
Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 22, 2010 10:50:53 PM

Algorithms and Data Structures
Princeton University

Spring 2010

Robert Sedgewick

COS 226

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 22, 2010 10:50:53 PM

Course Overview

‣ outline
‣ why study algorithms?
‣ usual suspects
‣ coursework
‣ resources

3

What is COS 226?

• Intermediate-level survey course.

• Programming and problem solving with applications.

• Algorithm: method for solving a problem.

• Data structure: method to store information.

topic data structures and algorithms

data types stack, queue, union-find, priority queue

sorting quicksort, mergesort, heapsort, radix sorts

searching hash table, BST, red-black tree

graphs BFS, DFS, Prim, Kruskal, Dijkstra

strings KMP, regular expressions, TST, Huffman, LZW

geometry Graham scan, k-d tree, Voronoi diagram

COS 226 course overview

4

Their impact is broad and far-reaching.

Internet. Web search, packet routing, distributed file sharing, ...

Biology. Human genome project, protein folding, ...

Computers. Circuit layout, file system, compilers, ...

Computer graphics. Movies, video games, virtual reality, ...

Security. Cell phones, e-commerce, voting machines, ...

Multimedia. CD player, DVD, MP3, JPG, DivX, HDTV, ...

Transportation. Airline crew scheduling, map routing, ...

Physics. N-body simulation, particle collision simulation, ...

…

Why study algorithms?

Old roots, new opportunities.

• Study of algorithms dates at least to Euclid.

• Some important algorithms were
discovered by undergraduates!

5

300 BCE

1920s

1940s
1950s
1960s
1970s
1980s
1990s
2000s

Why study algorithms?

6

To solve problems that could not otherwise be addressed.

Ex. Network connectivity. [stay tuned]

Why study algorithms?

7

For intellectual stimulation.

Why study algorithms?

“ For me, great algorithms are the poetry of computation. Just like
 verse, they can be terse, allusive, dense, and even mysterious. But
 once unlocked, they cast a brilliant new light on some aspect of
 computing. ” — Francis Sullivan

“ An algorithm must be seen to be believed. ” — D. E. Knuth

They may unlock the secrets of life and of the universe.

Computational models are replacing mathematical models in scientific inquiry.

8

20th century science
(formula based)

€

E = mc2

€

F = ma

€

F = Gm1m2

r2

€

−
h2

2m
∇2 + V (r)

⎡

⎣
⎢

⎤

⎦
⎥ Ψ(r) = E Ψ(r)

Why study algorithms?

“ Algorithms: a common language for nature, human, and computer. ” — Avi Wigderson

21st century science
(algorithm based)

for (double t = 0.0; true; t = t + dt)
 for (int i = 0; i < N; i++)
 {
 bodies[i].resetForce();
 for (int j = 0; j < N; j++)
 if (i != j)
 bodies[i].addForce(bodies[j]);
 }

For fun and profit.

9

Why study algorithms?

• Their impact is broad and far-reaching.

• Old roots, new opportunities.

• To solve problems that could not otherwise be addressed.

• For intellectual stimulation.

• They may unlock the secrets of life and of the universe.

• For fun and profit.

10

Why study algorithms?

Why study anything else?

11

8 programming assignments. 45%

• Electronic submission.

• Due 11pm, starting Wednesay 9/23.

Exercises. 15%

• Due in lecture, starting Tuesday 9/22.

Exams.

• Closed-book with cheatsheet.

• Midterm. 15%

• Final. 25%

Staff discretion. To adjust borderline cases.

Final

Midterm

Programs

Coursework and grading

everyone needs to meet me in office hours

Exercises

Course content.

• Course info.

• Exercises.

• Lecture slides.

• Programming assignments.

• Submit assignments.

Booksites.

• Brief summary of content.

• Download code from lecture.

12

Resources (web)

http://www.princeton.edu/~cos226

http://www.cs.princeton.edu/IntroProgramming
http://www.cs.princeton.edu/algs4

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 22, 2010 12:38:14 PM

‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications

1.5 Case Study

Steps to developing a usable algorithm.

• Model the problem.

• Find an algorithm to solve it.

• Fast enough? Fits in memory?

• If not, figure out why.

• Find a way to address the problem.

• Iterate until satisfied.

The scientific method.

Mathematical analysis.

2

Subtext of today’s lecture (and this course)

3

‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications

Given a set of objects

• Union: connect two objects.

• Find: is there a path connecting the two objects?

4

Dynamic connectivity

6 5 1

4

87

32

0

union(3, 4)

union(8, 0)

union(2, 3)

union(5, 6)

 find(0, 2) no

 find(2, 4) yes

union(5, 1)

union(7, 3)

union(1, 6)

 find(0, 2) yes

 find(2, 4) yes

union(4, 8)

more difficult problem: find the path

5

Network connectivity: larger example

p

q

Q. Is there a path from p to q?

A. Yes. but finding the path is more difficult: stay tuned (Chapter 4)

Dynamic connectivity applications involve manipulating objects of all types.

• Variable name aliases.

• Pixels in a digital photo.

• Computers in a network.

• Web pages on the Internet.

• Transistors in a computer chip.

• Metallic sites in a composite system.

When programming, convenient to name objects 0 to N-1.

• Use integers as array index.

• Suppress details not relevant to union-find.

6

Modeling the objects

can use symbol table to translate from
object names to integers (stay tuned)

Transitivity. If p is connected to q and q is connected to r,
then p is connected to r.

Connected components. Maximal set of objects that are mutually connected.

7

Modeling the connections

4

87

32

0

{ 1 5 6 } { 2 3 4 7 } { 0 8 }

connected components

6 5 1

Find query. Check if two objects are in the same set.

Union command. Replace sets containing two objects with their union.

8

Implementing the operations

6 5 1

4

87

32

0

{ 1 5 6 } { 2 3 4 7 } { 0 8 }

6 5 1

7

32

0

{ 1 5 6 } { 0 2 3 4 7 8 }

4

8

union(4, 8)

connected components

9

Goal. Design efficient data structure for union-find.

• Number of objects N can be huge.

• Number of operations M can be huge.

• Find queries and union commands may be intermixed.

Union-find data type (API)

 public class UnionFind public class UnionFind

UnionFind(int N) create union-find data structure with
N objects and no connections

boolean find(int p, int q) are p and q in the same set?

void unite(int p, int q)
replace sets containing p and q

with their union

10

‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications

11

Data structure.

• Integer array id[] of size N.

• Interpretation: p and q are connected if they have the same id.

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 9 9 6 6 7 8 9

5 and 6 are connected
2, 3, 4, and 9 are connected

Quick-find [eager approach]

0 1 2 3 4

5 6 7 8 9

12

Data structure.

• Integer array id[] of size N.

• Interpretation: p and q are connected if they have the same id.

Find. Check if p and q have the same id.

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 9 9 6 6 7 8 9

id[3] = 9; id[6] = 6
3 and 6 not connected

Quick-find [eager approach]

5 and 6 are connected
2, 3, 4, and 9 are connected

13

Data structure.

• Integer array id[] of size N.

• Interpretation: p and q are connected if they have the same id.

Find. Check if p and q have the same id.

Union. To merge sets containing p and q, change all entries with id[p] to id[q].

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 9 9 6 6 7 8 9

union of 3 and 6
2, 3, 4, 5, 6, and 9 are connected

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 6 6 6 6 6 7 8 6

problem: many values can change

Quick-find [eager approach]

5 and 6 are connected
2, 3, 4, and 9 are connected

id[3] = 9; id[6] = 6
3 and 6 not connected

14

3-4 0 1 2 4 4 5 6 7 8 9

4-9 0 1 2 9 9 5 6 7 8 9

8-0 0 1 2 9 9 5 6 7 0 9

2-3 0 1 9 9 9 5 6 7 0 9

5-6 0 1 9 9 9 6 6 7 0 9

5-9 0 1 9 9 9 9 9 7 0 9

7-3 0 1 9 9 9 9 9 9 0 9

4-8 0 1 0 0 0 0 0 0 0 0

6-1 1 1 1 1 1 1 1 1 1 1

Quick-find example

problem: many values can change

public class QuickFind
{
 private int[] id;

 public QuickFind(int N)
 {
 id = new int[N];
 for (int i = 0; i < N; i++)
 id[i] = i;
 }

 public boolean find(int p, int q)
 {
 return id[p] == id[q];
 }

 public void unite(int p, int q)
 {
 int pid = id[p];
 for (int i = 0; i < id.length; i++)
 if (id[i] == pid) id[i] = id[q];
 }
}

15

check if p and q have same id
(1 operation)

change all entries with id[p] to id[q]
(N operations)

set id of each object to itself
(N operations)

Quick-find: Java implementation

Quick-find defect.

• Union too expensive (N operations).

• Trees are flat, but too expensive to keep them flat.

Ex. Takes N2 operations to process sequence of N union commands
on N objects.

16

Quick-find is too slow

algorithm union find

quick-find N 1

Rough standard (for now).

• 109 operations per second.

• 109 words of main memory.

• Touch all words in approximately 1 second.

Ex. Huge problem for quick-find.

• 109 union commands on 109 objects.

• Quick-find takes more than 1018 operations.

• 30+ years of computer time!

Paradoxically, quadratic algorithms get worse with newer equipment.

• New computer may be 10x as fast.

• But, has 10x as much memory so problem may be 10x bigger.

• With quadratic algorithm, takes 10x as long!

17

a truism (roughly) since 1950 !

Quadratic algorithms do not scale

18

‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications

19

Data structure.

• Integer array id[] of size N.

• Interpretation: id[i] is parent of i.

• Root of i is id[id[id[...id[i]...]]].

Quick-union [lazy approach]

keep going until it doesn’t change

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 4 9 6 6 7 8 9

3

542

70 1 9 6 8

3's root is 9; 5's root is 6

p

q

Data structure.

• Integer array id[] of size N.

• Interpretation: id[i] is parent of i.

• Root of i is id[id[id[...id[i]...]]].

Find. Check if p and q have the same root.

20

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 4 9 6 6 7 8 9

Quick-union [lazy approach]

keep going until it doesn’t change

3

542

70 1 9 6 8

3's root is 9; 5's root is 6
3 and 5 are not connected

p

q

Data structure.

• Integer array id[] of size N.

• Interpretation: id[i] is parent of i.

• Root of i is id[id[id[...id[i]...]]].

