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Key exchange Suppose we have following situation: Alice wants to buy something from the well
known website Bob.com

Since they will exchange private information (Alice’s credit card, address etc.) they want to
use encryption. However, they do not share a key between them.

Using a key exchange protocol. It seems that we already learned a protocol to do that: Alice
and Bob can run a key exchange protocol. One such protocol is the Diffie-Hellman protocol,
but they can also run the following RSA-based protocol:

A← B Bob chooses a pair of RSA keys (e, d) and sends e to Alice.

A→ B Alice chooses a key k ←R {0, 1}n and sends Ee(k) to Bob.

A � B Bob and Alice can now can now continue their interaction with the shared secret key
k.

Insecurity of basic key exchange protocol: This protocol is secure for a passive / eavesdrop-
ping adversary, but it is not secure against an active adversary. Indeed, a man-in-the-middle
Charlie can play Bob to Alice and Alice to Bob. That is, Charlie will receive (e, d) from Bob
but will not pass this on to Alice. Rather he will choose his own RSA pair (e′, d′) and send
e′ to Alice. Alice will then send Ee′(k) to Charlie. Charlie can decrypt to find k and then
send Ee(k) to Bob.1 From now on Charlie will be able to listen in to all of Alice and Bob’s
communication.

Obvious fix. This attack is inherent since if Bob and Alice don’t know anything about each other
then of course Charlie can impersonate them to one another. However, we are in a setting
where Bob is a well known web site, and hence we can assume that Alice already has Bob’s
public key. This prevents this attack but it is not clear that it is secure.

Example: SSL protocol. The SSL protocol is the most widely used protocol for such transac-
tions (this is the protocol used to access encrypted web sites, and is the standard for all
transactions involving credit card etc.). However, in V3.0, the heart of the protocol was the
following interaction:

1He can also choose his own key k′ and send Ee(k
′) to Bob.
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• Client sends Ee(k) to the server where Ee(·) is padded RSA according to standard PKCS
#1 V1.5 (a scheme believed to be semantically secure).

• Server validates decryption is according to standard, otherwise sending invalid decryption,
and if so, uses k as the key.

The padding scheme is the following: if {fe} is the RSA trapdoor permutation collection then
to encrypt x choose r to be a random string (of length at least 8 bytes) conditioned on not
having any zero byte, and let x′ = 0 ◦ 2 ◦ r ◦ 0 ◦ x. Define the function PKCS(x′) to output
1 iff x′ is of this form. For a random x′, the probability that PKCS(x′) = 1 is about 2−16.

In a surprising paper, Bleichenbacher proved that the function PKCS(·) is some kind of a
hard core of RSA.2 That is, he showed that if you have an oracle that given y outputs 1 iff
PKCS(f−1e (y)) = 1, then you can use it to invert the one-way permutation fe(·) using not
too many queries. It follows that SSL protocol is insecure, since an attacker can open as
many sessions with the server as it likes, essentially using the server as this oracle. (Note that
no matter what happens later in the protocol, once the attacker received this error message,
she got the response she needed, even if the server will abort later.)

Reflection: In retrospect, it should have been clear that it is a bad idea to use a scheme
that is only CPA secure and not a CCA secure scheme. In fact, if the designers of SSL had
tried to prove security of their protocol, they would have seen that CCA (or a close variant)
is an essential condition for such a proof to go through.

More details on the actual SSL protocol appear in the BS book. Some other attacks on SSL
include Goldberg-Wagner attack on the pseudorandom generation, Version-rollback attack,
Protocol changing attack, Variations/extensions of the Bleichenbacher attack.

Constructions of CCA secure public key encryption Constructing CCA secure public key
encryption is more challenging than the private key case. In this lecture we’ll do so only in
the random oracle model. We start with a CPA secure scheme in the random oracle model
(we’ve already seen such an encryption but this one has has some efficiency advantages over
the Goldreich-Levin hardcore based one)

2Actually, there were several previous results about very related hard-core functions for RSA, but people always
thought about these results as establishing theoretical security and not practical insecurity.
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be that it will have shorter ciphertexts. (To encrypt n bits we’ll need
3n bits as opposed to n2 in the previous bit-by-bit scheme.) The main
advantage of concern to us will be that we’ll be able to generalize it to a
CCA secure encryption scheme.

A CPA Secure Scheme:

• Let G : {0, 1}n → {0, 1}n be a random oracle and {(f, f−1)} be
collection of trapdoor permutations. The public key of the scheme
will be f(·) while the private key be f−1.

• To encrypt x ∈ {0, 1}n, choose r ←R {0, 1}n and compute f(r), G(r)⊕
x.

• To decrypt y, z compute r = f−1(y) and let x = r ⊕ z.

Theorem 1. The above scheme is CPA secure in the random oracle
model.

