RANK-PAIRING HEAPS
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Abstract. We introduce the rank-pairing heap, an implementation of heaps that combines the asymptotic effi-
ciency of Fibonacci heaps with much of the simplicity of pairing heaps. Unlike all other heap implementations that
match the bounds of Fibonacci heaps, our structure needs only one cut and no other structural changes per key de-
crease; the trees representing the heap can therefore evolve to have arbitrary structure. Although the data structure is
simple, its analysis is not. Our initial experiments indicate that rank-pairing heaps perform almost as well as pairing
heaps on typical input sequences and better on worst-case sequences.
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1. Introduction. A meldable heap (henceforth just a heap) is a data structure consisting
of a set of items, each with a distinct real-valued key, that supports the following operations:
— make-heap: return a new, empty heap.
insert(x, H): insert item x, with predefined key, into heap H.
— find-min(H): return the item in heap H of minimum key.
delete-min(H): if heap H is not empty, delete from H the item of minimum key.
meld(Hy, Hy): return a heap containing all the items in disjoint heaps H; and Hs,
destroying H; and Hs.
Some applications of heaps need either or both of the following additional operations:
— decrease-key(x, A, H): decrease the key of item x in heap H by amount A > 0,
assuming H is the unique heap containing x.
— delete(x, H): delete item x from heap H, assuming H is the unique heap containing
xZ.

We can allow equal keys by breaking ties using any total order of the items. We allow
only binary comparisons of keys, and we study the amortized efficiency [32] of heap opera-
tions. To obtain a bound on amortized efficiency, we assign to each configuration of the data
structure a non-negative potential, initially zero. We define the amortized time of an oper-
ation to be its actual time plus the change in potential it causes. Then for any sequence of
operations the sum of the actual times is at most the sum of the amortized times.

Since n numbers can be sorted by doing n insertions into an initially empty heap followed
by n delete-min operations, the classical 2(n logn) lower bound [25, p. 183] on the number
of comparisons needed for sorting implies that either insertion or minimum deletion must
take Q(log n) amortized time, where n is the number of items currently in the heap, which for
simplicity in stating bounds we assume is at least two. We investigate simple data structures
such that minimum deletion (or deletion of an arbitrary item if this operation is supported)
takes O(logn) amortized time, and each of the other supported heap operations takes O(1)
amortized time. These bounds match the lower bound. (The logarithmic lower bound can be
beaten in a more powerful model of computation that allows multiway branching [15, 19].)

Many heap implementations have been proposed over the years. We mention only those
directly related to our work. The binomial queue of Vuillemin [34] supports all the heap
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operations in O(logn) worst-case time per operation. This structure performs quite well in
practice [4]. Fredman and Tarjan [14] invented the Fibonacci heap specifically to support
key decrease operations in O(1) time, which allows efficient implementation of Dijkstra’s
shortest path algorithm [6, 14], Edmonds’ minimum branching algorithm [9, 16], and certain
minimum spanning tree algorithms [14, 16]. Fibonacci heaps support deletion of the mini-
mum or of an arbitrary item in O(log n) amortized time and the other heap operations in O(1)
amortized time.

Several years after the introduction of Fibonacci heaps, Fredman et al. [13] introduced
a related self-adjusting heap implementation, the pairing heap. Pairing heaps support all the
heap operations in O(log n) amortized time. Fibonacci heaps do not perform well in practice,
but pairing heaps do [26, 27]. One reason Fibonacci heaps perform poorly is that they need
an extra pointer per node. Fredman et al. [13] conjectured that pairing heaps have the same
amortized efficiency as Fibonacci heaps, in particular an O(1) amortized time bound for
key decrease. Despite empirical evidence supporting the conjecture [26, 31], Fredman [12]
showed that it is not true: pairing heaps and related data structures that do not store subtree
size information require Q(log log n) amortized time per key decrease if the other operations
are allowed only O(logn) amortized time. Whether pairing heaps meet this bound is open;
the best upper bound on the amortized time per key decrease is O(22V18187) [30° if the other
operations are only allowed O(logn) amortized time.

These results motivated work to improve Fibonacci heaps and pairing heaps. Some of
this work obtained better bounds, but at the cost of making the data structure more com-
plicated. In particular, the bounds of Fibonacci heaps can be made worst-case: run-relaxed
heaps [7] and fat heaps [22] achieve the bounds except for melding, which takes O(log n) time
worst-case, data structures of Brodal [2] and of Brodal and Okasaki [3] achieve the bounds
except for key decrease, which takes O(logn) time in the worst case, and a very complicated
data structure of Brodal [2] achieves all the bounds worst-case. Also, Elmasry [11] has pro-
posed an alternative to pairing heaps that does not store subtree size information but takes
O(loglogn) amortized time for a key decrease, matching Fredman’s lower bound, although
Elmasry’s data structure does not satisfy the technical restrictions of Fredman’s bound.

Working in a different direction, several authors proposed data structures with the same
amortized efficiency as Fibonacci heaps but intended to be simpler. Peterson [29] gave a
structure based on AVL trees. Hgyer [20] gave several structures, including ones based on
red-black trees, AVL trees, and a, b-trees. Hgyer’s simplest structure is one he calls a one-
step heap. Kaplan and Tarjan [23] filled a lacuna in Hgyer’s presentation of one-step heaps
and gave a related structure, the thin heap. Independently of our own work but concurrently,
Elmasry [10] developed violation heaps and Chan [5] quake heaps.

All these structures have in common that the trees representing the heap have some kind
of balance property. As a result, a key decrease can trigger not only a cut of a subtree, but
some additional tree restructuring. Our insight is that such restructuring is unnecessary: all
that is needed is a way to control the size of trees that are combined. Our new data structure,
the rank-pairing heap, does (at most) one cut and no other restructuring per key decrease. As
in the cited structures other than pairing heaps, we store a rank for each node. Ranks give
lower bounds (but not upper bounds) on subtree sizes. Only trees whose roots have equal rank
are combined. After a key decrease, rank changes (decreases) can cascade up the tree. But
since there is only one cut per key decrease, appropriate sequences of key decreases can cause
the trees representing the heap to evolve to have arbitrary structure. Rank-pairing heaps have
the same amortized efficiency as Fibonacci heaps and are, at least in our view, the simplest
such structure so far proposed. Although rank-pairing heaps are simple, their analysis is not.

SWe denote by lg the base-two logarithm.
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In our preliminary experiments, rank-pairing heaps perform almost as well as pairing heaps
on typical input sequences and faster on worst-case sequences.

