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ABSTRACT 
In this paper  we present near-optimal bounds for fully- 
dynamic graph connectivity which is the most basic non- 
trivial fully-dynamic graph problem. Connectivity queries 
are supported in O(log n/log log log n) time while the up- 
dates are supported in O(log n(log log n) 3) expected amor- 
tized time. The previous best  update  time was O((log n)2). 
Our new bound is only doubly-logarithmic factors from a 
general cell probe lower bound of f2(log n~ log log n). Our 
algorithm runs on a pointer  machine, and uses only stan- 
dard AC ° instructions. 
In our developments we make some comparatively trivial ob- 
servations improving some deterministic bounds. The space 
bound of the previous O((log n) ~) connectivity algorithm is 
improved from O(m + n log n) to O(m). The previous time 
complexity of fully-dynamic 2-edge and biconnectivity is im- 
proved from O((log n) 4) to O((log n) 3 log log n). 

1. INTRODUCTION 
In a fully-dynamic graph problem, we are considering a 
graph G over a fixed vertex set V, IVI = n. The graph G 
may be updated by insertions and deletions of edges. Unless 
otherwise stated,  we assume that  we start  with an empty 
edge set. Further,  the updates  may be interspersed with 
queries concerning properties of G. By an operation we 
mean an update  or a query. All operations are presented on- 
line, meaning that  we have to respond without any knowl- 
edge of future operations. 
In this paper, we study the most basic non-trivial fnlly- 
dynamic graph problem; namely that  of fully-dynamic graph 
connectivity where the query Connected(v, w) should tell 
if the vertices v and w are connected. We present a 
near-optimal randomized and amortized algorithm for fully- 
dynamic graph connectivity, showing that  the operation 
complexity of this problem is O(logn)  where O(f(n)) = 
f (n )  (log f (n ) )  +e(1) . 
The connectivity problem reduces to the problem of main- 
raining a spanning forest (a spanning tree for each c o m -  
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ponent) in that  if we maintain any spanning forest F 
for G at cost O(t(n)logn) per update,  then, using dy- 
namic trees [8], we can answer connectivity queries in time 
O(logn/log t(n)). In this paper,  we show how to main- 
tain a spanning forest in O(log n(loglog n) 3) time per up- 
date. Connectivity queries are then answered in time 
O(log n~ log log log n). 

Our upper bounds are only doubly-logarithmic factors from 
a general cell probe lower bound of f2(log n/log log n) [3; 7]. 
This lower bound holds both for amortization and random- 
ization, and it holds even if the graph is restr icted to be a 
forest. 

Previous work. In 1985 [2], Fredrickson introduced a da ta  
structure known as topology trees for the fully-dynamic min- 
imum spanning tree problem with a worst case cost of 
O(v/'m) per update,  permit t ing connectivity queries in time 
O(log n~ log(v/-~/ log n)) = O(1). In 1992, Epstein et. al. [1] 
improved the update  time to O(x/-ff ) using the sparsification 
technique. 
In 1995 [4], Henzinger and King used randomization to 
maintain some spanning forest in O(log 3 n) expected amor- 
tized time per update.  Then cormectivity queries are sup- 
ported in O(log n/loglogn) time. The update  bound was 
further improved to O(log 2 n) in 1996 [5] by Henzinger and 
Thorup. 
In 1998 Holm et al. [6] got rid of the randomization, pro- 
viding a simple deterministic algorithm maintaining some 
spanning forest in O(log 2 n) amortized time per update  and 
answering connectivity queries in O(log n~ log log n) time. 
For the incremental (no deletions) and decremental  (no in- 
sertions) problems, the bounds are as follows. Incremental 
connectivity is the union-find problem, for which Tarjan has 
provided an O ( a ( m , n ) )  bound amortized over m updates  
[9]. For decremental connectivity, Thorup has provided an 
O(log n) bound if we s tar t  with f~(n log 6 n) edges, and an 
O(1) bound if we s tar t  with f~(n 2) edges [10]. 
In this paper, we improve the amortized randomized update  
time for maintaining some spanning forest from O((log n) 2) 
to O(logn(loglogn) ~) time. Connectivity queries are then 
answered in O(log n/log log log n) time. Our upper  bounds 
are only doubly-logarithmic factors logarithmic factors from 
an f~(log n~ log log n) lower bound on fully-dynamic connec- 
tivity [3; 7]. 

Techniques. All the previous poly-logarithmic algorithms 
for fully-dynamic connectivity translate each update  into 
O(log n) s tandard operations on trees [4; 5; 6]. Each tree op- 
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eration is supported in O(log n), and hence these approaches 
have converged towards an ®((log n) 2) bound. 
The tree operations involve connectivity queries, for which 
we have an 12(log n~ log log n) lower bound in the cell probe 
model [3; 7]. Nevertheless, we will support  almost all the 
tree operations in O((log log n) 3) time! 
We will take star t ing point in the colmectivity algorithm 
of Holm et al. [6] and show how many tree operations can 
be organized and batched using a sampling lemma from [5]. 
This circumvents the f~(log n / l o g  log n) lower bound that  
only holds for single on-line queries. We then make a careful 
analysis of the the dynamics of the abstract  algorithm from 
[6], and construct some novel tailor made da ta  structures to 
provide exponentially faster support  for the tree operations. 
Some of our initial developments improve the space per- 
formance of the connectivity algorithm from [6] from 
O(m + n log n) to linear, yet preserving the deterministic 
O((log n) ~) amortized time bound. Also, we get some simple 
improvements of the deterministic t ime bounds for 2-edge 
and biconnectivity from O((log n) 4) to O((log n) ~ log log n). 
In our implementation we make the s tandard assumption 
that  each word of the computer  contains at  least log n bits. 
Our implementation will be done on a pointer machine, 
meaning that  we will not do any address arithmetic.  

2. CONNECTIVITY A LA HOLM ET AL. 
In this preliminary section, we present our start ing point; 
namely a slightly modified version of the fully-dynamic con- 
nectivity algorithm from [6] for maintaining a spanning for- 
est F of a graph G. The edges in F will he referred to as tree 
edges. Internally, the algorithm associates with each edge e 
a level e(e) _< e~,ax = Llog~ nJ. For each i, a i  denotes the 
subgraph of G induced b y  edges of level at  least i, and Fi 
denotes F Cl Gi. The following invariants are maintained. 

(i) F is a maximum (w.r.t. g) spanning forest of G, that  
is, for each i, Fi is a spanning forest of Gi. 