Find. Check if p and q have the same root.

Union. To merge sets containing p and q,
set the id of p's root to the id of q's root.

3

5

4

70 1

9

6 8

2

3

542

70 1 9 6 8

21

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 4 9 6 6 7 8 9

3's root is 9; 5's root is 6
3 and 5 are not connected

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 4 9 6 6 7 8 6

only one value changes
p

q

Quick-union [lazy approach]

p

q

keep going until it doesn’t change

22

3-4 0 1 2 4 4 5 6 7 8 9

4-9 0 1 2 4 9 5 6 7 8 9

8-0 0 1 2 4 9 5 6 7 0 9

2-3 0 1 9 4 9 5 6 7 0 9

5-6 0 1 9 4 9 6 6 7 0 9

5-9 0 1 9 4 9 6 9 7 0 9

7-3 0 1 9 4 9 6 9 9 0 9

4-8 0 1 9 4 9 6 9 9 0 0

6-1 1 1 9 4 9 6 9 9 0 0

problem:
trees can get tall

Quick-union example

Quick-union: Java implementation

public class QuickUnion
{
 private int[] id;

 public QuickUnion(int N)
 {
 id = new int[N];
 for (int i = 0; i < N; i++) id[i] = i;
 }

 private int root(int i)
 {
 while (i != id[i]) i = id[i];
 return i;
 }

 public boolean find(int p, int q)
 {
 return root(p) == root(q);
 }

 public void unite(int p, int q)
 {
 int i = root(p), j = root(q);
 id[i] = j;
 }
}

set id of each object to itself
(N operations)

chase parent pointers until reach root
(depth of i operations)

check if p and q have same root
(depth of p and q operations)

change root of p to point to root of q
(depth of p and q operations)

23

24

Quick-find defect.

• Union too expensive (N operations).

• Trees are flat, but too expensive to keep them flat.

Quick-union defect.

• Trees can get tall.

• Find too expensive (could be N operations).

worst case

† includes cost of finding root

Quick-union is also too slow

algorithm union find

quick-find N 1

quick-union N † N

25

‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications

Weighted quick-union.

• Modify quick-union to avoid tall trees.

• Keep track of size of each set.

• Balance by linking small tree below large one.

Ex. Union of 3 and 5.

• Quick union: link 9 to 6.

• Weighted quick union: link 6 to 9.

1

3

542

70 1 6 8

26

q

p

21 1 1size

Improvement 1: weighting

4

9

27

3-4 0 1 2 3 3 5 6 7 8 9

4-9 0 1 2 3 3 5 6 7 8 3

8-0 8 1 2 3 3 5 6 7 8 3

2-3 8 1 3 3 3 5 6 7 8 3

5-6 8 1 3 3 3 5 5 7 8 3

5-9 8 1 3 3 3 3 5 7 8 3

7-3 8 1 3 3 3 3 5 3 8 3

4-8 8 1 3 3 3 3 5 3 3 3

6-1 8 3 3 3 3 3 5 3 3 3

no problem:
trees stay flat

Weighted quick-union example

28

Data structure. Same as quick-union, but maintain extra array sz[i]
to count number of objects in the tree rooted at i.

Find. Identical to quick-union.

Union. Modify quick-union to:

• Merge smaller tree into larger tree.

• Update the sz[] array.

 int i = root(p);
 int j = root(q);
 if (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; }
 else { id[j] = i; sz[i] += sz[j]; }

Weighted quick-union: Java implementation

return root(p) == root(q);

29

Analysis.

• Find: takes time proportional to depth of p and q.

• Union: takes constant time, given roots.

Proposition. Depth of any node x is at most lg N.

Weighted quick-union analysis

3

x

5

4

2

7

0

1

8

9

6

N = 10
depth(x) = 3 ≤ lg N

30

Analysis.

• Find: takes time proportional to depth of p and q.

• Union: takes constant time, given roots.

Proposition. Depth of any node x is at most lg N.
Pf. When does depth of x increase?
Increases by 1 when tree T1 containing x is merged into another tree T2.

• The size of the tree containing x at least doubles since |T2| ≥ |T1|.

• Size of tree containing x can double at most lg N times. Why?

Weighted quick-union analysis

 T2

T1

x

31

Analysis.

• Find: takes time proportional to depth of p and q.

• Union: takes constant time, given roots.

Proposition. Depth of any node x is at most lg N.

Q. Stop at guaranteed acceptable performance?
A. No, easy to improve further.

† includes cost of finding root

Weighted quick-union analysis

algorithm union find

quick-find N 1

quick-union N † N

weighted QU lg N † lg N

10

Quick union with path compression. Just after computing the root of p,
set the id of each examined node to root(p).

2

41211

0

9

78

136

5

2

54

7

8

1211

0

1

3

6

9

32

root(9)

Improvement 2: path compression

p

10

Standard implementation: add second loop to root() to set the id[]
of each examined node to the root.

Simpler one-pass variant: halve the path length by making every other
node in path point to its grandparent.

In practice. No reason not to! Keeps tree almost completely flat.

33

only one extra line of code !

public int root(int i)
{
 while (i != id[i])
 {
 id[i] = id[id[i]];
 i = id[i];
 }
 return i;
}

Path compression: Java implementation

34

3-4 0 1 2 3 3 5 6 7 8 9

4-9 0 1 2 3 3 5 6 7 8 3

8-0 8 1 2 3 3 5 6 7 8 3

2-3 8 1 3 3 3 5 6 7 8 3

5-6 8 1 3 3 3 5 5 7 8 3

5-9 8 1 3 3 3 3 5 7 8 3

7-3 8 1 3 3 3 3 5 3 8 3

4-8 8 1 3 3 3 3 5 3 3 3

6-1 8 3 3 3 3 3 3 3 3 3

no problem:
trees stay VERY flat

Weighted quick-union with path compression example

35

Proposition. [Tarjan 1975] Starting from an empty data structure,
any sequence of M union and find ops on N objects takes O(N + M lg* N) time.

• Proof is very difficult.

• But the algorithm is still simple!

Linear algorithm?

• Cost within constant factor of reading in the data.

• In theory, WQUPC is not quite linear.

• In practice, WQUPC is linear.

Amazing fact. No linear-time linking strategy exists.

because lg* N is a constant in this universe

actually O(N + M α(M, N))
see COS 423

N lg* N

1 0

2 1

4 2

16 3

65536 4

265536 5

WQUPC performance

lg* function
number of times needed to take

the lg of a number until reaching 1

Bottom line. WQUPC makes it possible to solve problems that
could not otherwise be addressed.

Ex. [109 unions and finds with 109 objects]

• WQUPC reduces time from 30 years to 6 seconds.

• Supercomputer won't help much; good algorithm enables solution.
36

M union-find operations on a set of N objects

algorithm worst-case time

quick-find M N

quick-union M N

weighted QU N + M log N

QU + path compression N + M log N

weighted QU + path compression N + M lg* N

Summary

37

‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications

38

• Percolation.

• Games (Go, Hex).
✓ Network connectivity.

• Least common ancestor.

• Equivalence of finite state automata.

• Hoshen-Kopelman algorithm in physics.

• Hinley-Milner polymorphic type inference.

• Kruskal's minimum spanning tree algorithm.

• Compiling equivalence statements in Fortran.

• Morphological attribute openings and closings.

• Matlab's bwlabel() function in image processing.

Union-find applications

A model for many physical systems:

• N-by-N grid of sites.

• Each site is open with probability p (or blocked with probability 1-p).

• System percolates if top and bottom are connected by open sites.

39

Percolation

Percolation examples

does not percolate

percolates

site connected to top

blocked
site

full
open
siteempty

open
site

no open site connected to top

Percolation examples

does not percolate

percolates

site connected to top

blocked
site

full
open
siteempty

open
site

no open site connected to topN = 8

A model for many physical systems:

• N-by-N grid of sites.

• Each site is open with probability p (or blocked with probability 1-p).

• System percolates if top and bottom are connected by open sites.

40

model system vacant site occupied site percolates

electricity material conductor insulated conducts

fluid flow material empty blocked porous

social interaction population person empty communicates

Percolation

Depends on site vacancy probability p.

41

Likelihood of percolation

p low
does not percolate

p high
percolates

p medium
percolates?

N = 20

When N is large, theory guarantees a sharp threshold p*.

• p > p*: almost certainly percolates.

• p < p*: almost certainly does not percolate.

Q. What is the value of p* ?

42

Percolation phase transition

0.5930
0

1

1

site vacancy probability p

percolation
probability

p*

N = 100

• Initialize N-by-N whole grid to be blocked.

• Declare random sites open until top connected to bottom.

• Vacancy percentage estimates p*.

43

empty open site
(not connected to top)

full open site
(connected to top)

Monte Carlo simulation

blocked site

44

How to check whether system percolates?

• Create an object for each site.

• Sites are in same set if connected by open sites.

• Percolates if any site in top row is in same set as any site in bottom row.

UF solution to find percolation threshold

0 0 2 3 4 5 6 7

8 9 10 10 12 13 6 15

16 17 18 19 20 21 22 23

24 25 25 25 28 29 29 31

32 33 25 35 36 37 38 39

40 41 25 43 36 45 46 47

48 49 25 51 36 53 47 47

56 57 58 59 60 61 62 47

empty open site
(not connected to top)

full open site
(connected to top)

blocked site

brute force algorithm needs to check N2 pairs

N = 8

Q. How to declare a new site open?

0 0 2 3 4 5 6 7

8 9 10 10 12 13 6 15

16 17 18 19 20 21 22 23

24 25 25 25 28 29 29 31

32 33 25 35 36 37 38 39

40 41 25 43 36 45 46 47

48 49 25 51 36 53 47 47

56 57 58 59 60 61 62 47

45

open this site

UF solution to find percolation threshold

empty open site
(not connected to top)

full open site
(connected to top)

blocked site

N = 8

Q. How to declare a new site open?
A. Take union of new site and all adjacent open sites.

0 0 2 3 4 5 6 7

8 9 10 10 12 13 6 15

16 17 18 19 20 21 22 23

24 25 25 25 25 25 25 31

32 33 25 35 25 37 38 39

40 41 25 43 25 45 46 47

48 49 25 51 25 53 47 47

56 57 58 59 60 61 62 47

46

open this site

UF solution to find percolation threshold

empty open site
(not connected to top)

full open site
(connected to top)

blocked site

N = 8

47

Q. How to avoid checking all pairs of top and bottom sites?

UF solution: a critical optimization

empty open site
(not connected to top)

full open site
(connected to top)

blocked site

N = 8

0 0 2 3 4 5 6 7

8 9 10 10 12 13 6 15

16 17 18 19 20 21 22 23

24 25 25 25 25 25 25 31

32 33 25 35 25 37 38 39

40 41 25 43 25 45 46 47

48 49 25 51 25 53 47 47

56 57 58 59 60 61 62 47

48

Q. How to avoid checking all pairs of top and bottom sites?
A. Create a virtual top and bottom objects;
 system percolates when virtual top and bottom objects are in same set.