The remainder of our paper consists of eight sections. Sections 2 and 3 review the com-
mon basis of binomial queues, Fibonacci heaps, and all the related structures. Each of these
data structures can be viewed as a set of single-elimination tournaments. Section 2 describes
such tournaments and ways of representing them. Section 3 develops two variants of bi-
nomial queues, one-pass binomial queues and one-tree binomial queues. Section 4 extends
one-pass binomial queues to support key decrease and arbitrary deletion, thereby obtaining
the rank-pairing heap or rp-heap. We present two types of rp-heaps, type 1 and type 2,
which differ only in the rule obeyed by ranks. Type 2 obeys a more relaxed rank rule, which
makes it slightly more complicated but simplifies its analysis and yields mostly smaller con-
stant factors. Section 5 analyzes the amortized efficiency of both types. Section 6 presents
a one-tree version of rank-pairing heaps. The modification that makes the data structure into
a single tree applies to either type 1 or type 2 rp-heaps, and preserves the efficiency results
of Section 5. Section 7 shows that some even simpler ways of implementing key decrease
have worse amortized efficiency. Section 8 describes our preliminary experiments compar-
ing rank-pairing heaps with pairing heaps. Section 9 gives our conclusions and mentions
some open problems. A preliminary version of some of this work appeared in a conference
paper [18].

2. Tournaments. The basis of the heap implementations mentioned in the introduction,
as well as of our own, is the (single-elimination) tournament. A fournament is either empty,
or consists of a single item, the winner, or is formed from two item-disjoint tournaments by
linking them. To link two tournaments, combine their sets of items and compare the keys of
their winners. The item of smaller key is the winner of the link and of the tournament formed
by the link; the item of larger key is the loser of the link. Building an n-item tournament
takes n — 1 comparisons; the winner of the tournament is the item of minimum key.

There are (at least) four equivalent representations of a tournament. (See Figure 2.1.)
The full representation is a full binary tree with one leaf per item and one non-leaf per link.
Each non-leaf contains the winner of the corresponding link. Thus the nodes containing a
given item form a path in the tree, consisting of a leaf and the non-leaves corresponding to
the links won by the item. The tree is heap ordered: the item in a node has minimum key
among the items in the descendants of the node.

We obtain the half-full representation from the full representation by removing every
item from all but the highest node containing it. This representation is a binary heap-ordered
tree in which the root is full, each parent has one full and one empty child, and each item
occurs in one (full) node.

Both the full and the half-full representation use 2n — 1 nodes to represent an n-item
tournament. The heap-ordered representation uses only n nodes. It is an ordered tree in
which the items are the nodes and the children of an item are those that lost comparisons to
it, most-recent comparison first. The tree is heap-ordered but not in general binary. Most
of the heap implementations mentioned in the introduction were originally presented in the
heap-ordered representation.

We obtain the half-ordered representation from the heap-ordered representation by using
the binary tree representation [24, pp. 332-346] of a tree: the left child of an item in the
half-ordered representation is its first child in the heap-ordered representation, and the right
child of an item in the half-ordered representation is its next sibling in the heap-ordered
representation. The resulting tree is a half-tree: a binary tree whose root has a missing right
subtree. The half-tree is half-ordered: the key of any item is less than that of all items in its
left subtree. In a half-ordered half-tree we define the ordered ancestor of a node z other than
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FIG. 2.1. Four representations of a tournament: a) full, b) half-full, c) heap-ordered, and d) half-ordered.

the root to be the parent of the nearest ancestor of x that is a left child. This is just the parent
of x in the heap-ordered representation.

The half-ordered representation appears in the original paper on pairing heaps [13]. Pe-
terson [29] and Dutton [8] each independently reinvented it, unfortunately swapping left and
right. We shall use the half-ordered representation in its original form, which is consistent
with Knuth’s description [24]. The half-ordered representation has two advantages over the
heap-ordered representation: it is closer to an actual implementation, and it unifies the treat-
ment of key decrease. All four representations of tournaments are fully equivalent, however,
and all of our results, as well as all previous ones, can be presented in any of them, if one
does an appropriate mapping of pointers.

We represent a binary tree by storing with each node x pointers to its left and right
children, left(x) and right(x), respectively. The right spine of a node in a binary tree is the
path from the node through right children to a missing node. Henceforth all our binary trees
are half-ordered. Linking takes the following form on half-trees (see Figure 2.2): compare
the keys of the roots. If z and y are the roots of smaller and larger key, respectively, detach
the old left subtree of  and make it the right subtree of y; then make the tree rooted at y the
new left subtree of z. A link takes O(1) time.

FIG. 2.2. A link of two half-trees with roots x and y, x having smaller key.

3. Two New Variants of Binomial Queues. The heap implementations mentioned in
the introduction, and ours, are extensions of the following generic implementation. We repre-
sent a heap by a set of half-trees whose nodes are the items in the heap. We represent the set
by a singly-linked circular list of the tree roots, with the root of minimum key first. Access to
the list is via the first root.
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We implement the various heap operations, excluding key decrease and arbitrary dele-
tion, as follows. To find the minimum in a heap, return the first root. To make a heap, create
an empty list of roots. To insert an item, make it a one-node half-tree and insert it into the
list of roots, in first position if it has minimum key, second if not. To meld two heaps, cate-
nate their lists of roots, making the root of minimum key first on the new list. To delete the
minimum, disassemble the half-tree rooted at the first root x, as follows. Let y be the left
child of z. Delete x and cut each edge on the right spine of y. This makes each node on the
right spine of y the root of a new half-tree, containing itself and its left subtree. Add the new
half-trees to the remaining half-trees. Find the root of minimum key, and make it first on the
root list. Additionally, after each heap operation, do zero or more links of half-trees to reduce
their number. With this implementation, the nodes that lost links to a given node x are exactly
those on the right spine of the left child of x.

This data structure is only efficient if the links are done carefully. In pairing heaps [13],
of which there are several forms, all the links are of half-trees whose roots are adjacent in the
list of roots. This method is not efficient: Fredman [12] showed that to obtain the bounds of
Fibonacci heaps it is necessary (subject to certain technical requirements of the proof) to do
many links of half-trees of related sizes. Except for pairing heaps, all previous versions of
this data structure use non-negative node ranks as a proxy for size. The simplest way to use
ranks is as follows. Let the rank of a half-tree be the rank of its root. Give a newly inserted
item a rank of zero. Only link two half-trees if they are of equal rank; after the link, increase
the rank of the winning root by one; do not change the loser’s rank. See Figure 3.1.

FI1G. 3.1. A link of two half-trees with roots x and y, x having smaller key. Ranks are to the right of nodes.

If all links are done this way, every half-tree ever in a heap is perfect; namely, it consists
of aroot whose left subtree is a perfect binary tree, each child has rank one less than that of its
parent, and the tree contains 2k nodes, where k is its rank. Thus the maximum rank is at most
lg n. The resulting data structure is the binomial queue, so-called because in the heap-ordered
representation the number of nodes of height h in a tree of rank r is the binomial coefficient
(;) (See Figure 3.2.)
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FIG. 3.2. The c) heap-ordered and d) half-ordered representations of a tournament from Figure 2.1. Ranks are
to the right of nodes.