(ii) The maximal number of vertices in component of Gi, 
or Fi, is [n/2i]. Thus, the maximal relevant level is 
~m&x • 

Initially, all edges have level 0, and hence both invariants 
are satisfied. We are going to present an amortization ar- 
gument based on increasing the levels of edges. The level 
of an edge is only going to be decreased when it is being 
deleted, so until then, we can have at  most gm~x increases 
per edge. Intuitively speaking, when the level of a non-tree 
edge is increased, it  is because we have discovered that  its 
end points are close enough in F to fit in a smaller tree on 
a higher level. Concerning tree edges, note that  increasing 
their level cannot violate (i), but  it may violate (ii). 
We are now ready for a high-level description of insert and 
delete. 

I n s e r t ( e )  The new edge is given level 0. If the end-points 
were not connected in F = F0, e is added to F0. 
Clearly, neither (i) nor (ii) is violated. 

De l e t e ( e )  If e is not a tree edge, it  is simply deleted. If e 
is a tree edge, we call Replace(e) below. 

R e p l a c e ( ( v ,  w)) Set i = ~(v, w). By (i) a replacement edge, 
reconnecting F has to be on level at most i, and fur- 
ther, to preserve (i), we should seek a replacement edge 
on the hightest possible level. 

Let Tv and T~ be the trees in Fi \ {(v, w)} containing 
v and w, respectively. We are looking for a level i 
non-tree edge f incident to both Tv and T~. 

Assume, without loss of generality, that  Irvl _< ITwl. 
By (i!), the tree in Fi containing (v, w) has at at most 
In /2 ' ]  vertices, so T~ has at  most In /2  i+1] vertices. 
Hence, preserving our invariants, we can take all level 
i tree edges in T~ and increase their level to i + 1, so 
as to make To a tree in Fi+t .  

Now level i non-tree edges incident to Tv are visited 
one by one until either a replacement edge is found, 
or all edges have been considered. Let f be an edge 
visited during the search. 

If f has both end-points in T.,  we may increase its 
level to i + 1 without violating (i). This increase pays 
for considering f .  

Otherwise f is the desired replacement edge connect- 
ing Tv and T~. Since e and f are on .the same level, 
we can replace e by f in F without violating (i) or (ii). 
Afterwards, e is non-tree edge tha t  is removed. 

Suppose we do not find a level i replacement edge. 
If i = 0, we conclude there is no replacement edge, 
so we finish by removing e. If i > 0, we decrease 
the level of (v, w) without violating (i), and then call 
Replace((v, w)) recursively. 

Efficient implementations of the above high-level algorithm 
hangs on amortizing costs over edge level changes, of which 
we have at  most 2gmax = O(log n) per  edge inserted. 

2.1 Implementation 
In [6], for each level i, Holm et aJ. maintained the forest Fi 
together with all level /-tree non-tree edges incident to it, 
as well as the sizes of each tree in Fi.  Using the ET-da ta  
structure from [4], the following operations were supported 
in O(log n) time: checking if the vertices v and w are con- 
nected in Fi, inserting or deleting a tree edge from Fi, adding 
or removing a level i non-tree edge at  each of its end points 
in Fi, finding the size of the tree in Fi containing a vertex v, 
and, finally, checking if there is a level i t ree/non-t ree  edge 
connected to a given node in Fi, and returning one such edge 
if any. 
Wi th  the above representation, it  is straightforward to im- 
plement the high-level algorithm in O(log n) t ime per  edge 
level change plus O((log n) 2) t ime per  edge insertion or dele- 
tion, hence in O((log n) 2) amortized time per update.  This 
implementation uses O(m) space for the non-tree edges and 
O(n) space for each forest Fi, hence in O(m + nlog n) total  
space. 
As a side-effect of our developments, we are actually going 
to make the space bound linear. To see that  this is non- 
trivial with the above approach, note that  when an edge 
(v, w) to be deleted, for each Fi we need to know the sizes 
of the two subtrees T~ and Tw resulting from the deletion. 
It is the maintainance of these sizes that  is the bottle-neck. 
If we ignore the sizes, it is trivial to collapse all the Fi in a 
single dynamic tree [8]. 

3. TOWARDS NEAR-OPTIMAL BOUNDS 
In this paper,  we are going to make a near-opt imal  imple- 
mentat ion of the high-level algorithm from the previous sec- 
tion, spending O(log n(log log n) 3) expected amort ized time 
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per edge insertion or deletion. First we consider the costs 
associated with testing if level i non-tree edges incident to 
T. reconnects to To. During a deletion, we are looking for 
at most one reconnecting replacement edge, and this edge 
we are happy to pay O(logn(loglogn) a) for. In general, 
however, each non-tree edge may be tested and found not to 
reconnect log 2 n times, once for each level, so we can only af- 
ford to spend O((log log n) 3) per failed test. This seemingly 
contradicts the cell probe lower bound of ~2(log n~ log log n) 
for maintaining connectivity in a dynamic forest [3; 7]. The 
lower bound, is, however, for arbitrary vertex pairs, and 
what we will do is to show 

Tes t -a l l  We can find all level i non-tree edges incident to 
T~ in O(( loglogn)  3) time per edge. The edges are 
found via their end-points in Tv, which we mark. Then 
we can test if (x, y) is a replacement edge simply by 
checking that it has only one marked end-point. 

The most immediate problem now is that we want to amor- 
tize over level increases, and we can only move non-tree 
edges up that  do not reconnect to T~. Thus, we are fine if, 
say, 1/2 of the tested edges do not reconnect, but if most 
edges reconnect, we are doing a lot of testing that is not 
paid for. To check if there are too many' replacement edges, 
we will support sampling: 

S a m p l e - a n d - t e s t  In O(log n(loglog n) 3) time, we can al- 
most uniformly sample a level i non-tree edge incident 
to T. and check if it reconnects to T~. 

We are now ready to describe the new testing procedure: 

• If T. has O(log n) incident level i non-tree edges, we 
use test-all. If a replacement edge is found, it pays 
the cost of O(log n(log log n)3); otherwise no edges re- 
connect, and they all get their levels increased, at a 
testing cost of O((log log n) 3) per edge. 

• If T. has f/(log n) incident level i non-tree edges, we 
use Sample-and-test an expected constant number of 
times, either finding a replacement edge paying for the 
samples, or concluding with probability O(1/n) that 
at least half the edges do not reconnect. In the lat- 
ter case, we can apply Test-all at an expected cost of 
O((loglog n) 3) per non-connecting edge. 

