
Lecture 14 - Public Key Cryptography.

Boaz Barak

March 24, 2010

Public key cryptography In the mid 1970’s, Diffie and Hellman, and (independently) Merkle,
began to challenge the conventional wisdom of ∼ 3000 years of cryptography, namely that
two parties must exchange some secret information before they can begin to communicate
confidentially. Merkle suggested the notion of a key exchange protocol in his 1974 class
project. This is a protocol in which Alice and Bob can interact over a public channel and as
a result obtain a secret key k that is known only to them. He gave a candidate protocol that
had non-trivial but rather weak security— the protocol takes T computational steps and an
attacker needs to spend roughly T 2 time to break it. (“Time” here is really the number of
invocations of a hash function / block cipher, in today’s processor speeds, one can perhaps
think of T = 109, T 2 = 1018.)

Diffie and Hellman considered the notion of a trapdoor function. They conjectured that such
a creature exists, and showed that if so, it can be used to obtain both public key encryption
and digital signatures, thus achieving confidentiality and integrity of communication over an
open channel. (Merkle also had some thoughts on how to solve the confidentiality issue.)

My understanding of the history is that Diffie and Hellman searched for functions that are
easy to compute and hard to invert, and Hellman’s colleague John Gill suggested modular
exponentiation. The problem was that it’s not known if exponentiation has a trapdoor that
allows to invert it. But then Diffie and Hellman realized that it can be used to achieve a
potentially exponentially secure version of Merkle’s key exchange protocol, hence the protocol
known today as Diffie-Hellman key exchange. (The Diffie-Hellman protocol also immediately
yields a probabilistic public-key encryption scheme, known today as El-Gamal encryption,
though at the time people didn’t realized that a secure public-key encryption must be prob-
abilistic.)

After Diffie and Hellman published their 1976 paper, the search for a trapdoor function began,
and in 1977 Rivest, Shamir and Adleman (RSA) gave a trapdoor function candidate closely
related to the factoring problem. Diffie-Hellman key exchange and public key encryptions and
signatures based on RSA are still the most popular public key cryptographic implementations
today. A year later in 1978, Rabin gave a trapdoor function inverting which is provably as
hard as factoring. Both the RSA and Rabin trapdoor functions are components that need to
be instantiated in a proper way with padding etc.. to yield a CPA or CCA secure public key
encryption, and many natural instantiations can be insecure, as people discovered over the
years.

Interestingly, a sequence of works (by Lamport, Goldwasser-Micali-Rivest, Goldreich-Goldwasser-
Micali, Goldreich, Naor-Yung, Rompel and others) culminated in showing that digital signa-
tures can be constructed from any one-way function, and hence trapdoor functions are not
inherent to their constructions.

1

Trapdoor functions. As far as we know, both one-way and pseudorandom permutations do not
help us to get public key encryption schemes. The way we obtain these is by using trap-
door functions (also known as trapdoor permutations). These are keyed collections with the
following property: there are two keys for each function: one to compute it in the forward
direction and one to compute it in the reverse direction (invert it). Now the key for the
forward direction can be given to the adversary (not inside a black box but really given to
him) and still this will not help him invert the function (that is, the function is a one-way
permutation to someone not knowing the invertion key or “trapdoor”).

Definition 1 (Trapdoor functions.). A trapdoor function collection is a collection F of finite
functions such that every f ∈ F is a one-to-one function from some set Sf to a set Tf . We
require the following properties:

Efficient generation, computation, and inversion There is an probabilistic polynomial-
time algorithm G that on input 1n outputs a pair (f, f−1), where these are two poly(n)
size strings that describe the functions f, f−1. That is, the mapping (x, f) 7→ f(x) and
(y, f−1) 7→ f−1(y) can be computed in polynomial time.

Efficient sampling There is a probabilistic polynomial-time algorithm that given f can
output a random element of Sf (or a distribution statistically close to a random element
of Sf).

One-wayness The function f is hard to invert. That is, for every polynomial-time A there
is a negligible function ε such that

Pr
(f,f−1)←RG(1n),x←RSf

[
A(1n, f, f(x)) = x

]
< ε(n)

We remark that this is a slight difference from the Boneh-Shoup definition that does not
allow the set S to depend on f , the RSA and Rabin trapdoor functions can be massaged
to fit the latter definition, and in fact even to ensure that the set S is {0, 1}n. Thus, later
in the course we will often assume The Trapdoor Permutation Axiom that there exists
such a trapdoor permutation family with domain and range being {0, 1}n. (The technical
term for such a collections is a doubly enhanced trapdoor permutation collection”, see http:

//www.wisdom.weizmann.ac.il/~oded/PSBookFrag/nizk-tdp.ps).

Examples of pseudorandom function.