In the original version of binomial queues [34], links are done eagerly, to maintain the
invariant that a heap contains at most one root per rank. This gives an O(logn) worst-case
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time bound for insertion, meld, and delete-min. Doing links only during minimum deletions
gives better amortized efficiency. One method, used in Fibonacci heaps and all the other
similar structures, is to do as many links as possible after a minimum deletion, leaving at most
one root per rank. This method would work for us as well, but we prefer a lazier alternative,
giving what we call the one-pass binomial queue: after a minimum deletion, form a maximum
number of pairs of half-trees of equal rank, and link these pairs but no others. This linking
method resembles the one used in the lazy variant of pairing heaps [13].

To implement one-pass linking, maintain a set of buckets, one per rank. During a min-
imum deletion, process the half-trees, beginning with those formed by the disassembly and
finishing with the remaining ones. To process a half-tree, add it to the bucket for its rank if this
bucket is empty; if not, link the half-tree with the half-tree in the bucket and add the newly
formed half-tree to an output list representing the updated heap, leaving the bucket empty.
Throughout the processing, keep track of the nonempty buckets. Once all the half-trees have
been processed, add any half-tree still in a bucket to the output list, leaving all the buckets
empty.

To analyze one-pass binomial queues, we define the potential of a heap to be the number
of half-trees.

THEOREM 3.1. The amortized time for an operation on a one-pass binomial queue is
O(1) for a make-heap, find-min, insert, or meld, and O(logn) for a delete-min.

Proof. A make-heap, find-min, insert, or meld takes O(1) actual time. Of these opera-
tions, only an insert increases the potential, by one. Thus each of these operations takes O(1)
amortized time. Consider a minimum deletion. Disassembling the half-tree rooted at the node
of minimum key increases the number of half-trees and hence the potential by at most 1g n.
Let h be the number of half-trees after the disassembly. The entire minimum deletion takes
O(h+1) time. Scale this time to be at most 2/2-+O(1). (This is equivalent to multiplying the
potential by a constant factor.) Each link after the disassembly reduces the potential by one.
At most 1g n + 1 half-trees do not participate in a link, so there are at least (h —1gn — 1)/2
links. The minimum deletion thus increases the potential by at most (3/2)1gn — h/2 + 1/2,
giving an amortized time of O(logn). O

Theorem 3.1 holds if we do arbitrary additional links of half-trees of equal rank during
a minimum deletion, up to and including doing links until there is at most one half-tree per
rank.

We conclude this section by presenting a one-tree version of binomial queues with the
same amortized efficiency as the one-pass version. Maintaining the heap as a single half-tree
requires linking half-trees of different ranks. We call such a link unfair; we call a link of two
half-trees of equal rank fair. After an unfair link, leave the loser’s rank unchanged; either
leave the winner’s rank unchanged or, optionally, increase it to any value not greater than the
loser’s rank. (Thus if the loser’s rank is less than the winner’s, the winner’s rank does not
change.) Unfair links do not adversely affect the amortized efficiency of the data structure, if
one does as few as possible.

A one-tree binomial queue consists of a single half-tree. To find the minimum, return the
root. To make a heap, create an empty half-tree. To insert a new item, make it into a one-node
half-tree of rank zero and link it with the existing half-tree. To meld two heaps, link their
half-trees. To delete the minimum, delete the root and disassemble the half-tree into one half-
tree rooted at each node on the right spine of the old left child of the deleted root. Process the
new half-trees as in the one-pass method, but add each tree formed by a link not to an output
list but to the set of trees to be processed. Once all half-trees are in buckets, remove them
from the buckets and link them in any order (by unfair links) until only one half-tree remains.

LEMMA 3.2. A one-tree binomial queue of rank k contains at least 2F nodes. Hence
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k<lgn.

Proof. We prove the lemma by induction on the number of links and half-tree disassem-
blies. A new one-node half-tree has rank zero and satisfies the lemma. A fair link combines
two half-trees of equal rank, say &, into one half-tree of rank £+ 1. By the induction hypothe-
sis each component half-tree contains at least 2* nodes, so the combined half-tree contains at
least 2°*1 nodes and satisfies the lemma. An unfair link combines two half-trees of different
ranks, say j and k£ with j < k, into one half-tree of rank at most k. By the induction hypoth-
esis, the component half-tree of rank k contains at least 2k nodes, so the combined half-tree
satisfies the lemma. A half-tree disassembly undoes all the links won by the root and deletes
the root. Since the resulting half-trees satisfied the lemma when they were created, they
satisfy the lemma after the disassembly. [0

To analyze one-tree binomial queues, we define the potential of a node to be zero if it is
the loser of a fair link or one otherwise (it is a root or the loser of an unfair link); we define the
potential of a heap to be the sum of the potentials of its nodes. A minimum deletion undoes
all the links won by the node deleted. The loser of each such link becomes a root and is no
longer a loser; thus its potential increases by one if the link was fair and does not change if
the link was unfair.

THEOREM 3.3. The amortized time for an operation on a one-tree binomial queue is
O(1) for a make-heap, find-min, insert, or meld, and O(logn) for a delete-min.

Proof. The analysis of find-min, make-heap, insert, and meld is just like that of one-pass
binomial queues except that each insert or meld does a link. Each such link takes O(1) time
and does not increase the potential. Consider a minimum deletion. Disassembling the half-
tree increases the potential by one for each fair link won by the root. Each such link increased
the rank of the root when it took place. By Lemma 3.2 there were at most 1g n such links, so
the disassembly increases the potential by at most lg n. Let h be the number of half-trees after
the disassembly. The entire minimum deletion takes O(h + 1) time. Scale this time to be at
most h + O(1). Each fair link after the disassembly reduces the potential by one; each unfair
link does not change it. There are at most lg n unfair links, so there are at least h — Ign — 1
fair ones. Hence the minimum deletion increases the potential by at most 21gn — h + 1,
giving an amortized time of O(logn). O

4. Rank-Pairing Heaps. Our main goal is to implement key decrease so that it takes
O(1) amortized time. Once key decrease is supported, one can delete an arbitrary item by de-
creasing its key to —oo and doing a minimum deletion. A parameter of both key decrease and
arbitrary deletion is the heap containing the given item. If the application does not provide
this information and melds occur, one needs a separate disjoint set data structure to main-
tain the partition of items into heaps. With such a data structure, the time to find the heap
containing a given item is small but not O(1) [21].

We shall extend one-pass binomial queues to support key decrease. We call the resulting
data structure the rank-pairing heap. We develop two types of rank-pairing heaps: type 1,
which is simpler but harder to analyze and has larger constant factors in the time bounds, and
type 2, a relaxed version that is easier to analyze and has smaller constant factors in the time
bounds.