The above type of sampling procedure may look impossi- 
ble, but as shown in [5, Sampling Lemma] it is possible. 
The subtle point is that we are making an expected constant 
number of samples. Often we will make a large number of 
samples but then, with correspondingly high probability, we 
will end up claiming correctly that at least haft the edges 
are non-connecting. 
Before showing how to make the level i non-tree edges inci- 
dent to T. readily available, we need to go through several 
developments. 

4. A NEW STRUCTURAL VIEW 
For our implementations, we need a different view of the 
Holm et al.'s algorithm from §2. As a side-effect we will get a 
quite different implementation using only linear space. The 
algorithm will still he deterministic and achieve the same 
time bounds. A main point in our implementation is an ob- 
servation that we do not need to support general deletions 

( a )  

( b )  i-I . . . . . . . . . . . . . . . . . . . . . .  
i . . . . . . . . . .  

i + t v ~  . . . . . . . . .  

( c )  

i - I  . . . . . . . . . . . . . . . . . . . . . .  

i . . . . . .  

Figure 1: The effect on the structural forest of a replace on 
level i: Starting from Figure (a), two level i + 1 components 
are to be merged into the new level i + 1 component T, 
containing v. If we find a replacement edge,  we go to (b); 
otherwise we go to (c) and recurse on level i - 1. 

of tree edges from the Fi. Rather than using general data 
structures, we will develop simpler tailor made data struc- 
tures for implementing the connectivity algorithm. In this 
section, we will not yet worry about randomized sampfing. 

4.1 The structural forest 
We are going to maintain a rooted forest C, called the struc- 
tural forest, over the nodes of G. The leaves of C are the 
vertices G. All leaves have depth g . . . .  The level of a node is 
its depth, and the nodes at level i represent the components 
in Gi. The level i ancestor of the vertex v is denoted v i. For 
a linear space implementation, nodes of C with only one 
child should be suppressed. For each node a E C, we main- 
tain the size n(a) which is the number of leaves descending 
from a. These leaves are the vertices in the component rep- 
resented by a. 
In the following, for clarity, vertices and edges always belong 
to G while nodes and arcs always belong to C (or C L defined 
in the next subsection). 
Note that  C is independent of the choice of our g-maximal 
spanning forest F.  Since Fi is not represented, this seem- 
ingly gives the problem that we cannot delete an arbitrary 
edge (v, w) from Fi and isolate T~ and T~ as in the connec- 
tivity algorithm of Holm et al. However, this turns out not 
to be a problem if we do things in a different order. 
We will now discuss how the structural forest changes as 
edges are inserted in and deleted from G. While physically 
changing C, v i always denotes the ancestor of v which is 
£~o.x -- i steps up from v. 
We need to define merging of nodes in C. Two nodes a and 
b can be merged if either a and b are siblings, or a and b are 
both roots. By merging a and b in a, we mean that we move 
all the children of b to a and delete the node b. 
Inserting and deleting non-tree edge does not affect C. In- 
serting a tree edge (v, w) amounts to merging v ° and w ° in 
v °, setting n(v °) := n(v °) + n(w°). 
When deleting a tree edge (v, w) on level i, we search a 
replacement edge on level i. The effect on C is illustrated in 
Figure 1. The first thing that  happens is that we increase the 
levels of the level i tree edges in T~ from i to i + l .  Let (x, y) 
be such a tree edge. In C this corresponds to merging x i+1 
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and yi+i, set t ing n(x  i+i) :=  n(x  i+i ) + n(y  i+i). When  done, 
T.  is represented by v i+l . Afterwards,  We may increase the 
levels of some non- t ree  edges, bu t  this does not  affect C. 
Now, if a replacement  edge f is found on level i, then  re- 
placing e by f in F ,  does not  affect C, and af terwards we 
can jus t  delete e as a non- t ree  edge. Otherwise,  if i < 0, we 
logically increase the  level of (v ,w)  to i +  1 by removing v i+i 
from the children list of v i = w' ,  create a new node v * with 
v i+i as single child, and make v ~ a new child of w i - i .  T h e n  
we set n(v ' )  :=  n(v i+l) and n(w i) :=  n(w i) - n(vi).  Note 
tha t  n(w ' - l )  is not  affected. If i = 0, we do the same except  
tha t  we do not  make v ° a child of a non-exist ing w - i .  
In our  la ter  implementa t ions  it is convenient  if no child can 
change its size, so when we want  to change the size of a 
child, first we remove  it  f rom its parent ,  then  we change the 
size, and af terwards  we reinsert  it wi th  its new size. Clearly 
the number  of s t ruc tura l  changes remain  bounded  in the 
number  of edge level changes. Summing  up, 

LEMMA 1. Each edge level change gives rise to O(1) 
changes in C where each change is a creation of a new node, 
adding or removing a child from a node, or merging two 
nodes. While the size of a node changes, it is not a child of 
any node. 

4.2 Local search trees 
In order  to guide searches for level i t ree and non- t ree  edges 
we will expand C to a binary tree C L of height  O(log n). 
For each node a in C,  we main ta in  a binary tree L(a) over 
the  children of a in C. We will refer to L(a) as local tree 
at a. The  t ree L(a) will be weight balanced in the sense 
tha t  for each child b of a, the  dep th  in L(a) of b is O(1 + 
log(n(a)/n(b))) .  By e L we refer to the binary tree result ing 
from C when for each a, we put  L(a) between  a and its 
children in C. T h e  weight balancing implies tha t  the dep th  
of any leaf in C n is O(!og n). As an immedia te  result,  we 
can get from v to any v '  in O(log n) time. 
We can now in O(log n) t ime test  if an inserted edge (v, w) 
should be  a t ree edge by tes t ing if v ° ¢ w °. Similarly, when 
recovering on level i af ter  having collected T~ under  v i+l , 
we can test  if a non- t ree  edge (x, y) is a replacement  edge 
by test ing if x ~+~ ¢ y~+l. 
For each node a in C L, we will main ta in  two b i tmaps  t ree(a)  
and non- t ree(a)  t ha t  for each i tell whether  there is a de- 
scending leaf wi th  an incident tree or non- t ree  edge. 
Finally, for each ver tex  v of G, we have the incident edges 
grouped depending  on their  level and on whether  they are 
tree or non- t ree  edges. Since there  are at most  21ogn 
groups, a s t andard  search t ree brings us down to a par t icular  
group in O(log log n) t ime. 
Now, from any node a in C, we can find a level i t r ee /non-  
tree edge incident to a leaf descending f rom a, if any, in 
t ime O(log n). Also, we can change the level or t r ee /non-  
tree s ta tus  of any edge in t ime O(log n). 