Rabin trapdoor function. The primes and integer factorization have been studied by mathe-
maticians for thousands of years. Despite this, we still don’t know of a poly(n)-time algo-
rithm to factor n-digit numbers. This suggests the conjecture that such an algorithm does
not exist. For cryptography, we need a stronger, average-case, form, and we’ll assume that
factoring random Blum integers is hard. (A Blum integer is a number n = pq where p, q = 3
(mod ()4).) Let Bn denote the set {P ∈ [1..2n] : P prime and p = 3 (mod 4)}.

The Factoring Axiom. For every polynomial-time algorithm A there is a negligible func-
tion ε such that

Pr
P,Q←RBn

[A(P ·Q) = {P,Q}] ≤ ε(n)

The following family of is known as Rabin’s trapdoor function (we describe below actually a
variant due to Blum and Williams).

2

• Keys: choose P,Q random primes of length n with P,Q = 3 (mod 4), N = P ·Q. Note
that φ(N) (mod 4) = (P − 1)(Q− 1) (mod 4) = 2 · 2 (mod 4) = 0 (mod 4).

• Forward (public) key: N

• Backward (inversion/trapdoor) key: P,Q.

• Forward evaluation: RABINN (X) = X2 (mod ()N).

• RABINN (X) is a permutation on QRN where QRN is the set of quadratic residues
modulu N . We show this by giving the inverse: if X ∈ Z∗N let Y = RABINN (X) = X2

(mod N).

Our inverse will be the following: we’ll compute A = Y (mod P) and B = Y (mod Q).
Recall that P,Q = 3 (mod 4) and so we can say P = 4t + 3 and Q = 4t′ + 3. We’ll
compute X1 = At+1 (mod P) and X2 = Bt′+1 (mod q) and invert 〈X1, X2〉 using the
chinese remainder theorem to get X ′. If we prove X ′ = x then we’re done.

Because Chinese remaindering is a one-to-one operation it is enough to prove that X1 =
X (mod p) and X2 = X (mod q). We’ll use here the fact that X was itself a quadratic
residue and hence X = S2 (mod N) for some S.

We know that X (mod P) = S2 (mod P) and hence X1 = (X2)T+1 = S4(T+1) =
SP−1+2 = S2 (mod P) = X (mod P).

Similarly X2 = S2 (mod Q) and hence we’re done.

Note that again we can sample from a distribution close to the uniform distribution over
QRN by choosing a random S in {1, . . . , N − 1} and letting X = S2 (mod N).

One-wayness of Rabin’s function. The key to showing that the function is one-way is
the following lemma:

Lemma 1. Let X,Y be such that X 6= ±Y (mod N) but X2 = Y 2 (mod N). Then gcd(X−
Y,N) 6∈ {1, N}.

Proof. Since X 6= ±Y (mod N), N 6 |X − Y and N 6 |X + Y and so in particular gcd(X −
Y,N) 6= N . Moreover we know that X2 − Y 2 = 0 (mod N) and hence N |(X − Y)(X + Y).
This implies that gcd(X − Y,N) 6= 1, since otherwise we’d have N |X + Y .

This implies that given such X,Y , if N = PQ then we can compute gcd(X − Y,N) to find
either P or Q (and then find the other factor by computing N/gcd(X − Y,N)). By the same
argument we saw last class, if there is an invertor A for the Rabin function that succeeds
with probability ε , if we choose a random X and let Y = A(X2), then we have probability at
least ε/2 that Y will satisfy that Y 2 = X2 (mod N) but X 6= ±Y (mod N). Thus Rabin’s
function is a trapdoor function family under the factoring axiom.

RSA function RSA stands for Rivest, Shamir and Adelman this is the first trapdoor function
suggested (in 1977) and is still the most widely used.

• Keys: choose P,Q random primes of length `, N = P · Q. Note that ϕ(N) = |Z∗N | =
(P − 1)(Q− 1). Choose e at random from Z∗ϕ(N) (that is, gcd(e, ϕ(N)) = 1.1 Note that

ϕ(N) is even and hence, unlike in the Rabin case, e can not equal 2.

1Choosing e at random is just one possibility, one can also fix e to be any number in Z∗ϕ(N) \ 1, and different
choices have been considered in the literature, in particular people often choose e = 3 or e that is a prime of the form
e = 2i + 1, to get faster exponentiation.

3

• Forward (public) key: N, e

• Backward (inversion/trapdoor) key: d such that d = e−1 (mod ϕ(N)). That is, ed =
kϕ(N) + 1. Note that d can be computed from ϕ(N) (which can be computed using the
factorization P,Q of N .

• Forward evaluation: RSAN,e(X) = Xe (mod ()N).

• RSAN,e(X) is a permutation on Z∗N . We show this by giving the inverse: if X ∈ Z∗N
let Y = RSAN,e(X) = Xe (mod N). Then, Y d (mod N) = X. Indeed, for every group
G and element a ∈ G we have that a|G| = 1 and so in particular Xϕ(N) = 1. Hence
Xed = Xkϕ(N)+1 = Xkϕ(N)X = 1 ·X.