In order to implement key decrease, we add parent pointers to the half-trees, so that there
are three pointers per node instead of two. As observed by Fredman et al. [13], two pointers
per node suffice: each node points to its left child, or to its right child if it has no left child,
and to its right sibling, or to its parent if it has no right sibling. This alternative representation
trades time for space.

Once the data structure supports parental access, we can decrease the key of item x in
heap h as follows. (See Figure 4.1.) Reduce the key of x. If x is not a root, x may now violate
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half order. To restore half order, create a new half-tree rooted at x, by detaching the subtrees
rooted at x and at y = right(x), reattaching the subtree rooted at y in place of the original
subtree rooted at z, and adding x to the list of roots. Whether or not x was originally a root,
make it the first root if its key is now minimum.

FIG. 4.1. Restructuring during a key decrease.

Remark: If z is not originally a root, there is no way in our representation to test in O(1)
time whether decreasing the key of x has violated half order: such a test requires access to
the ordered ancestor of . Thus we make = a root whether or not a violation occurs.

This implementation is correct, but it destroys the efficiency of the data structure, as we
show in Section 7: there are arbitrarily long sequences of operations that take {2(n) time per
operation. The trouble is that a key decrease can remove an arbitrary half-tree, and a sequence
of such removals can produce a half-tree whose rank is w(logn). To preserve efficiency, we
need a way to guarantee that the ranks remain O(log n), one that takes only O(1) amortized
time per key decrease.

In Fibonacci heaps, the solution is to do a sequence of half-tree removals after each
key decrease, but only O(1) amortized per decrease. These removals occur along a path of
ancestors in the heap-ordered representation. Since the parent of a node x in the heap-ordered
representation is its ordered ancestor in the half-ordered representation, implementation of
this method requires an additional set of pointers, to ordered ancestors, which is one reason
Fibonacci heaps do not perform well in practice.

There are many other ways to accomplish the same objective: adapt a known balanced
tree structure, such as AVL trees [1] or red-black trees [17]; devise a new balance rule, as
in Hgyer’s one-step heaps [20] (thick heaps [23]), or thin heaps [23]; or do more-global
rebuilding, as in violation heaps [10] and quake heaps [5]. Another approach, used in relaxed
heaps [7], is to allow violations of half order. Then a key decrease does not require immediate
action, it just creates one more violation. To preserve efficiency, the set of violations must be
controlled in some way, which requires periodic restructuring to reduce the set of violations.

All of these methods have one thing in common: they do extra restructuring to maintain
some balance condition. Our insight is that no such balance condition is needed: it suffices
just to update ranks, in particular to decrease the ranks of certain ancestors of the node x
whose key decreases. The only restructuring is the removal of the half-tree rooted at x.
A sequence of key decreases can create half-trees of arbitrary structure, but ranks remain
logarithmic, which preserves efficiency.

A little terminology helps the presentation. We denote by p(z) and r(z) the parent and
rank of node x, respectively. We adopt the convention that the rank of a missing node is —1.
If x is a child, its rank difference is Ar(x) = r(p(z)) — r(x). A child of rank difference
4 18 an 2-child; a root whose left child is an ¢-child is an #-node; a non-root whose children
are an i-child and a j-child is an ¢, j-node. These definitions apply even if the left child of a
root, or either or both children of a non-root, are missing. The definition of an 7, j-node does
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not distinguish between its left and right child. In a one-pass binomial queue, every root is a
1-node and every non-root is a 1,1-node. We shall relax the second half of this invariant.

Our key observation is that if a node has a 0-child, there is no harm in its other child
having arbitrarily large rank difference. With this in mind, we introduce the type-1 rank rule:
every root is a 1-node and every child is a 1,1-node or a 0, 7-node for some ¢ > 0 (possibly
different for each node). A type-1 rank-pairing heap (rp-heap) is a set of heap-ordered half-
trees whose nodes have ranks that obey the type-1 rank rule.

Ranks give an exponential lower bound (but not an upper bound) on subtree sizes:

LEMMA 4.1. In a type-1 rp-heap, every node of rank k has at least 2F descendants
including itself. at least 2T — 1 if it is a child. Hence k < 1gn.

Proof. The second part of the lemma implies the first and third parts. We prove the
second part by induction on the height of a node. A leaf has rank zero and satisfies the second
part. Let  be a child of rank k£ whose children satisfy the second part. If = is a 0, ¢-node, its
0-child has 25t — 1 descendants by the induction hypothesis; so does z. If z is a 1,1-node,
x has 2(2F — 1) + 1 = 2¥+! — 1 descendants by the induction hypothesis. 0

The operations make-heap, find-min, insert, meld, and delete-min are exactly the same on
type-1 rp-heaps as on one-pass binomial queues, except for one change in minimum deletion:
during the half-tree disassembly, give each new root a rank that is one greater than that of
its left child. Since every link is fair, each link preserves the rank rule: the loser becomes a
1,1-node.

To decrease the key of a node x, proceed as follows (see Figure 4.2): Reduce the key of
x. If x is a root, make it the first root if its key is now minimum. If z is not a root, detach
the subtrees rooted at x and at its right child y, reattach the subtree rooted at y in place of the
one rooted at x, and add x to the list of roots, in first position if its key is minimum, second
if not. Finish by restoring the rank rule: make the rank of = one greater than that of its left
child; and, starting at the new parent of y, walk up through ancestors, reducing their ranks to
obey the rank rule, until reaching the root or reaching a node whose rank needs no reduction.
To do the rank reductions, let © = p(y) and repeat the following step until it stops:

Type-1 Rank-Decrease Step: If v is a root, set r(u) = r(left(u)) + 1 and stop. Otherwise,
let v and w be the children of u. Let kK = max{r(v),r(w)} if r(v) # r(w), k = r(v) + 1if
r(v) = r(w). If k > r(u), stop. Otherwise, let r(u) = k and u = p(u).

Remark: In a rank-decrease step it cannot happen that k& > r(u), but this can happen in
the one-tree variant of rp-heaps that we develop in Section 6.

LEMMA 4.2. The rank-reduction process restores the rank rule.

Proof. Since all rank differences are non-negative, r(y) < r(x) before the key decrease.
If r(y) < r(x), replacing = by y may cause p(y), but only p(y), to violate the rank rule. If u
violates the rank rule before a rank-decrease step, the step decreases its rank to make it obey
the rule. This may cause p(u), but only p(u), to violate the rule. An induction on the number
of steps gives the lemma. 0

Before analyzing type-1 rp-heaps, we introduce a relaxed version, obeying the fype-2
rank rule: every root is a 1-node and every child is a 1,1-node, a 1,2-node, or a 0, ¢-node for
some ¢ > 1 (possibly different for each node). A type-2 rank-pairing heap (rp-heap) is a set
of heap-ordered half-trees whose nodes have ranks that obey the type-2 rank rule.