4.3 Identifying the smaller tree 
When  looking for a rep lacement  of (v, w) we need to find 
the smaller  of the  two level i trees result ing from cut t ing 
(v, w). We show how to find the size of T,  in t ime O(log n) 
t imes the number  of level i t ree edges in T. .  Applying this 
procedure  in parallel  to T~,  s topping as soon as we have 
found one of the sizes, we spend t ime O(log n) t imes the  
number  of level i t ree edges in the smaller  tree, and hence 
O(log n) t ime per  level increase. The  o ther  size is found in 

constant  t ime by subt rac t ing  the size found from n(wi) .  The  
following procedure  is used: 

S i ze ( (x ,  y), i) where (x, y) is a level i edge, finds the number  
of nodes connected  to y in Fi \ (x, y). 

First  we move up to yi+l in C L in O(log n) t ime, and 
set s :=  n(y  i+1). T h e n  we search down from yi+i using 
the b i tmaps  to find all level i t ree edges incident to a 
descendant  x ~ of y,+l in O(log n) t ime per  edge. For  
each such edge (x ' ,  y ' )  # (x, y), we add Size((x ' ,  y ') ,  C) 
to s. Finally, we re tu rn  s. 

A call Size((w, v), i) finds the size of Tv in O(log n) per  level 
/ - tree edge in Tv, as desired. It t raverses all l e v e l / - t r e e  edges 
in Tv. By recording them,  we are ready to increase their  level 
if Tv turns  out  to be smaller  than  T~. Increasing the level 
of such an edge (x, y) is trivially done in O(log n) t ime, and 
thereby we also identify x i+l and y~+l to be merged.  Hence, 
all tha t  remains is to implement  the s t ruc tura l  changes. 

4.4 Tailor made  weight balanced structure 
We are now going to tell how we main ta in  the  local trees 
as we remove and insert  children and merge  nodes.  Each 
child b of a node a is given a rank rank(b) = log(n(b)).  A 
local tree B(a) is buil t  b o t t o m - u p  in the following greedy 
fashion. We s tar t  wi th  each child of a being its own local 
root.  Then,  while there are two local roots  wi th  the same 
rank r, we pair them,  creat ing a new new root  above them 
with  rank r + l .  At  the end, we have at  most  l o g n  local 
roots  over what  we call local rank trees. Final ly we make 
a pa th  P down from a where the local rank  roots  branch 
off in order of decreasing ranks. Here  by branching off we 
mean  tha t  each node x E P, but  the last, has two children; 
namely  its successor in P and a rank  root .  T h e  last node 
in P has two rank roots  as children. This  completes  the 
description of the  syntax  of a local tree. A s t ra ight forward  
analysis shows tha t  the dep th  in L(a) of a s t ruc tura l  child b 
of a is at most  log(n(a) /n(b))+ 1. Recal l  f rom L e m m a  1 tha t  
a s t ruc tura l  child never  changes size, so it is only s t ruc tura l  
changes tha t  can violate  the organiza t ion  of the rank trees. 
Merging of a and b is done as follows. Fi rs t  we strip off 
the connect ing paths,  leaving us wi th  the at  most  21ogn 
rank roots  in two sor ted  lists. These  two lists are merged  
in constant  t ime per  rank root .  Now we go th rough  the 
merged list backwards,  pairing neighboring rank roots  wi th  
common  ranks, insert ing the  new root  at  most  two ahead in 
the  sorted list. Finally, we make a new connect ing path.  All 
the above is done in t ime O(log n). 
Adding a s t ruc tura l  child is like the tr ivial  case of merging 
with  a single rank tree consisting of a single node,  and is 
hence also done in O(log n) t ime. 
Removing  a child b f rom a is very similar to merging.  Firs t  
we remove the connect ing pa th  from a. This  leaves us wi th  
a sorted list of rank trees, f rom which we pull out  the rank 
tree Rb containing b. We now remove from Rb the p a t h  from 
b to the rank root .  This  leaves us wi th  a sor ted  list of rank 
subtrees of Rb tha t  we can now merge wi th  the remaining 
rank trees as described above in t ime O(log n). 
Concerning our  tree and non- t ree  b i tmaps ,  we need  to up- 
da te  them at the O(log n) local nodes affected by the struc- 
tural  change. The  upda tes  are done bo t tom-up .  Each up- 
da te  is a constant  t ime bitwise 'or '  of the  b i tmaps  at the two 
children in C L. Also, we need to upda t e  the b i tmaps  at  the 
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O(log n) nodes above the s t ruc tura l  parent  of an added or 
deleted node. 
All par ts  of our  implementa t ion  spend O(log n) t ime per  
edge level change, of which we have O(log n) per  edge, so 
the to ta l  cost per  edge is O((log n)2). Further ,  we get l inear 
space if we suppress all nodes in C with  one child. 

PROPOSITION 2. We can maintain a spanning forest of 
a fully-dynamic graph over n nodes in O(log 2 n) amortized 
time per update using linear space. 

In the following sections, we will now show how to im- 
prove almost  all the  O(log n) costs from this section to 
O((log log n)2). 

5. LAZY LOCAL TREES 
In this section, we are going to present a more lazy version 
of the local tree, where the  vast major i ty  of the changes are 
confined to poly- logar i thmical ly  sized subtrees with opera-  
tion t ime O(log log n). 
Let /3 be the set of children of a in C. As in §4.4, a local 
tree is a binary tree wi th  leaf set B and root  a, and C L is 
the result  of replacing for each a E C, the children pointers 
with the local tree L(a). 
The  children in B are divided into groups of size at most  
2(log n) ~, where ~ > 2 is a constant  to be determined later. 
Over  each of these groups, we have a s tandard  search tree 
with opera t ion  t ime O(log(2(log n)~))  = O ( l o g l o g n ) .  One 
of the small  search trees is called the buffer tree, while the 
o ther  are called bottom trees. A root  of a bo t tom tree has a 
rank tha t  is the max imal  rank of a descending b E B,  where, 
as in in §4.4, the rank of b is rank(b) --- [log n(b)J. All the 
ranked roots  of the b o t t o m  trees are now collected in rank 
trees exact ly as described in §4.4, tha t  is, two roots  of the 
same rank r get paired under  a new root  with rank r + 1. 
At  the end we have _< log n different rank roots,  and these 
together  wi th  the root  of the buffer tree form the leaves of 
a s tandard  search t ree wi th  root  a. We call this last search 
tree the top tree, and like the b o t t o m  and buffer trees, the 
top tree has opera t ion  cost O(log log n). 