Note that we can generate a random element of Z∗N by choosing a random number X in
0, 1, . . . , N − 1 and verifying that gcd(X,N) = 1. The probability for that is overwhelming
since there are (P − 1)(Q− 1) = PQ− P −Q+ 2 elements in Z∗N and so only a tiny fraction
of the PQ numbers between 0 and N − 1 are not in Z∗N .

The RSA Assumption is that the RSA function is indeed a trapdoor function. It is known
to be a stronger assumption than the assumption that factoring random integers is hard (by
random I mean product of two large random primes). However, it is not known whether or
not these assumptions are equivalent. That is, as far as we know, it may be the case that
there is an efficient algorithm to invert the RSA function even if there is no efficient factoring
algorithm.

Using trapdoor functions for public key encryption Exercise...

Key exchange and the Diffie-Hellman protocol. Alice and Bob can communicate securely
over a line eavesdropped by Eve by having Alice generate a keypair (e, d) for a public-key
encryption scheme, send to Bob e, and then Bob can send messages to Alice by encrypting
them with e.

However, this is not necessarily the only way to do so. A different approach is using a key
exchange protocol. The first (and still most used) such protocol was given in the same paper by
Diffie and Hellman where they first suggested the “crazy” notion of public key cryptography.
We’ll first present the protocol and then talk about its security goals.

They use the fact that the group Z∗P for a prime P is cyclic. This means that there is some
number g ∈ Z∗P such that Z∗P = {1, g, g2, g3, . . . , gP−2}. g is called a generator for the group.
In other words, for every element X ∈ Z∗P , there is an i ∈ {0, . . . , P − 2} such that X = gi

(mod P). This number i is called the discrete log of X with respect to g.

It is known how to efficiently find a generator g for Z∗P given a prime P . It is not known how
to compute the discrete logarithm and this problem is believed to be hard.

The Diffie-Hellman protocol:

• Alice chooses prime P at random and finds a generator g.

• Alice chooses X ←R {0, 1, . . . , P − 2} and sends P, g and X̂ = gX (mod P) to Bob.

• Bob chooses Y ←R {0, 1, . . . , P − 2} and sends Ŷ = gY (mod P) to Alice.

• Alice and Bob both compute k = gXY (mod P). Alice does that by computing Ŷ X and
Bob does this by computing X̂Y .

• They then use k as a key to exchange messages using a private key encryption scheme.

4

Clearly, if Eve can compute the discrete log and obtain X from X̂ or Y from Ŷ then this
protocol is insecure. Thus the assumption that DH key exchange is secure is stronger than
the assumption that the discrete log function is hard to compute (or in other words, that
the exponentiation function is a one-way permutation). However, as far as we know, this
assumption is not sufficient for the security of Diffie-Hellman protocol. We need a stronger
assumption which is the following:

Decisional Diffie Hellman (DDH) assumption — Take 1. For every prime P and
generator g of Z∗P , the following two distributions A and B over triplets are computationally
indistinguishable: A = 〈gX , g,gXY 〉 for randomX and Y in {1, . . . , P−2} and B = 〈gX , gY , Z〉
for random X and Y in {1, . . . , P − 2} and ZinZ∗P .

This assumption implies that as far as Eve is considered, the key k is a random element in
Z∗P (i.e., a random number between 1 and P − 1) and hence can be safely used as a key for
any private key encryption scheme. For example, to send a message m of length `, Bob can
send Alice k ⊕m.

Unfortunately, this assumption is not true (although as far as we know it is “morally true”)
for a very simple reason: given a number Ŷ ∈ Z∗P , we can check if it has a square root modolu
P (i.e., whether it is a quadratic residue). It is known that gX is a quadratic residue if and
only if X is even. Thus, given gX and gY we can test whether X and Y are even (which
happens with probability 1/4) and in this case gXY will be also a quadratic residue, while a
random element in Z∗P will only be in QRP with probability 1/2.

Fortunately, the assumption can be made for other groups in which it is believed to be
true. One such group is the subgroup of quadratic residues mod P , for P of the form
P = 2Q+1. See http://crypto.stanford.edu/~dabo/abstracts/DDH.html for more about
this assumption.

Different types of permutations. It’s important not to get confused between pseudorandom
permutations (PRP), one way permutations (OWP) and trapdoor permutations (TDP). Both
one-way permutations and pseudorandom permutations are symmetric primitives, that are
related to private key cryptography. A one-way permutation is just one function rather than
a collection of functions, and it has the property that it’s easy to compute but hard to invert.
A pseudorandom permutation collection has the property that it’s indistinguishable from a
random permutation for an adversary that doesn’t know the key. The crucial difference in a
trapdoor permutation is that an adversary that is given the (forward) key still cannot invert
it, even though this is easy to do using the backward (i.e. trapdoor) key.

5