The heap operations on type-2 rp-heaps are exactly the same as on type-1 rp-heaps except
that the rank reduction process restores the type-2 rule by using the following step in place of
the type-1 step:

Type-2 Rank-Decrease Step: If w is a root, set 7(u) = r(left(u)) + 1 and stop. Otherwise,
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k-1

FIG. 4.2. Key decrease in a type-1 rp-heap.

let v and w be the children of u. Let k& = max{r(v),r(w)} if |r(v) — r(w)| > 1, k =
max{r(v),r(w)} + 1if |r(v) — r(w)| < 1. If k > r(u), stop. Otherwise, let r(u) =
u = p(u).

Lemma 4.2 holds for type-2 rank reduction by the same proof. In either type of rank
reduction, each successive rank decrease is by the same or a smaller amount, and it can never
be the case that k > r(u), although this can happen in the variant we develop in Section 6.

The rank bound for type-2 rp-heaps is bigger by a constant factor than that for type-
1 heaps, but is the same as that for Fibonacci heaps. We denote by F}, the k™ Fibonacci
number, defined by the recurrence Fy = 0, F} = 1, Fy, = Fy—1 + Fy_ofor k > 1. We
denote by ¢ the golden ratio, (1 4+ v/5)/2.

LEMMA 4.3. In a type-2 rp-heap, every node of rank k has at least Fj, o > ¢* descen-
dants including itself, at least Fy.13 — 1 if it is a child. Hence k < log, n.

Proof. The second part of the lemma implies the first and third parts, given the known [24,
p. 18] inequality F}, o > ¢*. We prove the second part by induction on the height of a node.
A missing node satisfies the second part; so does a leaf. Let x be a child of rank k£ whose
children satisfy the second part. If z is a 0, ¢-node, then the 0-child of x has at least Fj, 43 — 1
descendants by the induction hypothesis; so does x. If x is a 1,1- or 1,2-node, then x has at
least Fy11 — 1+ Fy42 — 1+ 1 = Fy13 — 1 descendants by the induction hypothesis, since
Fri1 < Fiyo

5. Amortized Efficiency of Rank-Pairing Heaps. In this section we analyze the ef-
ficiency of rp-heaps. We begin by analyzing type-2 heaps, which is easier than analyzing
type-1 heaps. We use a potential function argument. We assign a potential to every heap
equal to the sum of its node potentials. The potential of a node is the sum of its base potential
and its extra potential. The base potential of a node is the sum of the rank differences of its
children, minus one. The extra potential of a node is one if it is a root, minus one if it is a
1,1-node, and zero otherwise. Thus the potential of a node is zero if it is a 1,1-node, one if it
is a root, two if itis a 1,2-node, or ¢ — 1 if it is a 0, i-node.

THEOREM 5.1. The amortized time for an operation on a type-2 rp-heap is O(1) for a
make-heap, find-min, insert, meld, or decrease-key, and O(logn) for a delete-min.

Proof. A make-heap, find-min, or meld operation takes O(1) actual time and does not
change the potential; an insertion takes O(1) time and increases the potential by one. Hence
each of these operations takes O(1) amortized time. Consider a minimum deletion. Each new
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root created by the disassembly has the potential it needs (one unit) unless it was previously
a 1,1-node. At most one 1,1-node can become a new root for each rank less than that of the
deleted root. By Lemma 4.3 there are at most log n such 1,1-nodes. Thus the disassembly
increases the potential by at most log, n. Let h be the number of half-trees after the disas-
sembly. The entire minimum deletion takes O(h + 1) time. Scale this time to be at most
h/2 + O(1). Each link after the disassembly converts a root into a 1,1-node, which reduces
the potential by one. At most log, n + 1 half-trees do not participate in a link, so there are at
least (h —log, n — 1) /2 links. The minimum deletion thus increases the potential by at most
O(logn) — h/2, giving an amortized time of O(logn).

The novel part of the analysis is that of key decrease. Consider decreasing the key of
anode z. If x is a root, the key decrease takes O(1) actual time and does not change the
potential. Suppose z is not a root. Let ug = left(x), let uy = x, and let us, . . ., ux be such
that u; = p(uj_l), u; for 2 < j < k decreases in rank as a result of the key decrease, and
uy, is either a root or does not decrease in rank. For 1 < j < k let v; be the child of u;
other than u;_;. Let r, 7’ denote ranks before and after the key decrease, respectively. The
only nodes whose potential changes as a result of the key decrease are uq, . .., ug. Consider
the sum of the base potentials of these nodes before and after the key decrease. The sum
of the rank differences of vg,us, ..., ur—_1 before the key decrease telescopes to r(uy) —
r(vg). The sum of the rank differences of vg, ug, . . ., ur—1 after the key decrease telescopes
to 7' (ug) — r’'(vo) < r(ug) — r(vg) since ' (ug) < r(ug) and 7' (vg) = r(vg). Also,
Ar'(ug) = 1 < Ar(ug) + 1, and Ar'(v;) < Ar(v;) —1for 2 < j < k. It follows that
the sum of the base potentials of ug, u,...,u, drops by at least £ — 3 as a result of the
key decrease. Consider the sum of the extra potentials of uq, . . ., u; before and after the key
decrease. The following argument shows that at most two of these nodes can be 1,1-nodes
before the key decrease. Let j be minimum such that «; is a 1,1-node. Node u; can decrease
in rank by at most one; hence u;s for j' > j can decrease in rank by at most one. If u;/ for
j' > jisal,l-node, u; becomes a 1,2-node as a result of u,,_; decreasing in rank by one,
so u; does not itself decrease in rank, and j' = k. We conclude that the sum of the extra
potentials of ug, u1, ..., uy increases by at most three as a result of the key decrease: at most
two 1,1-nodes become non-1,1-nodes, increasing the sum by two, and u; becomes a root,
increasing the sum by one. If u; were originally a 1,1-node, its extra potential increases by
two, since it is both an old 1,1-node and a new root. Combining results, we see that the key
decrease causes the potential to drop by at least & — 6. Scale the time of a rank-decrease step
so that it is at most one. Then the amortized time of the key decrease is O(1). O

The analysis of type-1 rp-heaps is more complicated. We define the potential of a heap
to be the sum of its node potentials, but we assign potentials to nodes based on their grand-
children, not just their children. We call a non-root node good if it is a root whose left child
is a 1,1-node, or it and both of its children are 1,1-nodes, or it is a 0,1-node whose 0-child is
a 1,1-node; otherwise, the node is bad. We define the potential of a leaf to be zero if it is a
non-root or 3/2 if it is a root. We define the potential of a non-leaf node to be the sum of the
rank differences of its children, plus two if it is a root, minus one if it is good, plus three if it
is bad. Thus its potential is zero if it is a good 0,1-node, one if it is a good 1,1-node, two if
it is a good root, four if it is a bad 0,1-node, five if it is a bad 1,1-node, six if it is a bad root,
and 7 4+ 3 if itis a 0, ¢-node for ¢ > 1.