UF solution: a critical optimization

virtual top row

virtual bottom row

00000000

0 0 2 3 4 5 0 7

8 9 10 10 12 13 0 15

16 17 18 19 20 21 22 23

24 25 25 25 25 25 25 31

32 33 25 35 25 37 38 39

40 41 25 43 25 45 46 47

48 49 25 51 25 53 47 47

47 57 58 59 60 61 62 47

4747474747474747

empty open site
(not connected to top)

full open site
(connected to top)

blocked site

N = 8

49

Q. What is percolation threshold p* ?
A. About 0.592746 for large square lattices.

percolation constant known
 only via simulation

Percolation threshold

p*

0.5930
0

1

1

site vacancy probability p

percolation
probability

Steps to developing a usable algorithm.

• Model the problem.

• Find an algorithm to solve it.

• Fast enough? Fits in memory?

• If not, figure out why.

• Find a way to address the problem.

• Iterate until satisfied.

The scientific method.

Mathematical analysis.

50

Subtext of today’s lecture (and this course)

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 22, 2010 10:11:28 AM

‣ estimating running time
‣ mathematical analysis
‣ order-of-growth hypotheses
‣ input models
‣ measuring space

1.4 Analysis of Algorithms

Reference: Intro to Programming in Java, Section 4.1

Cast of characters

2

Programmer needs to develop
a working solution.

Client wants problem
solved efficiently.

Theoretician wants
to understand.

Basic blocking and tackling
is sometimes necessary.
[this lecture]

Student might play any
or all of these roles
someday.

3

Running time

Charles Babbage (1864) Analytic Engine

how many times
do you have to
turn the crank?

“ As soon as an Analytic Engine exists, it will necessarily guide the future
 course of the science. Whenever any result is sought by its aid, the question
 will arise—By what course of calculation can these results be arrived at by
 the machine in the shortest time? ” — Charles Babbage

Predict performance.

Compare algorithms.

Provide guarantees.

Understand theoretical basis.

Primary practical reason: avoid performance bugs.

Reasons to analyze algorithms

4

this course (COS 226)

theory of algorithms (COS 423)

client gets poor performance because programmer
did not understand performance characteristics

5

Some algorithmic successes

Discrete Fourier transform.

• Break down waveform of N samples into periodic components.

• Applications: DVD, JPEG, MRI, astrophysics, ….

• Brute force: N2 steps.

• FFT algorithm: N log N steps, enables new technology.
Friedrich Gauss
1805

Linear, linearithmic, and quadratic

8T

16T

32T

64T

time

1K 2K 4K 8Ksize

quadratic

linearithmic

linear

6

Some algorithmic successes

N-body Simulation.

• Simulate gravitational interactions among N bodies.

• Brute force: N2 steps.

• Barnes-Hut: N log N steps, enables new research.
Andrew Appel
PU '81

Linear, linearithmic, and quadratic

8T

16T

32T

64T

time

1K 2K 4K 8Ksize

quadratic

linearithmic

linear

7

‣ estimating running time
‣ mathematical analysis
‣ order-of-growth hypotheses
‣ input models
‣ measuring space

8

Scientific analysis of algorithms

A framework for predicting performance and comparing algorithms.

Scientific method.

• Observe some feature of the universe.

• Hypothesize a model that is consistent with observation.

• Predict events using the hypothesis.

• Verify the predictions by making further observations.

• Validate by repeating until the hypothesis and observations agree.

Principles.

• Experiments must be reproducible.

• Hypotheses must be falsifiable.

Universe = computer itself.

Every time you run a program you are doing an experiment!

First step. Debug your program!
Second step. Choose input model for experiments.
Third step. Run and time the program for problems of increasing size.

Why is my program so slow ??

Experimental algorithmics

9

10

Example: 3-sum

3-sum. Given N integers, find all triples that sum to exactly zero.

Context. Deeply related to problems in computational geometry.

% more input8.txt
8
 30 -30 -20 -10 40 0 10 5

% java ThreeSum < input8.txt
 4
 30 -30 0
 30 -20 -10
-30 -10 40
-10 0 10

public class ThreeSum
{
 public static int count(int[] a)
 {
 int N = a.length;
 int cnt = 0;

 for (int i = 0; i < N; i++)
 for (int j = i+1; j < N; j++)
 for (int k = j+1; k < N; k++)
 if (a[i] + a[j] + a[k] == 0)
 cnt++;
 return cnt;
 }

 public static void main(String[] args)
 {
 long[] a = StdArrayIO.readInt1D();
 StdOut.println(count(a));
 }
}

11

3-sum: brute-force algorithm

check each triple

ignore overflow

Run the program for various input sizes and measure running time.

12

Empirical analysis

N time (seconds) †

1000 0.26

2000 2.16

4000 17.18

8000 137.76

† Running Linux on Sun-Fire-X4100

ThreeSum.java

Q. How to time a program?
A. Manual.

13

Measuring the running time

Q. How to time a program?
A. Automatic.

14

Measuring the running time

client code

implementation (part of stdlib.jar, see http://www.cs.princeton.edu/introcs/stdlib)

Stopwatch stopwatch = new Stopwatch();

ThreeSum.count(a);

double time = stopwatch.elapsedTime();
StdOut.println("Running time: " + time + " seconds");

public class Stopwatch
{
 private final long start = System.currentTimeMillis();

 public double elapsedTime()
 {
 long now = System.currentTimeMillis();
 return (now - start) / 1000.0;
 }
}

Plot running time as a function of input size N.

15

Data analysis

16

Log-log plot. Plot running time vs. input size N on log-log scale.

Regression. Fit straight line through data points: a N b.
Hypothesis. Running time grows with the cube of the input size: a N 3.

Data analysis

slope

power law

slope = 3

Doubling hypothesis. Quick way to estimate b in a power law hypothesis.

Run program, doubling the size of the input.

Hypothesis. Running time is about a N b with b = lg ratio.
Caveat. Can't identify logarithmic factors with doubling hypothesis.

17

Doubling hypothesis

N time (seconds) † ratio lg ratio

500 0.03 -

1,000 0.26 7.88 2.98

2,000 2.16 8.43 3.08

4,000 17.18 7.96 2.99

8,000 137.76 7.96 2.99

seems to converge to a constant b ≈ 3

18

Prediction and verification

Hypothesis. Running time is about a N 3 for input of size N.

Q. How to estimate a?
A. Run the program!

Refined hypothesis. Running time is about 2.7 × 10 –10 × N 3 seconds.

Prediction. 1,100 seconds for N = 16,000.
Observation.

validates hypothesis!

N time (seconds)

4,000 17.18

4,000 17.15

4,000 17.17

N time (seconds)

16384 1118.86

17.17 = a × 40003

⇒ a = 2.7 × 10 –10

19

Experimental algorithmics

Many obvious factors affect running time:

• Machine.

• Compiler.

• Algorithm.

• Input data.

More factors (not so obvious):

• Caching.

• Garbage collection.

• Just-in-time compilation.

• CPU use by other applications.

Bad news. It is often difficult to get precise measurements.
Good news. Easier than other sciences.

e.g., can run huge number of experiments

20

War story (from COS 126)

Q. How long does this program take as a function of N?

Jenny. ~ c1 N2 seconds.

Kenny. ~ c2 N seconds.

public class EditDistance
{
 String s = StdIn.readString();
 int N = s.length();
 ...

 for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 distance[i][j] = ...
 ...
}

N time

1,000 0.11

2,000 0.35

4,000 1.6

8,000 6.5

N time

250 0.5

500 1.1

1,000 1.9

2,000 3.9

Jenny Kenny

21

‣ estimating running time
‣ mathematical analysis
‣ order-of-growth hypotheses
‣ input models
‣ measuring space

22

Mathematical models for running time

Total running time: sum of cost × frequency for all operations.

• Need to analyze program to determine set of operations.

• Cost depends on machine, compiler.

• Frequency depends on algorithm, input data.

In principle, accurate mathematical models are available.

Donald Knuth
1974 Turing Award

Cost of basic operations

operation example nanoseconds †

integer add a + b 2.1

integer multiply a * b 2.4

integer divide a / b 5.4

floating point add a + b 4.6

floating point multiply a * b 4.2

floating point divide a / b 13.5

sine Math.sin(theta) 91.3

arctangent Math.atan2(y, x) 129.0

...

23

† Running OS X on Macbook Pro 2.2GHz with 2GB RAM

Novice mistake. Abusive string concatenation.

Cost of basic operations

24

operation example nanoseconds †

variable declaration int a c1

assignment statement a = b c2

integer compare a < b c3

array element access a[i] c4

array length a.length c5

1D array allocation new int[N] c6 N

2D array allocation new int[N][N] c7 N 2

string length s.length() c8

substring extraction s.substring(N/2, N) c9

string concatenation s + t c10 N

25

Example: 1-sum

Q. How many instructions as a function of N?

int count = 0;
for (int i = 0; i < N; i++)
 if (a[i] == 0) count++;

operation frequency

variable declaration 2

assignment statement 2

less than compare N + 1

equal to compare N

array access N

increment ≤ 2 N

between N (no zeros)
and 2N (all zeros)

26

Example: 2-sum

Q. How many instructions as a function of N?

int count = 0;
for (int i = 0; i < N; i++)
 for (int j = i+1; j < N; j++)
 if (a[i] + a[j] == 0) count++;

operation frequency

variable declaration N + 2

assignment statement N + 2

less than compare 1/2 (N + 1) (N + 2)

equal to compare 1/2 N (N − 1)

array access N (N − 1)

increment ≤ N 2

tedious to count exactly

0 + 1 + 2 + . . . + (N − 1) =
1
2

N (N − 1)

=
�

N

2

�

• Estimate running time (or memory) as a function of input size N.

