COS 423 Problem Set 4
 Due Wednesday April 7, 2010
Spring 2010

No collaboration

1. (a) (5 points) Give an example of an acyclic graph with a topological order that CANNOT be computed as the reverse postorder of a depth-first search, no matter in what order the search chooses starting vertices and traverses arcs, as long as each successive starting vertex for a search has no incoming edges (in the original graph).
(b) (5 points) Show that if each start vertex can be chosen arbitrarily, then there is a way to generate every possible topological order of a given graph as the reverse postorder of a depth-first search.

2. (10 points) (Bridge components via ANY type of search) Although depth-first search seems to be necessary to find the strong components of a directed graph in linear time, it is not in fact needed to find the bridge components or the biconnected components (blocks) of an undirected graph in linear time. Recall that the bridge components are the subgraphs formed by deleting all the bridges; a bridge is an edge whose removal increases the number of connected components. The goal of this problem is to develop an alternative algorithm to find the bridge components. Suppose the graph is connected. (If not, the algorithm can be applied to each connected component in turn.) Suppose T is any spanning tree. Then each non-tree edge forms a fundamental cycle consisting of the non-tree edge and the unique path in the tree joining its ends.
(a) Prove that an edge is a bridge if and only if it is not on some fundamental cycle.

(b) Part (a) implies that all the bridges are edges of the spanning tree T. Based on (a), devise a way to find all the bridges, and all the bridge components, in
[image: image1.wmf]O()

nm

+

 time plus
[image: image2.wmf]O()

nm

+

 disjoint set operations. (Your algorithm will then run in almost-linear time but not linear time.)
3. (extra credit: 10 points) Devise a linear-time algorithm to find all the bridges of a connected graph by doing computations on an arbitrary spanning tree T of the graph and on the non-tree edges. Hint: Root T at an arbitrary vertex and number the vertices of the tree in preorder. Define, for each vertex v, low(v) to be the lowest vertex reachable from a descendant of v by a single edge and high(v) to be the highest vertex reachable from a descendant of v by a single edge. Give an algorithm to compute low(v) and high(v) for every vertex v in
[image: image3.wmf]O()

nm

+

time. Give an
[image: image4.wmf]O()

nm

+

-time algorithm that uses the low and high functions to find all the bridges and all the bridge components.
4. (10 points) (making streets one-way while maintaining reachability)
Let G be a mixed graph. (Each edge is either undirected or directed.) Give an
[image: image5.wmf]O()

nm

+

-time algorithm to test whether the undirected edges can be directed so that the resulting graph is strongly connected. If the answer is “yes,” your algorithm should give an appropriate direction for each undirected edge.

Application: the roads in an old city are too narrow to accommodate cars going in both directions at the same time. To avoid crashes, the city council wants to make every road one-way but still allow every place in the city to be reachable from every other. Some of the roads have a pre-existing direction that cannot be changed.
Partial credit (5 points) Solve the special case of this problem in which all the edges of the graph are undirected.

_1330948765.unknown

_1330948830.unknown

_1330948726.unknown