Our analysis of minimum deletion in type-1 rp-heaps uses the fact that for each rank at
most one half-tree of this rank formed by the disassembly is not linked to another half-tree
formed by the disassembly. This fact follows from our linking method (see Section 3), which
first links the new half-trees formed by the disassembly and then links remaining half-trees.
Our analysis fails if links are done in arbitrary order. In contrast, our analysis of type-2
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rp-heaps (above) is valid for any linking order.

THEOREM 5.2. The amortized time for an operation on a type-1 rp-heap is O(1) for a
make-heap, find-min, insert, meld, or decrease-key, and O(logn) for a delete-min.

Proof. A make-heap, find-min, or meld operation takes O(1) actual time and does not
change the potential; an insertion takes O(1) time and increases the potential by 3/2. Hence
each of these operations takes O(1) amortized time.

Consider a minimum deletion. During the disassembly and the links of half-trees formed
by the disassembly, we give each non-leaf root of a tree formed by the disassembly a tem-
porary potential of four whether it is good or bad. We claim that if we do this, the increase
in potential caused by the disassembly is at most 41gn. Deletion of the root of minimum
key reduces the potential by at least 3/2. The only nodes whose potential can increase are
the new roots. At most one leaf can become a root, increasing the potential by 3/2. Such
an increase is cancelled by the decrease resulting from deletion of the root of minimum key.
Each bad node that becomes a root already has the four units of potential it needs as a new
root. Consider a good node x that becomes a root. There are two cases. If x is a 1,1-node, or
z is a 0,1-node whose right child is a 1-child, we charge the four or fewer units of potential
needed by x as a new root to r(x). If « is a 0,1-node whose right child is a O-child, we charge
the four units needed by x as a new root to r(y), where y is the node nearest x on the right
spine of x that is not good. Since each node on the path from z to y except x is a 1,1-node,
and each such node except y is good, (y) can only be charged once for such a 0,1-node, and
it cannot be charged for a good 1,1-node or a 0,1-node whose right child is a 1-child. Thus
the increase in potential caused by the disassembly is at most four for each rank less than the
maximum rank, verifying the claim.

Now consider the links of new half-trees formed by the disassembly. Each such link of
two leaves reduces the potential by one. Each such link of two non-leaves converts a root into
a 1,1-node and makes the remaining root good. Before the link, these nodes have potential
eight (four plus four); after the link, they have potential at most seven. Thus the link reduces
the potential by one.

After the links of new half-trees formed by the disassembly, there is at most one new
half-tree per rank that has not been linked. We now give the root of each such half-tree its
correct potential, two if it is good, six if it is bad. This increases the potential by at most
two units for each rank less than the maximum rank, for a total of at most 21gn. Then we
do the remaining links, each of which links a new half-tree and an old half-tree, or links two
old half-trees. An extension of the argument in the previous paragraph shows that each such
link reduces the potential by at least one. This is immediate if the roots of the half-trees to
be linked are leaves, or if their potential totals at least eight. The remaining case is that both
roots are good. Then their total potential is four before the link but three after it, since they
both remain good.

We conclude that the net increase in potential caused by the entire minimum deletion is
at most 61gn minus one per link. Let /& be the number of half-trees after the disassembly.
The entire minimum deletion takes O(h + 1) time. Scale this time to be at most /2 + O(1).
At most lgn + 1 half-trees do not participate in a link, so there are at least (b — lgn — 1)/2
links. The minimum deletion thus increases the potential by at most (13/2)1lgn—h/2+1/2,
giving an amortized time of O(logn).

The analysis of a key decrease at a node x is just like that for type-2 heaps, except that
we must show that the key decrease can make only O(1) nodes bad. A good 1,1-node cannot
become bad; it can only become a good 0,1-node. A good 0,1-node cannot decrease in rank,
so if it becomes bad it is the last node at which a rank-decrease step occurs. If x becomes
a root, it can only become bad if it was previously a good 0,1-node with a right 0-child, in
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which case no ranks decrease and z is the only node that becomes bad. For the root of the old
half-tree containing x to become bad, its left child must be a 1,1-node, and the old root is the
only node that becomes bad. We conclude that the key decrease can make only one node bad,
for a potential increase of at most four. It can also create a new root, for a potential increase
of two. By the argument in the proof of Theorem 5.1, the key decrease reduces the potential
by at least one for each node other than = whose rank decreases. Thus the key decrease takes
O(1) amortized time. O

The worst-case time for a key decrease in an rp-heap of either type is ©(n), as it is for
Fibonacci heaps. We can reduce this to O(1) by delaying each key decrease operation until
the next minimum deletion. This requires maintaining the set of nodes that might have the
minimum key. This set includes all the roots and all nodes whose keys have decreased since
the last minimum deletion. Making this change complicates the data structure, which may
worsen its performance in practice.

6. One-Tree Rank-Pairing Heaps. Like binomial queues, rp-heaps retain their effi-
ciency to within a constant factor if arbitrary additional fair links occur during minimum
deletions. We can obtain a one-tree version of rp-heaps with the same efficiency if we allow
unfair links as well. The construction, which consists of two steps, works for either type 1 or
type 2.

The first step is to augment the half-tree data structure by maintaining, for each node
z, the set of half-trees whose roots lost unfair links to x. We represent a heap by such an
augmented half-tree. To do an unfair link between two half-trees, compare the keys of their
roots and add the half-tree rooted at the loser to the set of half-trees of the winner. To insert
an item into a heap, make the item into a one-node half-tree with an empty set of half-trees
and link it with the half-tree representing the heap. To meld two heaps, link their half-trees.
In each of these operations the link can be either fair or unfair; do it correspondingly. To
delete the minimum of a heap, disassemble the half-tree representing the heap, add all the
new half-trees to the set of half-trees whose roots lost unfair links to the deleted root, do fair
links between half-trees of equal rank in this set until no two half-trees have equal rank, and
then do unfair links to combine the remaining half-trees into a single half-tree. To decrease
the key of a node z, proceed as in a one-pass rp-heap unless x is a root that lost an unfair
link, in which case decrease the key of = and remove its half-tree from the set containing it.
In either case finish the key decrease by linking the half-tree rooted at = with the half-tree
representing the heap; the link can be either fair or unfair.

To implement this method we represent each set of half-trees by a doubly-linked list of
their roots; we need double linking because deletions occur. Since a root has no parent and
no right child, we can use the parent and right child pointers to store the list pointers, but each
node needs one additional pointer, to the first root on its list. (See Figure 6.1.)