LEMMA 3. The height of e L is O(1og n log  log n).  

PROOF. Let  b be a s t ruc tura l  child of a in C. T h e n  the 
top, bo t tom,  and buffer trees contr ibutes  O(log log n) to the 
depth  of b in L(a), while the rank tree contr ibutes at most  
log(n(a)/n(b)). [] 

For each nodes in a top tree, we will have a b i tmap  telling 
the ranks of rank  roots  below it. When  merging a wi th  b in 
a, we make a bitwise ' and '  of the b i tmaps  at their  top roots  
to see which ranks they have in common.  The  corresponding 
rank roots  are identified and paired up in O( loglog  n) t ime 
per  pairing. Also, we merge the buffer trees. If the result ing 
buffer tree gets more than  (log n) ~ leaves, we turn  it into a 
new b o t t o m  tree, leaving an empty  buffer tree. The  root  of 
the new b o t t o m  tree forms a trivial  rank tree tha t  we may 
have to pair  up. 
When  adding a s t ruc tura l  child, we jus t  put  it under  the 
buffer tree. As under  merge, we turn  the buffer tree into a 
bo t tom tree if  it gets more than  (log n) ° leaves. 
If we delete a s t ruc tura l  child which is not  of maximal  rank 
in its b o t t o m  tree, this does not  affect the rank trees, so we 
only pay a purely  local cost of O(log log n) for re-balancing 

its b o t t o m  tree. However,  if the child delet ion does decrease 
the rank of the root  a of its b o t t o m  tree, we delete all rank 
nodes above a. The  deletion is done top clown so tha t  any 
rank node deleted is a rank root.  Now the  O(log n) previous 
sibfings of ancestors of a are new rank roots.  As under  
merge, we may have to pair  these new rank roots  wi th  o ther  
rank roots.  

LEMMA 4. Each change in C gives rise to O ( l o g l o g n )  
changes in the top, bottom, and buffer trees. Moreover, each 
change in the rank trees is amortized over (log n) °-2 changes 
in C. 

PROOF. The  immedia te  cost of each change in C is 
O( loglog  n) changes in the top, bo t tom,  and buffer trees. 
All o ther  changes in the top, bo t tom,  and buffer trees are 
amort ized  over changes in the rank trees. 
From an amor t iza t ion  perspect ive,  we can assume tha t  the 
graphs ends empty, which also means tha t  all rank nodes 
end up being deleted. Thus  creations of rank. nodes can be 
amort ized  over deletions of rank nodes. 
Deletions of rank nodes only happen  when a b o t t o m  tree 
root  decreases its rank. For each such decrease, we loose 
at most  log n rank roots.  However,  the max imal  rank is 
logn ,  bounding the number  of t imes a b o t t o m  tree root  
can decrease its rank. Thus,  each b o t t o m  tree can give rise 
to ( logn)  ~ rank root  deletions. However,  a b o t t o m  tree is 
s ta r ted  with  at least (log n) ~ leaves, all of which will be 
deleted eventually. Hence, we conclude tha t  each rank root  
deletion can be amor t ized  over ('tog n) ~-2 s t ruc tu ra l  child 
deletions. [ ]  

6. LEVEL INDUCED FORESTS 
We are now going to address the problem of identifying in- 
cident tree edges as in §4.3 in O( ( log log  n) 2) t ime per  edge 
found. 
Abstract ly,  for each level i, we will main ta in  a i-induced 
forest Si. T h e / - i n d u c e d  leaves are the vertices of G with  an 
incident level i t ree edge. The  / - induced roots  are the level 
i + 1 nodes a 6 C with  a descending /- induced leaf. Finally, 
t h e / - i n d u c e d  branch node is a node a E C L below or equal  
to a n / - i n d u c e d  root  wi th  / - induced leaves descending from 
two different children. T h e / - i n d u c e d  paren t  of a n / - i n d u c e d  
node is its nearest  / - induced ancestor.  Since C L is binary, 
so is S~. 
Our  goal is to get be tween neighboring / - induced nodes in 
O(( log log  n) ~) time. Then,  given a pointer  to t h e / - i n d u c e d  
leaf y, we can find all / - induced nodes connected  to y in Si 
in O((log log n) 2) per  node, hence in O((log log n) 2) t ime per  
/- induced leaf. This  includes t h e / - i n d u c e d  root  yi+l and the 
/- induced leaves, which are exactly the vertices connected to 
y in Fi+l  with an incident level i t ree edge. 

7. SHORT CUTTING 
An i-induced trace path is a pa th  in G L from a child in C z 
of a n / - n o d e  to its nearest  descending i- induced node. Our  
goal is to make it quick to move between end-points  of t race 
paths. To this end, we are going to main ta in  a system of 
short  cuts. 
First  we associate a power p(a)  _< 2 log log n to all nodes in 
C L. Nodes interior  to bo t tom,  top, and buffer trees all get 
p o w e r 0 .  I f a  E G z i s  a r a n k n o d e  with  r a n k i  > 0, ~(a)  is 
the least significant bit  of i, or equivalently, the maximal  j 
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for which  2 j divides  i. If a ha s  r a n k  0, p (a )  = log log n. Let  
p c  = log log n 9- 1. Finally,  for v i E C, p ( a )  is p c  plus the  
leas t  s ignif icant  b i t  of i, or  0 if i = 0. 
Suppose  a is a n  ances to r  of b a n d  all nodes  be tween  a a n d  b 
have  power  s t r ic t ly  smal le r  t h a n  q = m i n { p ( a ) ,  p(b)}.  T h e n  
(a, b) is a short cut of power q unless  one of a a n d  b is in  C 
a n d  the  o t h e r  is a r a n k  node .  Note  t h a t  the  arcs in  C L are 
exact ly  the  sho r t  cu ts  of power  0, a n d  we refer  to t h e m  as 
the  trivial short cuts. If b o t h  end-po in t s  of a shor t  cut  are  
in  C, we call i t  a structural short cut. 
We say a sho r t  cu t  (a, b) short cuts a p a t h  P if a a n d  b are 
in  P .  A s h o r t  cu t  ( a ,b )  is a s u b c u t o f a s h o r t  cut  (c ,d)  if 
(a, b) shor t  cu ts  the  p a t h  f rom a to b. 

LEMMA 5. Ira  is an ancestor orb, the maximal short cuts 
of the path from a to b in C form a path of length O(log log n)  
from a to b. 