Proof. For public key encryption, the encryption oracle is redundant and
so CPA security means that an adversary A that gets as input the en-
cryption key (f(·) in our case) cannot tell apart E(x1) and E(x2) for every
x1, x2.

However, in the random oracle model we need to give A also access to
the random oracle G(·).
We denote the ciphertext A gets as challenge by y∗, z∗ where y∗ = f(r∗)
and z∗ = G(r∗)⊕ x∗. We start by proving the following:

Claim 1.1. The probability that A queries r∗ of its oracle G(·) is negli-
gible.

Proof. Consider the following experiment: instead of giving z∗ = G(r∗)⊕
x∗, we give A the string z∗ = u⊕ x∗ where u is a uniform element. The
only way A could tell apart the two cases is if he queries r∗ to G and sees
that the answer is different from u, but then we already “lost”. Thus,
the probability that A queries r∗ in this experiment is the same as the
probability that it queries r∗ in the actual attack.

However, in this experiment the only information A gets about r∗ is
f(r∗) - thus if it queries G(·) the value r∗ then it inverted the trapdoor
permutation!

Now this means we can ignore the probability that A queried r∗ and
hence we can (like in the proof of the claim) assume that z∗ = u ⊕ x∗

where u is chosen independently at random. However, this means that
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A gets no information about x∗ and hence will not be able to guess if
it’s equal to x1 or x2 with probability greater than 1/2.

The CCA secure encryption First note that if we have one random oracle
we can have many independent oracles (just have Gi(x) = G(i◦x)). We’ll
use two independent random oracles G, H in the next scheme.

• Let G, H : {0, 1}n → {0, 1}n be two independent random oracles and
{(f, f−1)} be collection of trapdoor permutations. The public key of
the scheme will be f(·) while the private key be f−1.

• To encrypt x ∈ {0, 1}n, choose r ←R {0, 1}n and compute f(r), G(r)⊕
x, H(x, r).

• To decrypt y, z, w compute r = f−1(y) and let x = r ⊕ z. Then,
check that w = H(x, r): if so then return x, otherwise return ⊥.

Theorem 2. The above scheme is CCA secure.

Proof. Let A be an algorithm in a CCA attack against the scheme. Again,
denote by y∗, z∗, w∗ the challenge ciphertext A gets where y∗ = f(r∗),
z∗ = G(r∗)⊕ x∗ and w∗ = H(x∗, r∗).

Since H is a random oracle, we can assume that throughout the attack,
no one (the sender, receiver or A) will ever find a two pairs x, r and x′, r′

such that x ◦ r 6= x′ ◦ r′ but H(x, r) = H(x′, r′).

Thus, at each step i of the attack and for every string w ∈ {0, 1}n we
can define H−1

i (w) in the following way: if the oracle H was queried
before with some x, r and returned w then H−1

i (w) = (x, r). Otherwise,
H−1

i (w) = ⊥.

We also observe that a pair x, r completely determines a ciphertext y, z, w
that is a function of x and r and also that y, z completely determine x
and r.

We consider the following experiment: at step i, we answer a decryption
query y, z, w of A in the following way: if H−1

i (w) is equal to some x, r
that determine y, z, w then return x. Otherwise, return ⊥.

Note that the difference between this oracle and the real decryption or-
acle is that we may answer ⊥ when the real decryption oracle would
give an actual answer. However, we claim that A will not be able to tell
apart with non-negligible probability the difference between this decryp-
tion oracle and the real one. Indeed, the only difference would be if A
managed to ask the oracle a query: y, z, w satisfying the following:
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• w 6= w∗ (since if w = w∗ then we have that H−1
i (w) = x∗, r∗ and

hence A either asked a query that both oracles answer with ⊥ or it
asked the disallowed query y∗, z∗, w∗).

• w was not returned as the answer of any previous query x, r to H(·)
by A.

• If we let x, r be the values determined by y, z then H(x, r) = w.
However, since (x, r) was not asked before, the probability that this
happens is only 2−n.

Thus, we see that we can simulate the decryption box of A without
knowing f−1, x∗ and r∗. This means that A basically has no use for the
decryption box and hence it would be sufficient to prove that the scheme
is just CPA secure. This proof follows in a similar way to the previous
scheme.

Some practical issues One drawback of this scheme is that it uses a ci-
phertext of length 3n where n is the length of input for the trapdoor
permutation. Scheme that use n-bit long ciphertext are known in the
literature (see web page for links to papers).
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OAEP+ Have f : {0, 1}3n → {0, 1}3n a TDF, H1, H2, H3 random oracles, Enc(m): choose r ←R

{0, 1}n, h = H1(r)⊕m, s = H2(m, r), t = H3(h, s)⊕ r, output f(h, s, t)

1


	lec16new
	cca_rand_oracle
	lec16oaep