The second step eliminates the need for extra pointers and makes the data structure into
a true one-tree representation. We change the representation as follows. For each node x,
catenate the right spine of left(x) with the root list of 2. Now the right spine of left(x)
contains the nodes that lost fair links to x followed by those that lost unfair links to z. To do
an unfair link in this representation, add the loser to the bottom of the right spine of the left
child of the winner, rather than to the top. Also, give the loser of an unfair link a temporary
rank of —1; this prevents rank reduction from propagating through such a node. When the
loser of an unfair link becomes a root again, either because its key has decreased or as a result
of disassembly, restore its correct rank, which is one greater than that of its left child.

With this change, a heap is just a half-tree. To do a minimum deletion, disassemble the
half-tree, and link the half-trees formed by the disassembly until only one half-tree remains;
do fair links until no more are possible, followed by unfair links. To do a key decrease,
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losers of unfair links

/—k—\

FIG. 6.1. A one-tree rp-heap representation obtained by augmenting the half-tree data structure with a list of
losers of unfair links for each node.

losers of fair links

losers of unfair links

FIG. 6.2. A one-tree rp-heap representation that uses three pointers per node. Unfair losers get a temporary
rank of —1 to prevent rank reduction from propagating through them.

proceed as in a one-pass rp-heap. Once the rank reduction process stops, if there are two
half-trees, link them.

To implement this method efficiently, we need to change the pointer structure so that
unfair links can be done in O(1) time. One way of doing this is to make each node with a left
child point not to its left child but to the bottommost node on the right spine of its left child,
and to make this bottommost node (which has no right child) point to the left child. (See
Figure 6.2.) Other representations are possible. Which is best is a question for experiments
to resolve.
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The analysis of one-tree rp-heaps is like that of one-pass rp-heaps except that we must
account for unfair links. There is one unfair link per insert, meld, and key decrease, and
O(log n) per minimum deletion. We give losers of unfair links the same potential as roots: in
effect, they are roots. It is then straightforward to extend the proofs of Theorems 5.1 and 5.2
to one-tree rp-heaps.

7. Can Key Decrease Be Made Simpler?. It is natural to ask whether there is an even
simpler way to decrease keys while retaining the amortized efficiency of Fibonacci heaps. We
give two answers: “no” and “maybe”. We answer “no”’ by showing that two possible methods
fail. The first method allows arbitrarily negative but bounded positive rank differences. With
such a rank rule, the rank-decrease process following a key decrease need examine only an-
cestors of the node whose key decreases, not their siblings. Such a method can take Q(log n)
time per key decrease, however, as the following example shows. Let b be the maximum
allowed rank difference. Choose k arbitrarily. By means of a suitable sequence of insertions
and minimum deletions, build a heap that contains a perfect half-tree of each rank from 0
through bk + 1. Let « be the root of the half-tree of rank bk 4 1. Consider the right spine of
left(x). Decrease the key of each node on this path whose rank is not divisible by b. Each
such key decrease takes O(1) time and does not violate the rank rule, so no ranks change.
Now the path consists of k£ + 1 nodes, each with rank difference b except the topmost. (See
Figure 7.1.) Decrease the keys of these nodes, smallest rank to largest. Each such key de-
crease will cause a cascade of rank decreases all the way to the topmost node on the path.
The total time for these k + 1 key decreases is 2(k?). After all the key decreases, the heap
contains three perfect half-trees of rank zero and two of each rank from 1 through bk. A mini-
mum deletion (of one of the roots of rank zero) followed by an insertion makes the heap again
into a set of perfect half-trees, one of each rank from 0 through bk + 1. Each execution of
this cycle does O(logn) key decreases, one minimum deletion, and one insertion, and takes
Q(log? n) time.

bk+1

bk —2b

‘-Qo

FIG. 7.1. A half-tree of rank bk + 1 in the counterexample to the key decrease method that allows arbitrary
negative rank differences but positive rank differences bounded by b. A sequence of k + 1 key decreases on the right
spine of left(x), from smallest rank to largest, requires Q(k?) total time.

The second, even simpler method spends only O(1) time worst-case on each key de-
crease, thus avoiding arbitrary cascading. In this case, by doing enough operations one can
build a half-tree of each possible rank, up to a rank that is w(logn). Once this is done, re-
peatedly doing an insertion followed by a minimum deletion (of the just-inserted item) will
result in each minimum deletion taking w(logn) time. Here are the details. Suppose each
key decrease changes the ranks of nodes at most d pointers away from the node whose key
decreases, where d is fixed. Choose k arbitrarily. By means of a suitable sequence of in-
sertions and minimum deletions, build a heap that contains a perfect half-tree of each rank
from O through k. On each node of distance d + 2 or greater from the root, in decreasing
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order by distance, do a key decrease with A = oo followed by a minimum deletion. No roots
can be affected by any of these operations, so the heap still consists of one half-tree of each
rank, but each half-tree contains at most 291 nodes, so there are at least n/ 2d+1 half-trees.
Now repeat the cycle of an insertion followed by a minimum deletion. Each such cycle takes
Q(n/2%+1) time. The choice of “d + 2” in this construction guarantees that no key decrease
can reach the child of a root, and hence cannot change the rank of a root (other than the node
whose key decreases).

This construction works even if we add extra pointers to the half-trees, as in Fibonacci
heaps. Suppose we add ordered ancestor pointers to our half-trees. Even for such an aug-
mented structure, the latter construction gives a bad example, except that the size of a con-
structed half-tree of rank & is O(k9*!) instead of O(2¢*1), and each cycle of an insertion
followed by a minimum deletion takes Q(n'/(¢+2)) time.

FIG. 7.2. A half-tree of rank k = 4 buildable in O(k3) operations if key decreases do not change ranks. Key
decreases on the nodes of P detach the circled subtrees.

One limitation of this construction is that building the initial set of half-trees takes a
number of operations exponential in the size of the heap on which the repeated insertions and
minimum deletions are done. Thus it is not a counterexample to the following question: is
there a fixed d such that if each key decrease is followed by at most d rank-decrease steps
(say of type 1), then the amortized time is O(1) per insert, meld, and key decrease, and
O(logm) per deletion, where m is the total number of insertions? A related question is
whether Fibonacci heaps without cascading cuts have these bounds. We conjecture that the
answer is yes for some positive d, perhaps even d = 1. The following counterexample shows
that the answer is no for d = 0. That is, the answer is no for the method in which a key
decrease changes no ranks except for the ranks of roots. For arbitrary k, build a half-tree of
each rank from O through k, each consisting of a root and a path of left children, by proceeding
inductively as follows. Given such half-trees of ranks O through k£ — 1, insert an item less than
all those in the heap and then do k cycles, each consisting of an insertion followed by a
minimum deletion that deletes the just-inserted item. The result will be one half-tree of rank
k consisting of the root, a path of left children descending from the root, a path P of right
children descending from the left child of the root, and a path of left children descending
from each node of P; every child has rank difference 1. (See Figure 7.2.) Do a rank decrease
on each node of P. This produces a set of half-trees of ranks O through £ except for & — 1,
each a path. Repeat this process on the set of half-trees up to rank k — 2, resulting in a set
of half-trees of ranks O through k£ with & — 2 missing. Continue in this way until only rank 0
is missing, and then do a single insertion. Now there is a half-tree of each rank, 0 through £.
The total number of heap operations required to increase the maximum rank from k£ —1 to k is
O(k?), so in m heap operations one can build a set of half-trees of each possible rank up to a
rank that is Q(1m!/3). On the heap represented by this set of half-trees, an insertion followed
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TABLE 8.1
Performance of pairing heaps versus rp-heaps on typical input sequences. The number of vertices or items in
the heap is n; the number of arcs is m. All results are in millions of updates.