PROOF. T h e  wors t  case is if t he  p a t h  moves  f rom a top  
t ree  to  a r a n k  t ree,  to  a b o t t o m  tree,  to  C,  to  a top  tree,  to a 
r a n k  t ree,  to  a b o t t o m  tree.  In  each  of these  t rees,  we follow 
O ( l o g l o g n )  shor t  cuts ,  a n d  the re  are  a t  mos t  5 t rees.  [ ]  

LEMMA 6. The total number of short cuts is 
O( ICLl log log n). 

PROOF. For  each  power  q, the  shor t  cu ts  fo rm a forest  
over  the  nodes  in C L. [] 

A n  i-induced short cut is e i the r  a t r iv ia l  sho r t  cu t  f rom a n  
/ - induced  to i ts  child in  C L, or a m a x i m a l  shor t  cu t  over 
s o m e / - i n d u c e d  t r ace  p a t h s .  
By a level induced short cut we general ly  refer  to  a n  i- 
i nduced  sho r t  cu t  for some i. We will m a i n t a i n  all level 
shor t  cuts ,  a n d  for each  level sho r t cu t ,  we will have  a b i t m a p  
tel l ing us  for which  i i t  is a n  / - induced  shor t  cut .  
Cons ider  any  n o d e  a E C.  For  each i, a is in  a t  mos t  one 
/ - induced  t r ace  p a t h ,  so a can  have  a t  mos t  one upwards  a n d  
one downwards  non- t r iv i a l  / - induced  shor t cu t .  Also, since 
C L is b inary,  so a has  a t  mos t  two downwards  t r iv ia l  shor t  
cuts .  Hence  t he re  are  a t  m o s t  2 log n + 2 level shor t  cuts  
inc ident  to  a, so a s t a n d a r d  search  t ree  will allow us to  f ind 
a n  u p w a r d s  or downwards  l e v e l / - i n d u c e d  shor t  cut  f rom a, 
if any, in  O(log log n)  t ime.  C o m b i n i n g  th i s  w i th  L e m m a  5, 
gives 

LEMMA 7. We can f ind the i-induced parent and i- 
induced children of any i-induced node in O ( ( l o g l o g n )  2) 
time. 

As discussed a t  t he  end  of §6, L e m m a  7 immed ia t e ly  tells 
us  how to f ind t he  Size f rom §4.3 in O(( log  log n)  2) t ime  pe r  
level / - t ree  edge in T~. 
As the  sho r t  c u t t i n g  s t r u c t u r e  changes ,  we will of ten  need  
to make  searches  w i th in  a t r ace  p a t h .  To th is  end,  we will 
m a i n t a i n  the  base cuts which  are all s ubcu t s  of level induced  
shor t  cuts .  In  our  account ing ,  we will only pay  for c rea t ing  
base  cuts ,  b u t  no t  for de le t ing  t h e m .  

8. INDUCED LEVEL INCREASES 
Having  ident i f ied t he  /-level t ree  edges of the  smal ler  t ree  
Tv, we w"ant to  increase  the i r  levels to  i + 1. Th i s  leads to 
two subprob lems :  m o v i n g  incidence  i n f o r m a t i on  f rom Si to  
S i+ l ,  a n d  merg ing  some level i + 1 nodes .  In th is  sect ion,  
we deal  w i t h  t he  fo rmer  p rob lem.  

We are given a node  x i+1 on level i + 1 .  Loosely speak ing  we 
wan t  to  take  t h e / - i n d u c e d  t ree  T r o o t e d  in  x i+1 a n d  merge  
T in w i th  S i+ l .  For  space reasons,  we r e s t r i c t  ourselves to  
the  simple,  b u t  i l lus t ra t ive ,  case where  T has  only one leaf  
Z. 
Our  first s tep  is to look for the  level i + 2-node  a which  is 
the  s t r u c t u r a l  child of x i+1 above  z. Since i + I - i nduced  
roo ts  are on  level i + 2, ou r  first  n a t u r a l  s tep  is to  move  the  
/ - induced  shor t  cuts  over  T down to be  m a x i m a l  shor t  cu ts  
f rom a to z. 
If t he  / - induced  down-going  shor t  cu t  f rom x i+1 ha s  power  
<_ p c ,  we can  s imply follow the  / - induced  sho r t  cu ts  down  
f rom x i+1 unt i l  we h i t  t he  level i + 2-node  a. All / - induced  
shor t  cuts  e n c o u n t e r e d  above  a are i-canceled, m e a n i n g  t h a t  
we unse t  the  / -bi t  in  the  level shor t  cut ,  poss ibly  r emov ing  
the  level shor t  cut  if th is  was t he  las t  set  bi t .  
Suppose  i n s t ead  t h a t  the  / - induced  clown-going shor t  cu t  
(xi+l,b) f rom x i+1 has  power  > p c .  T h e n  b is a d e s c e n d a n t  
of the  desired level i + 2 node  a. We t h e n  i-push (xi+l,b) ,  
mean ing  t h a t  we replace  i t  w i th  i ts  i m m e d i a t e  subcu t s .  T h e  
i m m e d i a t e  subcu t s  are found  by  first  going to b a n d  t h e n  
follow up  the  base  cu ts  of m a x i m a l  power  < p(x  i+1 , b) un- 
til  we h i t  x I+1. T h e  base  cu ts  followed are  t he  i m m e d i a t e  
subcu t s  t h a t  we now m a k e / - i n d u c e d  sho r t  cuts .  Finally,  we 
i -cancel  (x i+1, b). Af te r  a t  mos t  log log n pushes ,  we end  up  
w i th  a shor t  cut  (x i+l ,a)  t h a t  we j u s t  i -cancel .  I t  is qui te  
easy to see t h a t  all t h e / - i n d u c e d  shor t  cu ts  c rea ted ,  excep t  
for ( x i + l , a ) ,  are m a x i m a l  sho r t  cu ts  of the  p a t h  f rom a to 
z, as desired.  
If a is no t  a l ready  a n  i + 1- induced root ,  we s imply  take  
all t he  / - induced  shor t  cu ts  below a a n d  m a k e  t h e m  i + 1- 
induced,  u n s e t t i n g  the  / -bi t  a n d  se t t i ng  t he  i + 1-bit.  
Suppose  a is a l ready  an  i + 1- induced  root .  We t h e n  wan t  
to  f ind the  las t  node  b on  the  p a t h  f rom a to  z w i t h  a n  i + 1- 
induced  descendan t .  T h e n  b should  b e  a new i + 1- induced 
b r a n c h  node.  T h e  a lgo r i t hm works recursively,  a s suming  
t h a t  a ha s  b o t h  i- a n d  i + 1- induced  sho r t  cuts .  
Since the  leaf  z is the  o n l y / - i n d u c e d  node  below a, we know 
t h a t  the  power  of t he  downgoing  / - induced  sho r t  cu t  (a, a ' )  
is a t  least  as big as t h a t  of t he  downgoing  i + 1- induced  sho r t  

cut (a, a"). 
LEMMA 8. a' has i + 1-induced descendants if  and only if 

it has an incident i + 1-induced short cut. 

