sometimes in
crypto 0 + 0 6= 0.) Obtaining versions of this theorem with such security guarantees has
been a very active area of research since the late 1990’s. Other security concerns that
are actively researched include the following: (1) we assume that honest parties follow
the protocol, but in real life we should assume that even non-hacked parties will only
follow the protocol if it’s in their interest to do so, thus several works try to combine
multi-party secure computation with the rationality framework from game theory (2) we
assume that the adversary has either complete control of a machine or no control at all,
but what if he’s able to get some partial information (via side channels such as radiation,
timing, power consumption, sound etc..) even on the secret inputs of the honest parties?
new works try to handle such issues as well.

3

Computational assumptions: It is of course a basic question of cryptography to under-
stand what assumptions are necessary for such a result.

Proof of the theorem We’ll prove this theorem using homomorphic encryption instead. We
start with the case k = 2 and honest-but-curious adversaries (this is the case originally
shown by Yao, whereas GMW extended this to more parties, and more importantly, malicious
adversaries). We have two parties, Alice and Bob with inputs x, y respectively and they wish
to compute F(x, y) where F is some Boolean circuit. We can make the following simplifying
assumptions: (1) only Alice learns an output in the protocol (after that they can run another
iteration in which Bob will learn his output) and (2) Bob “hardwires” his inputs into the
circuit. So we are in the setting where Alice knows an input x, Bob knows a circuit C, and
their goal is for Alice to learn C(x) and Bob to learn nothing at all.

Protocol Basic-SFE:

Alice’s input x ∈ {0, 1}n

Bob’s input Circuit C : {0, 1}n → {0, 1}
Step 1: Alice generates (e, d)←R G(1n) keys for the homomorphic encryption, and sends e

to Bob.

Step 2: Alice sends x̂ = Ee(x1) · · ·Ee(xn) to Bob.

Step 3: Bob computes ĉ = EV ALe(C, x̂) and sends ĉ to Alice.

Step 4: Alice decrypts ĉ to obtain her output.

We have the following theorem: Theorem: Basic-SFE is an honest-but-curious secure two
party computation protocol.

(Note that there are many chances for Alice and Bob to cheat if they deviate from the protocol,
but this is not part of the notion of honest-but-curious security.)

The GMW compiler The protocol we presented above strongly depends on Alice and Bob not
deviating from the protocol.1 So it might seem useless as a starting point for a full fledges
multi-party computation protocol. It turns out this is not the case:

Theorem (Goldreich-Micali-Wigderson): Assuming one-way functions exist, there is a
general transformation converting any multi-party computation protocol for F that is honest-
but-curious secure into a full-fledged secure protocol.

We illustrate this theorem by showing how this compiler works for our Basic-SFE protocol.

From 2 parties to k parties Let’s first discuss how we’ll go from 2 parties to 3 parties, and then
continue. The compiler works in the same way for every k, and so we can focus on the honest
but curious case. We basically split Alice into two pieces, Alice 1 and Alice 2 that have
inputs x1, x2 and the goal is that Alice 1 learns C(x1, x2) where C is the circuit Bob has.
Alice 1 and Alice 2 run a two party secure protocol to jointly generate a key pair (e, d) for the
homomorphic encryption such that Alice 1 gets d1 and Alice 2 gets d2 s.t. d1, d2 are random
subject to d1⊕ d2 = d. Then each of them encrypts and sends her input to Bob, who applies
EVAL on both inputs, and sends it to them. They run again a two party secure protocol to
decrypt the output and have Alice 1 of them learn the decryption.

1As a very advanced comment we note that there are protocol that depend on this property even in a stronger
way, requiring the parties to even generate their own randomness completely uniformly.

4