Test Parameters P-heap Type-2 rp-heap Type-1 rp-heap

n m m-pass 1-pass m-pass 1-pass
1. Dijkstra (max heap size) 8388609 25165824 339.40 346.38 323.05 352.59 325.07
2. Dijkstra (max key decrease) 65536 655360 5.06 5.49 4.27 5.66 4.27
3. Nagamochi-Ibaraki 32768 2684272 136.96 96.15 119.66 98.78 121.77
4. Sorting 100000 - 23.65 26.89 30.95 26.89 30.95
S. Two-way Dijkstra, E. USA 3598623 8778114 | 2371.04 | 2603.39  2878.15 | 2611.77  2896.85
6. Two-way Dijkstra, NYC 264346 733846 | 1070.66 | 1316.20  1430.82 | 1314.26  1425.03
7. Key decrease 262144 - 421.30 322.62 390.00 322.04 389.31
8. Key decrease 4096 - 4.32 3.32 391 3.40 3.95

by a minimum deletion takes Q(ml/ 3) time, and this pair of operations can be repeated any
number of times.

8. Experiments. In our preliminary experiments, rank-pairing heaps performed almost
as well as pairing heaps on typical input sequences and faster on worst-case sequences. We
compared rp-heaps to the standard two-pass version of pairing heaps on typical sequences
and to the auxiliary two-pass version [31] on worst-case sequences; Stasko and Vitter [31]
claimed that the latter outperforms other versions of pairing heaps on the class of worst-case
sequences we used. We compared these two versions of pairing heaps to four versions of
rp-heaps: type-1 and type-2, with as many links as possible done during minimum deletions
(“multipass”) and with only a single pass of links done (“one-pass”). We implemented all the
methods in C, compiled with the gcc —-02 option. We did all testing on a 2.13 Ghz Intel
CPU running Windows Vista.

We performed three sets of experiments using typical input sequences (Table 8.1). Our
performance measure was the total number of field updates done by each heap implemen-
tation. The first set of experiments used publicly available heap operation sequences [33],
obtained by running Dijkstra’s shortest paths algorithm [6] on graphs that maximize heap
size or the number of key decreases; by running the Nagamochi-Ibaraki minimum-cut algo-
rithm [28] on random graphs; and by running heapsort. The second set consisted of heap
operation sequences obtained by running two-way Dijkstra between random pairs of nodes
in real road networks. For the Eastern USA road network, we used 10 pairs of nodes, and
for the New York City road network, we used 100 pairs. The third set tested key decreases
by running 2n rounds of the following operations on an n-node heap, initially created by
n + 1 insertions followed by a minimum deletion: an insertion of a random key, followed by
lg n — 1 random key decreases, followed by a minimum deletion.

The results in Table 8.1 show that rp-heaps performed fewer field updates than pairing
heaps on sequences with many key decreases (tests 2,3,7, and 8), and more updates on se-
quences with few key decreases. The multipass versions slightly outperformed the one-pass
versions overall, with an average speedup of over 1.8% versus an average slowdown of un-
der 5% relative to pairing heaps, respectively. The one-pass versions, while benefiting from
smaller trees (and hence fewer rank updates), suffered from greater overhead during mini-
mum deletions as a result of maintaining longer lists of half-trees.

To investigate the worst-case behavior of key decreases, we used Fredman’s [12] ver-
sion of an experiment of Stasko and Vitter [31], designed to show that pairing heaps require
Q(loglogn) amortized time per key decrease. The experiment is identical to the third set of
experiments in Table 8.1, but it uses information-theoretic heuristics in the heap operations,
in two ways. First, the outcome of a link is determined by the sizes of the half-trees involved:
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the root of the larger tree wins the link. Second, the candidates for key decreases are chosen
to undo links of high efficiency, where the efficiency of a link is the ratio of the size of the
half-tree that loses to the size of the half-tree that wins. These heuristics correspond to the
bad sequences and adversarial behavior in Fredman’s lower bound analysis [12]. The cost of
a round is measured as the number of links done divided by lg n. We modified this cost mea-
sure for rp-heaps to include, in addition to the number of links, the number of rank updates
in key decreases and the number of unpaired half-trees in minimum deletions, all divided by
lg n. We ran the experiment on pairing heaps and type-2 multipass rp-heaps and measured
the average round cost at regular intervals. The round cost for pairing heaps approaches 2.76
for n = 2'2 and 2.97 for n = 2'8, showing positive growth, as expected. The round cost
for type-2 multipass rp-heaps approaches 2.36 for n = 2'2 and 2.32 for n = 2'®, showing
slightly negative growth. In contrast, when we applied the same cost measure to the non-
adversarial version of this experiment (tests 7 and 8 in Table 8.1, we could not distinguish
between pairing heaps and type-2 multipass rp-heaps.

9. Remarks. We have presented a new data structure, the rank-pairing heap, that com-
bines the performance guarantees of Fibonacci heaps with simplicity approaching that of
pairing heaps. Our results build on previous work by Peterson, Hgyer, and Kaplan and Tar-
jan, and may be the natural conclusion of this work: we have shown that simpler methods
of doing key decreases do not have the desired efficiency. In our preliminary experiments,
rp-heaps are competitive with pairing heaps on typical input sequences and more efficient
on worst-case sequences. Type-1 rp-heaps, although simple, are not simple to analyze. In-
deed, we were surprised by our discovery that type-1 rp-heaps have the same efficiency as
Fibonacci heaps; this is less surprising for type-2 rp-heaps.

Several interesting theoretical questions remain. Is there a simpler analysis of type-1
rp-heaps? Do type-1 rp-heaps still have the efficiency of Fibonacci heaps if the restriction on
linking used in the analysis of Section 5 is removed? More interestingly, can one obtain an
O(1) amortized time bound for insert, meld, and key decrease and O(logm) for minimum
deletion (where m is the total number of insertions) if only O(1) rank changes are made after
each key decrease? (See Section 7.)

Our paper is primarily theoretical, and our experiments with rank-pairing heaps are only
preliminary. We hope to do a much more thorough investigation of their practical perfor-
mance.

Acknowledgement. We thank Haim Kaplan and Uri Zwick for extensive discussions
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analysis of type-1 rp-heaps.
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