PROOF. By defini t ion,  we c a n n o t  have  a s h o r t  cu t  (c, d) 
w i th  c a s t r ic t ly  b e t w e e n  a a n d  a '  a n d  d s t r ic t ly  below a ~. [ ]  

T h u s  if a '  has  a n  inc iden t  i + i - i n d u c e d  sho r t  cut ,  we s imply  
/ -cancel  (a, a') a n d  r e p e a t  f rom a ' .  
Supose a '  has  no  inc iden t  i + 1- induced  sho r t  cut .  If (a, a ~) 
a n d  (a, a " )  b o t h  are tr ivial ,  a is our  new i + l - i n d u c e d  b r a n c h  
node  b. T h e n  we comple te  the  merge  by  t ak ing  a l l / - i n d u c e d  
shor t  cuts  below a a n d  make  t h e m  i + i - i nduced .  Otherwise ,  
if (a, a ' )  a n d  (a, a " )  have  the  same  power  we p u s h  t h e m  b o t h ,  
a n d  if (a, a ' )  has  the  b igger  power,  we j u s t  p u s h  (a, a ' ) .  In  
e i the r  case we r e p e a t  f rom a a f t e r  the  push .  

LEMMA 9. When T has a single leaf, it takes 
O(( log log  n)  2) time to merge T in with Si+l.  

PROOF. General ly,  i t  cost  O(log log n)  t ime  to  m a n i p u l a t e  
a shor t  cut .  T h e  essent ia l  obse rva t ion  is t h e n  t h a t  we have  
b e e n  f o l l o w i n g / c r e a t i n g / d e l e t i n g  sho r t  cu t  p a t h s  of l enght  
a t  mos t  log log  n f rom x i+1 to  the  level i + 2  node  a, f rom a 
to the  new i -I- I - b r a n c h  node  b, a n d  f rom b to z. [ ]  

348 



9. THE STRUCTURAL CHANGES 
Pre tending  tha t  there  are no non- t ree  edges, we will now 
explain how to preserve our  level induced short  cuts during 
s t ructura l  changes. 
When  removing or adding a s t ruc tura l  child a of b, techni- 
cally it  is very convinient  to require tha t  a is a root in C L 

with power 0. The  la ter  implies tha t  there are no s t ructura l  
level induced short  cuts f rom a. Similarly, when merging a 
node a wi th  a node b, we require tha t  bo th  a and b are roots  
of C L of power  0. 
In the .following, for i > g (v ,  w), set u i to be the current  
node v '  = w' .  T h a t  is, u '  will keep point ing to this node in 
C L no m a t t e r  the changes we make to C L. 

Now, for i = O, .., g (v ,  w ) - l ,  we push the power of u i down to 
0 and remove u TM from its s t ruc tura l  parent  u i. Afterwards,  
for i = g(v, w), we puch the power of u i down to 0, remove 

i • . - v +1 and w '+1 from their  s t ruc ture  parent  u ' ,  and finally, we 
push the  power of v TM a n d  w TM down to 0. Af te r  the above 
procedure,  each u i has lost exactly the s t ructura l  children 
tha t  are ancestors  of v or w. 
Now, inductively, when recover is called for i = g(v ,  w), ..., 1, 
our s tar t ing point  will be  tha t  we have pointers to v TM and 
w '+1, bo th  of which are roots  of power 0. Also, if i > 0, we 
have a pointer  to the previous parent  u i of v TM a n d  w TM. 
All nodes below level i + 1 are assumed to have the powers 
specified in §7. Since S~ is roo ted  at level i + 1 we can still 
move b e t w e e n / - i n d u c e d  nodes in O((log log n) 2) time. 
During the recover on level i, when merging level i +  1 nodes, 
first we need to push their  power, and remove them from 
their  s t ruc tura l  parent  u ~. Af te r  the merges, v TM covers T~. 
T h e n  we pop the powers of w i+1 a n d  v ~+1 back up to the 
value specified in §7, and add w TM back as a child of u i. 

If a replacement  edge was found, we also add v I+1 back as 
a child of u i, and then, for i = g(v, w), ..., 1, we push the 
power of u i back up and add it back as a child of u i-1 . 
If no replacement  edge was found, v i is created with power 
0 a n d  v i+1 as only child. Since w i+1 has been added back 
under  u i, w i = u i. If i : 0, we are done since nodes on level 
0 have power  0. Otherwise,  we can now call recover on level 
i - 1 wi th  pointers  to v i, w i, a n d  u i -1  . 

9.1 Pushing and popping powers 
When  pushing the power  of a node a to 0, a is always a 
root  node. The  pushing is done as follows. While there 
is a down-going level induced short  cut  of posit ive power, 
we pick a level induced short  cut  (a, b) of maximal  power 
q. Then,  for each immedia te  subcut  (c ,d)  of (a,b), we set 
tree(c, d) :=  tree(c, d) V tree(a,  b). The  immedia te  subcuts  
are each found in O(log log n) t ime by going down to b and 
moving back up to a along base cuts of maximal  power < q. 
Finally, the level induced short  cut  (a, b) is removed.  Since 
(a, b) was of maximal  power  and a was a root,  (a, b) is not  a 
subcut  of any o ther  level short  cut. Hence we remove (a, b) 
as a base cut. This  actual ly pays for the push because we 
pay to create  base cuts bu t  not  to removing them. The  
process is r epea ted  unti l  the  maximal  power of a downgoing 
level short  cut  is 0. 
Popping is much more subtle. However, observe tha t  all 
nodes popped  are ancestors  of v and w in the final tree. Ig- 
noring the problem of identifying the short  cuts, the l emma 
below states t ha t  the to ta l  number  of level short cuts and 
base cuts incident to all these ancestors is sufficiently lim- 
i ted given tha t  we have O(log n(log log n) 2) t ime av~lable  

for an edge deletion. 

LEMMA 10. F o r  a n y  v e r t e x  v in G ,  the  t o ta l  n u m b e r  o f  

leve l  i n d u c e d  s h o r t  c u t s  a n d  base  c u t s  i n c i d e n t  to a n c e s t o r s  
o f  v in C L is O(log n log log n).  