• Ignore lower order terms.
- when N is large, terms are negligible

- when N is small, we don't care

Ex 1. 6 N 3 + 20 N + 16	
 	
 ~ 6 N 3

Ex 2. 6 N 3 + 100 N 4/3 + 56	
 ~ 6 N 3

Ex 3. 6 N 3 + 17 N 2 lg N + 7 N	
 ~ 6 N 3

27

Tilde notation

discard lower-order terms
(e.g., N = 1000: 6 billion vs. 169 million)

Technical definition. f(N) ~ g(N) means

€

lim
N→ ∞

 f (N)
g(N)

 = 1

28

Example: 2-sum

Q. How long will it take as a function of N?

int count = 0;
for (int i = 0; i < N; i++)
 for (int j = i+1; j < N; j++)
 if (a[i] + a[j] == 0) count++;

operation frequency time per op total time

variable declaration ~ N c1 ~ c1 N

assignment statement ~ N c2 ~ c2 N

less than comparison ~ 1/2 N 2
c3 ~ c3 N 2

equal to comparison ~ 1/2 N 2
c3 ~ c3 N 2

array access ~ N 2 c4 ~ c4 N 2

increment ≤ N 2 c5 ≤ c5 N 2

total ~ c N 2

"inner loop"

depends on input data

29

Example: 3-sum

Q. How many instructions as a function of N?

Remark. Focus on instructions in inner loop; ignore everything else!

�
N

3

�
=

N(N − 1)(N − 2)
3!

∼ 1
6
N3

int count = 0;

for (int i = 0; i < N; i++)

 for (int j = i+1; j < N; j++)

 for (int k = j+1; k < N; k++)

 if (a[i] + a[j] + a[k] == 0)

 count++;

"inner loop"

~ N 2 / 2

~ N

~ 1

 may be in inner loop, depends on input data

30

Bounding the sum by an integral trick

Q. How to estimate a discrete sum?
A1. Take COS 340.
A2. Replace the sum with an integral, and use calculus!

Ex 1. 1 + 2 + … + N.

Ex 2. 1 + 1/2 + 1/3 + … + 1/N.

Ex 3. 3-sum triple loop.

N�

i=1

1
i
∼

� N

x=1

1
x

dx = lnN

N�

i=1

i ∼
� N

x=1
x dx ∼ 1

2
N2

N�

i=1

N�

j=i

N�

k=j

1 ∼
� N

x=1

� N

y=x

� N

z=y
dz dy dx ∼ 1

6
N3

In principle, accurate mathematical models are available.

In practice,

• Formulas can be complicated.

• Advanced mathematics might be required.

• Exact models best left for experts.

Bottom line. We use approximate models in this course: TN ~ c N3.

TN = c1 A + c2 B + c3 C + c4 D + c5 E
A = variable declarations
B = assignment statements
C = compare
D = array access
E = increment

Mathematical models for running time

31

frequencies
 (depend on algorithm, input)

costs (depend on machine, compiler)Text

32

‣ estimating running time
‣ mathematical analysis
‣ order-of-growth hypotheses
‣ input models
‣ measuring space

Common order-of-growth hypotheses

To determine order-of-growth:

• Assume a power law TN ~ a N b.

• Estimate exponent b with doubling hypothesis.

• Validate with mathematical analysis.

Ex. ThreeSumDeluxe.java
Food for precept. How is it implemented?

33

N time (seconds)

1,000 0.43

2,000 0.53

4,000 1.01

8,000 2.87

16,000 11.00

32,000 44.64

64,000 177.48

N time (seconds)

1,000 0.26

2,000 2.16

4,000 17.18

8,000 137.76

ThreeSum.java

ThreeSumDeluxe.java

Common order-of-growth hypotheses

Good news. the small set of functions
 1, log N, N, N log N, N 2, N 3, and 2N

suffices to describe order-of-growth of typical algorithms.

34

482 Algorithms and Data Structures

Linearithmic. We use the term linearithmic to describe programs whose running
time for a problem of size N has order of growth N log N. Again, the base of the
logarithm is not relevant. For example, CouponCollector (PROGRAM 1.4.2) is lin-
earithmic. The prototypical example is mergesort (see PROGRAM 4.2.6). Several im-
portant problems have natural solutions that are quadratic but clever algorithms
that are linearithmic. Such algorithms (including mergesort) are critically impor-
tant in practice because they enable us to address problem sizes far larger than
could be addressed with quadratic solutions. In the next section, we consider a

general design technique for developing
linearithmic algorithms.

Quadratic. A typical program whose
running time has order of growth N 2
has two nested for loops, used for some
calculation involving all pairs of N ele-
ments. The force update double loop in
NBody (PROGRAM 3.4.2) is a prototype of
the programs in this classification, as is
the elementary sorting algorithm Inser-
tion (PROGRAM 4.2.4).

Cubic. Our example for this section,
ThreeSum, is cubic (its running time has
order of growth N 3) because it has three
nested for loops, to process all triples of
N elements. The running time of matrix
multiplication, as implemented in SEC-
TION 1.4 has order of growth M 3 to mul-

tiply two M-by-M matrices, so the basic matrix multiplication algorithm is often
considered to be cubic. However, the size of the input (the number of entries in the
matrices) is proportional to N = M 2, so the algorithm is best classified as N 3/2, not
cubic.

Exponential. As discussed in SECTION 2.3, both TowersOfHanoi (PROGRAM 2.3.2)
and GrayCode (PROGRAM 2.3.3) have running times proportional to 2N because they
process all subsets of N elements. Generally, we use the term “exponential” to refer

1K

T

2T

4T

8T

64T

512T

1024T

logarithmic

ex
po

ne
nt

ia
l

Orders of growth (log-log plot)

constant

size

lin
ea

rit
hmic

lin
ea

r

qu
ad

ra
tic

cu
bi

c

2K 4K 8K 1024K

time

introJava.indb 482 1/3/08 4:16:12 PM

Common order-of-growth hypotheses

35

growth
rate name typical code framework description example

 T(2N) / T
(N)

1 constant a = b + c; statement
add two
numbers

1

log N logarithmic while (N > 1)
{ N = N / 2; ... } divide in half binary search ~ 1

N linear
for (int i = 0; i < N; i++)

{ ... } loop find the
maximum

2

N log N linearithmic [see mergesort lecture] divide
and conquer

mergesort ~ 2

N2 quadratic
for (int i = 0; i < N; i++)

 for (int j = 0; j < N; j++)
 { ... }

double loop check all pairs 4

N3 cubic

for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)

 for (int k = 0; k < N; k++)
 { ... }

triple loop check all
triples

8

2N exponential [see combinatorial search lecture]
exhaustive

search
check all

possibilities
T(N)

Practical implications of order-of-growth

36

growth name description

effect on a program that
runs for a few seconds

effect on a program that
runs for a few secondsgrowth

rate
name description

time for 100x
more data

size for 100x
faster computer

1 constant independent of input size - -

log N logarithmic nearly independent of input size - -

N linear optimal for N inputs a few minutes 100x

N log N linearithmic nearly optimal for N inputs a few minutes 100x

N2 quadratic not practical for large problems several hours 10x

N3 cubic not practical for medium problems several weeks 4-5x

2N exponential useful only for tiny problems forever 1x

37

‣ estimating running time
‣ mathematical analysis
‣ order-of-growth hypotheses
‣ input models
‣ measuring space

Types of analyses

Best case. Lower bound on cost.

• Determined by “easiest” input.

• Provides a goal for all inputs.

Worst case. Upper bound on cost.

• Determined by “most difficult” input.

• Provides guarantee for all inputs.

Average case. “Expected” cost.

• Need a model for “random” input.

• Provides a way to predict performance.

38

Ex 2. Compares for insertion sort.

• Best (ascending order): ~ N.

• Average (random order): ~ ¼ N2

• Worst (descending order): ~ ½N2

(details in Lecture 4)

Ex 1. Array accesses for brute-force 3-sum.

• Best: ~ ½N3

• Average: ~ ½N3

• Worst: ~ ½N3

Common mistake. Interpreting big-Oh as an approximate model.

39

Commonly-used notations

notation provides example shorthand for used to

Tilde leading term ~ 10 N 2
10 N 2

10 N 2 + 22 N log N
10 N 2 + 2 N +37

provide
approximate model

Big Theta
asymptotic
growth rate

Θ(N 2)
N 2

9000 N 2

 5 N 2 + 22 N log N + 3N

classify
algorithms

Big Oh Θ(N 2) and smaller O(N 2)
N 2

100 N
 22 N log N + 3 N

develop
upper bounds

Big Omega Θ(N 2) and larger Ω(N 2)
9000 N 2

N 5

 N 3 + 22 N log N + 3 N

develop
lower bounds

Tilde notation vs. big-Oh notation

We use tilde notation whenever possible.

• Big-Oh notation suppresses leading constant.

• Big-Oh notation only provides upper bound (not lower bound).

40

time/memory

input size

f(N)
values represented

by O(f(N))

input size

c f(N)

values represented
by ~ c f(N)

time/memory

41

‣ estimating running time
‣ mathematical analysis
‣ order-of-growth hypotheses
‣ input models
‣ measuring space

42

Typical memory requirements for primitive types in Java

Bit. 0 or 1.
Byte. 8 bits.
Megabyte (MB). 1 million bytes.
Gigabyte (GB). 1 billion bytes.

type bytes

boolean 1

byte 1

char 2

int 4

float 4

long 8

double 8

43

Typical memory requirements for arrays in Java

Array overhead. 16 bytes.

Ex. An N-by-N array of doubles consumes ~ 8N2 bytes of memory.

type bytes

char[] 2N + 16

int[] 4N + 16

double[] 8N + 16

type bytes

char[][] 2N2 + 20N + 16

int[][] 4N2 + 20N + 16

double[][] 8N2 + 20N + 16

one-dimensional arrays two-dimensional arrays

44

Typical memory requirements for objects in Java

Object overhead. 8 bytes.
Reference. 4 bytes.

Ex 1. A Complex object consumes 24 bytes of memory.