PROOF. Let  P be the pa th  in C L from v to the root.  
T h e n  P has length O(log n log log n), so the to ta l  number  of 
short  cuts of P ,  including all level induced short  cuts and 
base cuts, is O(log n log log n). The  number  of tr ivial  short  
cuts leaving P is also bounded  by the length,  so it only 
remains to bound  the number  of non-t r iv ia l  level induced 
short  cuts and base cuts leaving P .  Consider  any level i, and 
let (a, b) be a non-tr ivial  level / - induced short  cut  leaving 
P.  The  (a,b) short  cuts an / - induced t race path.  Let  c 
be the last node from P in the pa th  from a to b. T h e n  c 
is the unique last node in P with  a descending /- induced 
leaf. Since no node is contained in more than  one / - induced 
trace path,  we conclude tha t  there  is at most  one i - induced 
short cut  leaving P.  Similarly, for each power < p ( ( a ,  b)),  

there is exactly one subcut  of (a, b) leaving P ;  namely  the 
one passing c, so (a, b) has only O(log log n) subcuts  leaving 
P.  []  

9.2 Merging etc. 
Merging and adding s t ructura l  children is very simple. We 
know tha t  the roots  involved have power 0, so we only need 
to worry about  short  cuts wi thin  the local tree. T h e n  the 
only non-tr ivial  short  cuts are over the rank trees. The  im- 
por tan t  observation now is tha t  a merge or child addi t ion 
does not  affect the subtree below any existing rank node. 
Thus,  merging and child addit ions can only create  prob- 
lems when rank nodes are crea ted  or deleted. However,  by 
L e m m a  4, if we set a _> 3, we only delete or create  one rank 
root  node per  O(log n) s t ruc tura l  changes. This  means  tha t  
we have plenty of t ime to upda te  the short  cu t t ing  around 
the affected rank nodes. 
Child deletions are somewhat  more tricky. For each i, we 
will assume a potent ia l  of 1 at  every / - induced branch node 
within a rank tree, added when the branch node was created.  
To see tha t  this is valid, note  tha t  when a node in a rank 
tree becomes / - induced  it is e i ther  because of a level increase, 
or because the rank node is c rea ted  as in L e m m a  4. In the 
la t te r  case, we need at most  a potent ia l  of 1 for each i, which 
is is done by set t ing a > 3. 
Let  b be a node go be deleted. If b is a leaf of a buffer tree, 
the deletion is trivial, so suppose b is a leaf of a b o t t o m  tree 
with root  r, and let r* be the root  of the rank tree above r. 
When  b is deleted, in O ( ( l o g l o g n )  2) time, we upda te  the 
b i tmaps  up to r. Suppose this causes some bit  tree(b)[j] to 
be unset.  T h a t  is, suppose tha t  b was the only leaf in the 
b o t t o m  tree tha t  had a j - induced  descendant .  
Suppose r was the only leaf in the rank tree wi th  a j - induced  
descendants.  This  means  tha t  the p a t h  f rom r up to r* is 
a j - induced  trace path,  so we can follow the  p a t h  up using 
O(log log n) level short  cut  of maximal  power. Conversely, 
this means tha t  we can identify all such j by following max- 
imimal  level short  cuts up from r in O( ( log log  n) 2) time, 
and since the j share these level short  cuts, we can cancel 
them all in O((log log n) 2) time. 
It remains to deal with the case where r is not  the only leaf in 
the rank tree wi th  a j - induced  descendants.  In this case, we 
jus t  have to cancel the j - shor t  cuts up to the first j - induced  
branch node c above r. T h e n  c is no longer a j - b r a n c h  node, 

349 



and hence we need to pop the j -shor t  cuts incident to c so as 
to get a proper short cutt ing of the j - t race  pa th  now going 
though c. All this takes O((loglog n) 2) time, and is paid by 
the cancellation of c as a j -b ranch  node. 

10. THE NON-TREE EDGES 
The main problem in dealing with the non-tree edges is that  
we want to provide a reasonably uniform sampling as de- 
scribed in §3. What  we need for / - induced  short cut is an 
i-induced weight telling how many level i tree edges are inci- 
dent to vertices below it. At first this kills everything done 
so far because we have been able to store information for all 
levels in a single bi tmap.  
We now make the first simple observation, that  it suf- 
fices with approximate counting. Generally counters will 
be added up along a pa th  of lenght O(log n log log n) and 
we can allow each addition to make a mistake by a factor 
(1 + (log n) -2) .  This means that  it  suffices to use floats with 
O( log logn)  bits of precission. This in turns means that  we 
can store the log n weights in float maps distributed over 
O(loglog n) words. It is straightforward to, say, add two 
float maps in O(log log n) time. 
Our second much more challenging problem when dealing 
with the weights is that  every time a new level i non-tree 
edge arrives or disappears,  we have update  the /-induced 
weight counters above it. For weights bigger than (log n) 3, 
however, the approxmate counting means we are allowed an 
absolute error of log n. 
For i-induced weights smaller than (log n) 3, we introduce a 
system of heavy paths.  A child in Si is heavy if i t s / - induced 
weight is more than twice that  of its sibling. Heavy paths 
are now formed by the paths  from parents to their heavy 
children, and for each heavy pa th  we have an extra  efficient 
short cutt ing system for the / - induced  weights. 
Now, when a level i non-tree edge arrives or disappears, 
for each end-point,  we update  the /-induced weights along 
O( loglogn)  heavy paths,  until we arrive at  a big weight of 
size (log n) 3. Spending O((log log n) 2) t ime per heavy path,  
the update  up to the big weight takes O((loglog n) 3) time. 
At the big weight we wait and accumulate log n changes be- 
fore we update  the / - induced  weights higher up. The higher 
up /-induced weights can be upda ted  in O(log n(log log n) 2) 
time, hence in O( ( log logn)  ~) time per  edge level change. 
Thus, the total  cost per  edge level change is O((log log n)3). 
The integration of these sketchy ideas for weight main- 
tainance with the structural  changes is postponed to the 
journal version of this paper.  The total  cost per  edge level 
change will be kept at  O((loglog n)3), implying a random- 
ized fully dynamic connectivity algorithm maintaining a 
spanning forest in O(log n(log log n) 3) expected amortized 
time per update.  
In the journal  version, it will also be shown that  the floating 
point weight idea improves the deterministic time complex- 
ity for the 2-edge and biconnectivity in [6] from O((log n) 4) 
to O((log n) 3 log log n). 
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