8 bytes

public class Complex
{
 private double re;
 private double im;
 ...
}

8 bytes

8 bytes overhead for object

24 bytes

4914.1 Performance

object, typically 8 bytes. For example, a Charge (PROGRAM 3.2.1) object uses 32
bytes (8 bytes of overhead and 8 bytes for each of its three double instance vari-
ables). Similarly, a Complex object uses 24 bytes. Since many programs create mil-
lions of Color objects, typical Java implementations pack the information needed
for them into 32 bits (three bytes for RGB values and one for transparency). A refer-
ence to an object typically uses 4 bytes of memory. When a data type contains a
reference to an object, we have to account separately for the 4 bytes for the reference
and the 8 bytes overhead for each object plus the memory needed for the object’s
instance variables. In particular, a Document
(PROGRAM 3.3.4) object uses 16 bytes (8 bytes of
overhead and 4 bytes each for the references to
the String and Vector objects) plus the mem-
ory needed for the String and Vector objects
themselves (which we consider next).

String objects. We account for memory in a
String object in the same way as for any other
object. Java's implementation of a String ob-
ject consumes 24 bytes: a reference to a char-
acter array (4 bytes), three int values (4 bytes
each), and the object overhead (8 bytes). The
first int value is an offset into the character ar-
ray; the second is a count (the string length). In
terms of the instance variable names in the fig-
ure at right, the string that is represented con-
sists of the characters val[offset] through
val[offset + count - 1]. The third int value
in String objects is a hash code that saves re-
computation in certain circumstances that
need not concern us now. In addition to the 24
bytes for the String object, we must account
for the memory needed for the characters
themselves, which are in the array. We account
for this space next.

 rx

public class Charge
{
 private double rx;
 private double ry;
 private double q;
...
}

 ry
 q

Typical object memory requirements

object
overhead

 r g b a

public class Color
{
 private byte r;
 private byte g;
 private byte b;
 private byte a;
...
}

object
overhead

 re

public class Complex
{
 private double re;
 private double im;
...
}

 im

object
overhead

 id

public class Document
{
 private String id;
 private Vector profile;
...
}

 profile

object
overhead

32 bytesCharge object (Program 3.2.1)

 value

public class String
{
 private char[] val;
 private int offset;
 private int count;
 private int hash;
...
}

 offset
 count
 hash

object
overhead

24 bytes + char arrayString object (Java library)

Complex object (Program 3.2.6)

Color object (Java library)

Document object (Program 3.3.4)

24 bytes

12 bytes

16 bytes + string + vector

references

reference

double
values

double
values

int
values

byte
values

45

Typical memory requirements for objects in Java

Object overhead. 8 bytes.
Reference. 4 bytes.

Ex 2. A virgin String of length N consumes ~ 2N bytes of memory.

4 bytes

public class String
{
 private int offset;
 private int count;
 private int hash;
 private char[] value;
 ...
}

4 bytes

4 bytes

4 bytes for reference
(plus 2N + 16 bytes for array)

8 bytes overhead for object

2N + 40 bytes

4914.1 Performance

object, typically 8 bytes. For example, a Charge (PROGRAM 3.2.1) object uses 32
bytes (8 bytes of overhead and 8 bytes for each of its three double instance vari-
ables). Similarly, a Complex object uses 24 bytes. Since many programs create mil-
lions of Color objects, typical Java implementations pack the information needed
for them into 32 bits (three bytes for RGB values and one for transparency). A refer-
ence to an object typically uses 4 bytes of memory. When a data type contains a
reference to an object, we have to account separately for the 4 bytes for the reference
and the 8 bytes overhead for each object plus the memory needed for the object’s
instance variables. In particular, a Document
(PROGRAM 3.3.4) object uses 16 bytes (8 bytes of
overhead and 4 bytes each for the references to
the String and Vector objects) plus the mem-
ory needed for the String and Vector objects
themselves (which we consider next).

String objects. We account for memory in a
String object in the same way as for any other
object. Java's implementation of a String ob-
ject consumes 24 bytes: a reference to a char-
acter array (4 bytes), three int values (4 bytes
each), and the object overhead (8 bytes). The
first int value is an offset into the character ar-
ray; the second is a count (the string length). In
terms of the instance variable names in the fig-
ure at right, the string that is represented con-
sists of the characters val[offset] through
val[offset + count - 1]. The third int value
in String objects is a hash code that saves re-
computation in certain circumstances that
need not concern us now. In addition to the 24
bytes for the String object, we must account
for the memory needed for the characters
themselves, which are in the array. We account
for this space next.

 rx

public class Charge
{
 private double rx;
 private double ry;
 private double q;
...
}

 ry
 q

Typical object memory requirements

object
overhead

 r g b a

public class Color
{
 private byte r;
 private byte g;
 private byte b;
 private byte a;
...
}

object
overhead

 re

public class Complex
{
 private double re;
 private double im;
...
}

 im

object
overhead

 id

public class Document
{
 private String id;
 private Vector profile;
...
}

 profile

object
overhead

32 bytesCharge object (Program 3.2.1)

 value

public class String
{
 private char[] val;
 private int offset;
 private int count;
 private int hash;
...
}

 offset
 count
 hash

object
overhead

24 bytes + char arrayString object (Java library)

Complex object (Program 3.2.6)

Color object (Java library)

Document object (Program 3.3.4)

24 bytes

12 bytes

16 bytes + string + vector

references

reference

double
values

double
values

int
values

byte
values

46

Example 1

Q. How much memory does QuickUWPC use as a function of N ?
A.

public class QuickUWPC
{
 private int[] id;
 private int[] sz;

 public QuickUWPC(int N)
 {
 id = new int[N];
 sz = new int[N];
 for (int i = 0; i < N; i++) id[i] = i;
 for (int i = 0; i < N; i++) sz[i] = 1;
 }

 public boolean find(int p, int q)
 { ... }

 public void unite(int p, int q)
 { ... }
}

47

Example 2

Q. How much memory does this code fragment use as a function of N ?
A.

Remark. Java automatically reclaims memory when it is no longer in use.

...
int N = Integer.parseInt(args[0]);
for (int i = 0; i < N; i++) {

 int[] a = new int[N];
 ...
}

not always easy for Java to know

Turning the crank: summary

In principle, accurate mathematical models are available.
In practice, approximate mathematical models are easily achieved.

Timing may be flawed?

• Limits on experiments insignificant compared to
other sciences.

• Mathematics might be difficult?

• Only a few functions seem to turn up.

• Doubling hypothesis cancels complicated constants.

Actual data might not match input model?

• Need to understand input to effectively process it.

• Approach 1: design for the worst case.

• Approach 2: randomize, depend on probabilistic guarantee.

48

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 22, 2010 12:41:21 PM

1.3 Stacks and Queues

‣ stacks
‣ dynamic resizing
‣ queues
‣ generics
‣ iterators
‣ applications

2

Stacks and queues

Fundamental data types.

• Values: sets of objects

• Operations: insert, remove, test if empty.

• Intent is clear when we insert.

• Which item do we remove?

Stack. Remove the item most recently added.
Analogy. Cafeteria trays, Web surfing.

Queue. Remove the item least recently added.
Analogy. Registrar's line.

FIFO = "first in first out"

LIFO = "last in first out"

enqueue dequeue

pop

push

3

Client, implementation, interface

Separate interface and implementation.
Ex: stack, queue, priority queue, symbol table, union-find, .…

Benefits.

• Client can't know details of implementation ⇒
client has many implementation from which to choose.

• Implementation can't know details of client needs ⇒
many clients can re-use the same implementation.

• Design: creates modular, reusable libraries.

• Performance: use optimized implementation where it matters.

Client: program using operations defined in interface.
Implementation: actual code implementing operations.
Interface: description of data type, basic operations.

Text

4

‣ stacks
‣ dynamic resizing
‣ queues
‣ generics
‣ iterators
‣ applications

Stack operations.

• push() Insert a new item onto stack.
• pop() Remove and return the item most recently added.

• isEmpty() Is the stack empty?

5

Stacks

pop

push

public static void main(String[] args)
{
 StackOfStrings stack = new StackOfStrings();
 while (!StdIn.isEmpty())
 {
 String item = StdIn.readString();
 if (item.equals("-")) StdOut.print(stack.pop());
 else stack.push(item);
 }
}

% more tobe.txt
to be or not to - be - - that - - - is

% java StackOfStrings < tobe.txt
to be not that or be

6

Stack pop: linked-list implementation

best the was it

best was it first = first.next;

best the was it return item;

first

first

first

of String item = first.item;

the

"of"

"of"

7

Stack push: linked-list implementation

best the was it

oldfirst

best the was it

best the was it

first

of

Node oldfirst = first;

first.item = "of";
first.next = oldfirst;

best the was it

oldfirst

first = new Node();

first oldfirst

first

first

8

Stack: linked-list implementation

public class StackOfStrings
{
 private Node first = null;

 private class Node
 {
 String item;
 Node next;
 }

 public boolean isEmpty()
 { return first == null; }

 public void push(String item)
 {
 Node oldfirst = first;
 first = new Node();
 first.item = item;
 first.next = oldfirst;
 }

 public String pop()
 {
 if (isEmpty()) throw new RuntimeException();
 String item = first.item;
 first = first.next;
 return item;
 }
}

"inner class"

stack underflow

9

Stack: linked-list trace560 Algorithms and Data Structures

Trace of LinkedStackOfStrings test client

to

to

be

to

be
or

null

null

null

be

or
not

to

or

not
to

null

be

be

orto not

or

not
be

be

orbe not

to

benot

or

null

be

or
that

to

bethat or

null

toor be

be to

to

to

StdIn StdOut

be

or

not

to

-

be

-

-

that

-

-

-

is is

to
null

to
null

to
null

to
null

be
to

null

introJava.indb 560 1/4/08 10:43:11 AM

10

Stack: array implementation

Array implementation of a stack.

• Use array s[] to store N items on stack.
• push(): add new item at s[N].

• pop(): remove item from s[N-1].

s[]

N capacity = 10

it was the best of times null null null null

0 1 2 3 4 5 6 7 8 9

public class StackOfStrings
{
 private String[] s;
 private int N = 0;

 public StackOfStrings(int capacity)
 { s = new String[capacity]; }

 public boolean isEmpty()
 { return N == 0; }

 public void push(String item)
 { s[N++] = item; }

 public String pop()
 { return s[--N]; }
}

11

Stack: array implementation

this version avoids "loitering"

garbage collector only reclaims memory
if no outstanding references

public String pop()
{
 String item = s[--N];
 s[N] = null;
 return item;
}

decrement N;
then use to index into array

a cheat
(stay tuned)

12

‣ stacks
‣ dynamic resizing
‣ queues
‣ generics
‣ iterators
‣ applications

13

Stack: dynamic array implementation

Problem. Requiring client to provide capacity does not implement API!
Q. How to grow and shrink array?

First try.
• push(): increase size of s[] by 1.

• pop(): decrease size of s[] by 1.

Too expensive.

• Need to copy all item to a new array.

• Inserting first N items takes time proportional to 1 + 2 + … + N ~ N2/2.

Goal. Ensure that array resizing happens infrequently.

infeasible for large N

14

Q. How to grow array?
A. If array is full, create a new array of twice the size, and copy items.

Consequence. Inserting first N items takes time proportional to N (not N2).

Stack: dynamic array implementation

1 + 2 + 4 + … + N/2 + N ~ 2N

"repeated doubling"

 public StackOfStrings() { s = new String[2]; }

 public void push(String item)
 {
 if (N == s.length) resize(2 * s.length);
 s[N++] = item;
 }

 private void resize(int capacity)
 {
 String[] dup = new String[capacity];
 for (int i = 0; i < N; i++)
 dup[i] = s[i];
 s = dup;
 }

15

Q. How to shrink array?

First try.

• push(): double size of s[] when array is full.
• pop(): halve size of s[] when array is half full.

Too expensive

• Consider push-pop-push-pop-… sequence when array is full.

• Takes time proportional to N per operation.

Stack: dynamic array implementation

"thrashing"

it was the best of null null null

it was the best

it was the best of null null null

it was the best

N = 5

N = 4

N = 5

N = 4

16

Q. How to shrink array?

Efficient solution.

• push(): double size of s[] when array is full.
• pop(): halve size of s[] when array is one-quarter full.

Invariant. Array is always between 25% and 100% full.

Stack: dynamic array implementation

 public String pop()
 {
 String item = s[--N];
 s[N] = null;
 if (N > 0 && N == s.length/4) resize(s.length / 2);
 return item;
 }

17

Stack: dynamic array implementation trace
564 Algorithms and Data Structures

that the appropriate test is whether the stack size is less than one-fourth the array
size. Then, after the array is halved, it will be about half full and can accommodate
a substantial number of push() and pop() operations before having to change
the size of the array again. This characteristic is important: for example, if we were
to use to policy of halving the array when the stack size is one-half the array size,
then the resulting array would be full, which would mean it would be doubled for a
push(), leading to the possibility of an expensive cycle of doubling and halving.

Amortized analysis. This doubling and halving strategy is a judicious tradeoff
between wasting space (by setting the size of the array to be too big and leaving
empty slots) and wasting time (by reorganizing the array after each insertion).
The specific strategy in DoublingStackOfStrings guarantees that the stack never
overflows and never becomes less than one-quarter full (unless the stack is empty,
in which case the array size is 1). If you are mathematically inclined, you might en-
joy proving this fact with mathematical induction (see EXERCISE 4.3.20). More im-
portant, we can prove that the cost of doubling and halving is always absorbed (to
within a constant factor) in the cost of other stack operations. Again, we leave the
details to an exercise for the mathematically inclined, but the idea is simple: when

StdIn StdOut N a.length
a

0 1 2 3 4 5 6 7

0 1 null

to 1 1 to

be 2 2 to be

or 3 4 to be or null

not 4 4 to be or not

to 5 8 to be or not to null null null

- to 4 8 to be or not null null null null

be 5 8 to be or not be null null null

- be 4 8 to be or not null null null null

- not 3 8 to be or null null null null null

that 4 8 to be or that null null null null

- that 3 8 to be or null null null null null

- or 2 4 to be null null

- be 1 2 to null

is 2 2 to is

Trace of DoublingStackOfStrings test client

introJava.indb 564 1/4/08 10:43:12 AM

18

Amortized analysis. Average running time per operation over
a worst-case sequence of operations.

Proposition. Starting from empty data structure, any sequence of M push and
pop ops takes time proportional to M.

Remark. Recall, WQUPC used amortized bound.

Amortized analysis

worst best amortized

construct

push

pop

1 1 1

N 1 1

N 1 1

doubling or shrinking

running time for doubling stack with N items

19

Linked list implementation. ~ 16N bytes.

Doubling array. Between ~ 4N (100% full) and ~ 16N (25% full).

Remark. Our analysis doesn't include the memory for the items themselves.

Stack implementations: memory usage

4 bytes

private class Node
{
 String item;
 Node next;
}

4 bytes

8 bytes overhead for object

16 bytes per item

public class DoublingStackOfStrings
{
 private String[] s;
 private int N = 0;
 …
}

4 bytes × array size
4 bytes

20

Stack implementations: dynamic array vs. linked List

Tradeoffs. Can implement with either array or linked list;
client can use interchangeably. Which is better?

Linked list.

• Every operation takes constant time in worst-case.

• Uses extra time and space to deal with the links.

Array.

• Every operation takes constant amortized time.

• Less wasted space.

21

‣ stacks
‣ dynamic resizing
‣ queues
‣ generics
‣ iterators
‣ applications

Queue operations.

• enqueue() Insert a new item onto queue.
• dequeue() Delete and return the item least recently added.

• isEmpty() Is the queue empty?

22

Queues

public static void main(String[] args)
{
 QueueOfStrings q = new QueueOfStrings();
 while (!StdIn.isEmpty())
 {
 String item = StdIn.readString();
 if (item.equals("-")) StdOut.print(q.dequeue());
 else q.enqueue(item);
 }
}

% more tobe.txt
to be or not to - be - - that - - - is

% java QueueOfStrings < tobe.txt
to be or not to be

23

Queue dequeue: linked list implementation

was the best of

was the best of first = first.next;

was the best of return item;

first

first

first

it String item = first.item;

last

last

last

"it"

"it"

24

Queue enqueue: linked list implementation

last = new Node();
last.item = "of";
last.next = null;

oldlast.next = last;

Node oldlast = last;

first

it was the best

oldlast

last

first

it was the best

last

it was the best of

it was the best of

first last

first last

oldlast

oldlast

25

 Queue: linked list implementation

public class QueueOfStrings
{
 private Node first, last;

 private class Node
 { /* same as in StackOfStrings */ }

 public boolean isEmpty()
 { return first == null; }

 public void enqueue(String item)
 {
 Node oldlast = last;
 last = new Node();
 last.item = item;
 last.next = null;
 if (isEmpty()) first = last;
 else oldlast.next = last;
 }

 public String dequeue()
 {
 String item = first.item;
 first = first.next;
 if (isEmpty()) last = null;
 return item;
 }
}

26

Queue: dynamic array implementation

Array implementation of a queue.

• Use array q[] to store items in queue.
• enqueue(): add new item at q[tail].

• dequeue(): remove item from q[head].

• Update head and tail modulo the capacity.

• Add repeated doubling and shrinking.

q[]

head tail capacity = 10

null null the best of times null null null null

0 1 2 3 4 5 6 7 8 9

27

‣ stacks
‣ dynamic resizing
‣ queues
‣ generics
‣ iterators
‣ applications

28

Parameterized stack

We implemented: StackOfStrings.
We also want: StackOfURLs, StackOfCustomers, StackOfInts, etc?

Attempt 1. Implement a separate stack class for each type.

• Rewriting code is tedious and error-prone.

• Maintaining cut-and-pasted code is tedious and error-prone.

@#$*! most reasonable approach until Java 1.5.
[hence, used in Algorithms in Java, 3rd edition]

We implemented: StackOfStrings.
We also want: StackOfURLs, StackOfCustomers, StackOfInts, etc?

Attempt 2. Implement a stack with items of type Object.

• Casting is required in client.

• Casting is error-prone: run-time error if types mismatch.

 StackOfObjects s = new StackOfObjects();
 Apple a = new Apple();
 Orange b = new Orange();
 s.push(a);
 s.push(b);
 a = (Apple) (s.pop());

29

Parameterized stack

run-time error

30

Parameterized stack

We implemented: StackOfStrings.
We also want: StackOfURLs, StackOfCustomers, StackOfInts, etc?

Attempt 3. Java generics.

• Avoid casting in both client and implementation.

• Discover type mismatch errors at compile-time instead of run-time.

Guiding principles. Welcome compile-time errors; avoid run-time errors.

 Stack<Apple> s = new Stack<Apple>();
 Apple a = new Apple();
 Orange b = new Orange();
 s.push(a);
 s.push(b);
 a = s.pop();

compile-time error

type parameter

public class LinkedStackOfStrings
{
 private Node first = null;

 private class Node
 {
 String item;
 Node next;
 }

 public boolean isEmpty()
 { return first == null; }

 public void push(String item)
 {
 Node oldfirst = first;
 first = new Node();
 first.item = item;
 first.next = oldfirst;
 }

 public String pop()
 {
 String item = first.item;
 first = first.next;
 return item;
 }
}

public class Stack<Item>
{
 private Node first = null;

 private class Node
 {
 Item item;
 Node next;
 }

 public boolean isEmpty()
 { return first == null; }

 public void push(Item item)
 {
 Node oldfirst = first;
 first = new Node();
 first.item = item;
 first.next = oldfirst;
 }

 public Item pop()
 {
 Item item = first.item;
 first = first.next;
 return item;
 }
}

31

Generic stack: linked list implementation

generic type name

public class ArrayStackOfStrings
{
 private String[] s;
 private int N = 0;

 public StackOfStrings(int capacity)
 { s = new String[capacity]; }

 public boolean isEmpty()
 { return N == 0; }

 public void push(String item)
 { s[N++] = item; }

 public String pop()
 { return s[--N]; }
}

public class ArrayStack<Item>
{
 private Item[] s;
 private int N = 0;

 public Stack(int capacity)
 { s = new Item[capacity]; }

 public boolean isEmpty()
 { return N == 0; }

 public void push(Item item)
 { s[N++] = item; }

 public Item pop()
 { return s[--N]; }
}

32

Generic stack: array implementation

the way it should be

@#$*! generic array creation not allowed in Java

33

Generic stack: array implementation

public class ArrayStack<Item>
{
 private Item[] s;
 private int N = 0;

 public Stack(int capacity)
 { s = (Item[]) new Object[capacity]; }

 public boolean isEmpty()
 { return N == 0; }

 public void push(Item item)
 { s[N++] = item; }

 public Item pop()
 { return s[--N]; }
}

the ugly cast

the way it is

public class ArrayStackOfStrings
{
 private String[] s;
 private int N = 0;

 public StackOfStrings(int capacity)
 { s = new String[capacity]; }

 public boolean isEmpty()
 { return N == 0; }

 public void push(String item)
 { s[N++] = item; }

 public String pop()
 { return s[--N]; }
}

34

Generic data types: autoboxing

Q. What to do about primitive types?

Wrapper type.

• Each primitive type has a wrapper object type.

• Ex: Integer is wrapper type for int.

Autoboxing. Automatic cast between a primitive type and its wrapper.

Syntactic sugar. Behind-the-scenes casting.

Bottom line. Client code can use generic stack for any type of data.

Stack<Integer> s = new Stack<Integer>();
s.push(17); // s.push(new Integer(17));
int a = s.pop(); // int a = s.pop().intValue();

35

Autoboxing challenge

Q. What does the following program print?

Best practice. Avoid using wrapper types whenever possible.

public class Autoboxing {

 public static void cmp(Integer a, Integer b) {
 if (a < b) StdOut.printf("%d < %d\n", a, b);
 else if (a == b) StdOut.printf("%d == %d\n", a, b);
 else StdOut.printf("%d > %d\n", a, b);
 }

 public static void main(String[] args) {
 cmp(new Integer(42), new Integer(42));
 cmp(43, 43);
 cmp(142, 142);
 }
} % java Autoboxing

42 > 42
43 == 43
142 > 142

36

Generics

Caveat. Java generics can be mystifying at times.

This course. Restrict attention to "pure generics."

public class Collections
{
 ...
 public static<T> void copy(List<? super T> dest, List<? extends T> src)
 {
 for (int i = 0; i < src.size(); i++)
 dest.set(i, src.get(i));
 }
}

avoid mixing generics with inheritance

mixing generics with inheritance

37

‣ stacks
‣ dynamic resizing
‣ queues
‣ generics
‣ iterators
‣ applications

Design challenge. Support iteration over stack items by client,
without revealing the internal representation of the stack.

Java solution. Make stack implement the Iterable interface.

Iteration

38

s[]

N

it was the best of times null null null null

0 1 2 3 4 5 6 7 8 9

i

best the was it

first

of

current

null

public interface Iterator<Item>
{
 boolean hasNext();
 Item next();
 void remove();
}

Iterators

Q. What is an Iterable ?
A. Has a method that returns an Iterator.

Q. What is an Iterator ?
A. Has methods hasNext() and next().

Q. Why make data structures Iterable ?
A. Java supports elegant client code.

39

optional; use
at your own risk

“foreach” statement equivalent code

for (String s : stack)
 StdOut.println(s);

Iterator<String> i = stack.iterator();
while (i.hasNext())
{
 String s = i.next();
 StdOut.println(s);
}

public interface Iterable<Item>
{
 Iterator<Item> iterator();
}

Stack iterator: linked list implementation

40

import java.util.Iterator;

public class Stack<Item> implements Iterable<Item>
{
 ...

 public Iterator<Item> iterator() { return new ListIterator(); }

 private class ListIterator implements Iterator<Item>
 {
 private Node current = first;

 public boolean hasNext() { return current != null; }
 public void remove() { /* not supported */ }
 public Item next()
 {
 Item item = current.item;
 current = current.next;
 return item;
 }
 }
}

best the was it

first

of

current

null

Stack iterator: array implementation

41

import java.util.Iterator;

public class Stack<Item> implements Iterable<Item>
{
 …

 public Iterator<Item> iterator() { return new ArrayIterator(); }

 private class ArrayIterator implements Iterator<Item>
 {
 private int i = N;

 public boolean hasNext() { return i > 0; }
 public void remove() { /* not supported */ }
 public Item next() { return s[--i]; }
 }
}

s[]

N

it was the best of times null null null null

0 1 2 3 4 5 6 7 8 9

i

42

‣ stacks
‣ dynamic resizing
‣ queues
‣ generics
‣ iterators
‣ applications

43

Java collections library

java.util.List API.

• boolean isEmpty() Is the list empty?
• int size() Return number of items on the list.

• void add(Item item) Insert a new item to end of list.
• void add(int index, Item item) Insert item at specified index.

• Item get(int index) Return item at given index.

• Item remove(int index) Return and delete item at given index.
• Item set(int index Item item) Replace element at given index.

• boolean contains(Item item) Does the list contain the item?
• Iterator<Item> iterator() Return iterator.

• …

Implementations.

• java.util.ArrayList implements API using an array.
• java.util.LinkedList implements API using a (doubly) linked list.

44

Java collections library

java.util.Stack.

• Supports push(), pop(), size(), isEmpty(), and iteration.

• Also implements java.util.List interface from previous slide,
e.g., set(), get(), and contains().

• Bloated and poorly-designed API ⇒ don't use.

java.util.Queue.

• An interface, not an implementation of a queue.

Best practices. Use our implementations of Stack and Queue if you need a
stack or a queue.

45

War story (from COS 226)

Generate random open sites in an N-by-N percolation system.

• Jenny: pick (i, j) at random; if closed, repeat.
Takes ~ c1 N2 seconds.

• Kenny: maintain a java.util.ArrayList of open sites.
Pick an index at random and delete.
Takes ~ c1 N4 seconds.

Q. Why is Kenny's code so slow?

Lesson. Don't use a library until you understand its API!
COS 226. Can't use a library until we've implemented it in class.

46

Stack applications

Real world applications.

• Parsing in a compiler.

• Java virtual machine.

• Undo in a word processor.

• Back button in a Web browser.

• PostScript language for printers.

• Implementing function calls in a compiler.

47

Function calls

How a compiler implements a function.

• Function call: push local environment and return address.

• Return: pop return address and local environment.

Recursive function. Function that calls itself.
Note. Can always use an explicit stack to remove recursion.

 static int gcd(int p, int q) {
 if (q == 0) return p;
 else return gcd(q, p % q);
 }

gcd (216, 192)

 static int gcd(int p, int q) {
 if (q == 0) return p;
 else return gcd(q, p % q);
 }

gcd (192, 24)

 static int gcd(int p, int q) {
 if (q == 0) return p;
 else return gcd(q, p % q);
 }

gcd (24, 0)
p = 192, q = 24

p = 216, q = 192

p = 24, q = 0

Goal. Evaluate infix expressions.

Two-stack algorithm. [E. W. Dijkstra]

• Value: push onto the value stack.

• Operator: push onto the operator stack.

• Left parens: ignore.

• Right parens: pop operator and two values;
push the result of applying that operator
to those values onto the operand stack.

Context. An interpreter!

(1 + ((2 + 3) * (4 * 5)))

48

Arithmetic expression evaluation

5734.3 Stacks and Queues

it is easy to convince yourself that it computes the proper value: any time the algo-
rithm encounters a subexpression consisting of two operands separated by an op-
erator, all surrounded by parentheses, it leaves the result of performing that opera-
tion on those operands on the operand stack. The result is the same as if that value
had appeared in the input instead of the sub-
expression, so we can think of replacing the
subexpression by the value to get an expression
that would yield the same result. We can apply
this argument again and again until we get a
single value. For example, the algorithm com-
putes the same value of all of these expres-
sions:

(1 + ((2 + 3) * (4 * 5)))
(1 + (5 * (4 * 5)))
(1 + (5 * 20))
(1 + 100)
101

Evaluate (PROGRAM 4.3.5) is an implemen-
tation of this method. This code is a simple
example of an interpreter : a program that in-
terprets the computation specified by a given
string and performs the computation to ar-
rive at the result. A compiler is a program that
converts the string into code on a lower-level
machine that can do the job. This conversion
is a more complicated process than the step-
by-step conversion used by an interpreter, but
it is based on the same underlying mechanism.
Initially, Java was based on using an interpret-
er. Now, however, the Java system includes a
compiler that converts arithmetic expressions
(and, more generally, Java programs) into code
for the Java virtual machine, an imaginary ma-
chine that is easy to simulate on an actual com-
puter. Trace of expression evaluation (Program 4.3.5)

(1 + ((2 + 3) * (4 * 5)))

+ ((2 + 3) * (4 * 5)))

((2 + 3) * (4 * 5)))

+ 3) * (4 * 5)))

3) * (4 * 5)))

) * (4 * 5)))

* (4 * 5)))

(4 * 5)))

* 5)))

5)))

)))

))

)

 1

 1
 +

 1 2
 +

 1 2
 + +

 1 2 3
 + +

 1 5
 +

 1 5
 + *

 1 5 4
 + *

 1 5 4
 + * *

 1 5 4 5
 + * *

 1 5 20
 + *

 1 100
 +

 101

introJava.indb 573 1/3/08 4:16:56 PM

operand operator

value stack
operator stack

49

Arithmetic expression evaluation

public class Evaluate
{
 public static void main(String[] args)
 {
 Stack<String> ops = new Stack<String>();
 Stack<Double> vals = new Stack<Double>();
 while (!StdIn.isEmpty()) {
 String s = StdIn.readString();
 if (s.equals("(")) ;
 else if (s.equals("+")) ops.push(s);
 else if (s.equals("*")) ops.push(s);
 else if (s.equals(")"))
 {
 String op = ops.pop();
 if (op.equals("+")) vals.push(vals.pop() + vals.pop());
 else if (op.equals("*")) vals.push(vals.pop() * vals.pop());
 }
 else vals.push(Double.parseDouble(s));
 }
 StdOut.println(vals.pop());
 }
}

% java Evaluate
(1 + ((2 + 3) * (4 * 5)))
101.0

50

Correctness

Q. Why correct?
A. When algorithm encounters an operator surrounded by two values within
parentheses, it leaves the result on the value stack.

as if the original input were:

Repeating the argument:

Extensions. More ops, precedence order, associativity.

(1 + ((2 + 3) * (4 * 5)))

(1 + (5 * (4 * 5)))

(1 + (5 * 20))
(1 + 100)
101

51

Stack-based programming languages

Observation 1. The 2-stack algorithm computes the same value if the
operator occurs after the two values.

Observation 2. All of the parentheses are redundant!

Bottom line. Postfix or "reverse Polish" notation.
Applications. Postscript, Forth, calculators, Java virtual machine, …

Jan Lukasiewicz

1 2 3 + 4 5 * * +

(1 ((2 3 +) (4 5 *) *) +)

Page description language.

• Explicit stack.

• Full computational model

• Graphics engine.

Basics.

• %!: “I am a PostScript program.”

• Literal: “push me on the stack.”

• Function calls take arguments from stack.

• Turtle graphics built in.

PostScript

52

a PostScript program

%!
72 72 moveto
0 72 rlineto
72 0 rlineto
0 -72 rlineto
-72 0 rlineto
2 setlinewidth
stroke

its output

PostScript

Data types.

• Basic: integer, floating point, boolean, ...

• Graphics: font, path, curve,

• Full set of built-in operators.

Text and strings.

• Full font support.
• show (display a string, using current font).

• cvs (convert anything to a string).

53

System.out.print()

toString()

Square root of 2:
1.41421

%!
/Helvetica-Bold findfont 16 scalefont setfont
72 168 moveto
(Square root of 2:) show
72 144 moveto
2 sqrt 10 string cvs show

Variables (and functions).

• Identifiers start with /.
• def operator associates id with value.

• Braces.

• args on stack.

PostScript

54

function
definition

function calls

%!
/box
{
 /sz exch def
 0 sz rlineto
 sz 0 rlineto
 0 sz neg rlineto
 sz neg 0 rlineto
} def

72 144 moveto
72 box
288 288 moveto
144 box
2 setlinewidth
stroke

PostScript

For loop.

• “from, increment, to” on stack.

• Loop body in braces.

• for operator.

If-else conditional.

• Boolean on stack.

• Alternatives in braces.
• if operator.

... (hundreds of operators)

55

%!
\box
{
 ...
}

1 1 20
{ 19 mul dup 2 add moveto 72 box }
for
stroke

PostScript

Application 1. All figures in Algorithms in Java, 3rd edition: figures created
directly in PostScript.

Application 2. All figures in Algorithms, 4th edition: enhanced version of
StdDraw saves to PostScript for vector graphics.

56

See page 218

%!
72 72 translate

/kochR
 {
 2 copy ge { dup 0 rlineto }
 {
 3 div
 2 copy kochR 60 rotate
 2 copy kochR -120 rotate
 2 copy kochR 60 rotate
 2 copy kochR
 } ifelse
 pop pop
 } def

0 0 moveto 81 243 kochR
0 81 moveto 27 243 kochR
0 162 moveto 9 243 kochR
0 243 moveto 1 243 kochR
stroke

57

Queue applications

Familiar applications.

• iTunes playlist.

• Data buffers (iPod, TiVo).

• Asynchronous data transfer (file IO, pipes, sockets).

• Dispensing requests on a shared resource (printer, processor).

Simulations of the real world.

• Traffic analysis.

• Waiting times of customers at call center.

• Determining number of cashiers to have at a supermarket.

M/M/1 queue.

• Customers arrive according to Poisson process at rate of λ per minute.

• Customers are serviced with rate of µ per minute.

Q. What is average wait time W of a customer in system?
Q. What is average number of customers L in system?

58

M/M/1 queuing model

Arrival rate λ Departure rate µ

Infinite queue Server

interarrival time has exponential distribution Pr[X ≤ x] = 1 - e - λ x

service time has exponential distribution Pr[X ≤ x] = 1 - e - µ x

M/M/1 queuing model: example simulation

59

An M/D/1 queue

0

time (seconds)

10

20

30

0

0 1

0 1

1 2

2

2

1

4

3

3

3 4 5

5

4 5

3 4 5

arrival

0
2
7
17
19
21

departure

5
10
15
23
28
30

5
8
8
6
9
9

wait
0

1

2

3

4

5

An M/D/1 queue

0

time (seconds)

10

20

30

0

0 1

0 1

1 2

2

2

1

4

3

3

3 4 5

5

4 5

3 4 5

arrival

0
2
7
17
19
21

departure

5
10
15
23
28
30

5
8
8
6
9
9

wait
0

1

2

3

4

5

60

M/M/1 queuing model: event-based simulation

public class MM1Queue
{
 public static void main(String[] args) {
 double lambda = Double.parseDouble(args[0]); // arrival rate
 double mu = Double.parseDouble(args[1]); // service rate
 double nextArrival = StdRandom.exp(lambda);
 double nextService = nextArrival + StdRandom.exp(mu);

 Queue<Double> queue = new Queue<Double>();
 Histogram hist = new Histogram("M/M/1 Queue", 60);

 while (true)
 {
 while (nextArrival < nextService)
 {
 queue.enqueue(nextArrival);
 nextArrival += StdRandom.exp(lambda);
 }

 double arrival = queue.dequeue();
 double wait = nextService - arrival;
 hist.addDataPoint(Math.min(60, (int) (Math.round(wait))));
 if (queue.isEmpty()) nextService = nextArrival + StdRandom.exp(mu);
 else nextService = nextService + StdRandom.exp(mu);
 }
 }
}

next event is an arrival

next event is a service completion

Observation. If service rate µ is much larger than arrival rate λ,
customers gets good service.

M/M/1 queuing model: experiments

61

% java MM1Queue .2 .333

Observation. As service rate µ approaches arrival rate λ, services goes to h***.

M/M/1 queuing model: experiments

62

% java MM1Queue .2 .25

Observation. As service rate µ approaches arrival rate λ, services goes to h***.

M/M/1 queuing model: experiments

63

% java MM1Queue .2 .21

M/M/1 queue. Exact formulas known.

More complicated queueing models. Event-based simulation essential!
Queueing theory. See ORF 309.

M/M/1 queuing model: analysis

64

Little’s Law

wait time W and queue length L approach infinity
as service rate approaches arrival rate

W =
1

µ− λ
, L = λ W

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 22, 2010 1:20:14 PM

2.1 Elementary Sorts

‣ rules of the game
‣ selection sort
‣ insertion sort
‣ sorting challenges
‣ shellsort

Ex. Student record in a University.

Sort. Rearrange array of N objects into ascending order.

2

Sorting problem

Goal. Sort any type of data.
Ex 1. Sort random numbers in ascending order.

3

Sample sort client

% java Experiment 10
0.08614716385210452
0.09054270895414829
0.10708746304898642
0.21166190071646818
0.363292849257276
0.460954145685913
0.5340026311350087
0.7216129793703496
0.9003500354411443
0.9293994908845686

public class Experiment
{
 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 Double[] a = new Double[N];
 for (int i = 0; i < N; i++)
 a[i] = StdRandom.uniform();
 Insertion.sort(a);
 for (int i = 0; i < N; i++)
 StdOut.println(a[i]);
 }
}

Goal. Sort any type of data.
Ex 2. Sort strings from standard input in alphabetical order.

4

Sample sort client

% more words3.txt
bed bug dad yet zoo ... all bad yes

% java StringSorter < words.txt
all bad bed bug dad ... yes yet zoo

public class StringSorter
{
 public static void main(String[] args)
 {
 String[] a = StdIn.readAll().split("\\s+");
 Insertion.sort(a);
 for (int i = 0; i < a.length; i++)
 StdOut.println(a[i]);
 }
}

Goal. Sort any type of data.
Ex 3. Sort the files in a given directory by filename.

5

% java FileSorter .
Insertion.class
Insertion.java
InsertionX.class
InsertionX.java
Selection.class
Selection.java
Shell.class
Shell.java
ShellX.class
ShellX.java

Sample sort client

import java.io.File;
public class FileSorter
{
 public static void main(String[] args)
 {
 File directory = new File(args[0]);
 File[] files = directory.listFiles();
 Insertion.sort(files);
 for (int i = 0; i < files.length; i++)
 StdOut.println(files[i].getName());
 }
}

6

Callbacks

Goal. Sort any type of data.

Q. How can sort know to compare data of type String, Double, and File
without any information about the type of an item?

Callbacks.

• Client passes array of objects to sorting routine.

• Sorting routine calls back object's compare function as needed.

Implementing callbacks.

• Java: interfaces.

• C: function pointers.

• C++: class-type functors.

• ML: first-class functions and functors.

Callbacks: roadmap

7

sort implementation

client object implementation

import java.io.File;
public class FileSorter
{
 public static void main(String[] args)
 {
 File directory = new File(args[0]);
 File[] files = directory.listFiles();
 Insertion.sort(files);
 for (int i = 0; i < files.length; i++)
 StdOut.println(files[i].getName());
 }
}

key point: no reference to File

public static void sort(Comparable[] a)
{
 int N = a.length;
 for (int i = 0; i < N; i++)
 for (int j = i; j > 0; j--)
 if (a[j].compareTo(a[j-1]) < 0)
 exch(a, j, j-1);
 else break;
}

public class File
implements Comparable<File>
{
 ...
 public int compareTo(File b)
 {
 ...
 return -1;
 ...
 return +1;
 ...
 return 0;
 }
}

interface

public interface Comparable<Item>
{
 public int compareTo(Item that);
}

built in to Java

8

Comparable interface API

Comparable interface. Implement compareTo() so that v.compareTo(w):

• Returns a negative integer if v is less than w.

• Returns a positive integer if v is greater than w.

• Returns zero if v is equal to w.

• Throw an exception if incompatible types or either is null.

Required properties. Must ensure a total order.

• Reflexive: (v = v).

• Antisymmetric: if (v < w) then (w > v); if (v = w) then (w = v).

• Transitive: if (v ≤ w) and (w ≤ x) then (v ≤ x).

Built-in comparable types. String, Double, Integer, Date, File, ...
User-defined comparable types. Implement the Comparable interface.

public interface Comparable<Item>
{ public int compareTo(Item that); }

Date data type. Simplified version of java.util.Date.

public class Date implements Comparable<Date>
{
 private final int month, day, year;

 public Date(int m, int d, int y)
 {
 month = m;
 day = d;
 year = y;
 }

 public int compareTo(Date that)
 {
 if (this.year < that.year) return -1;
 if (this.year > that.year) return +1;
 if (this.month < that.month) return -1;
 if (this.month > that.month) return +1;
 if (this.day < that.day) return -1;
 if (this.day > that.day) return +1;
 return 0;
 }
}

9

Implementing the Comparable interface: example 1

only compare dates
to other dates

10

Implementing the Comparable interface: example 2

Domain names.

• Subdomain: bolle.cs.princeton.edu.

• Reverse subdomain: edu.princeton.cs.bolle.

• Sort by reverse subdomain to group by category.
subdomains

reverse-sorted subdomains

public class Domain implements Comparable<Domain>
{
 private final String[] fields;
 private final int N;

 public Domain(String name)
 {
 fields = name.split("\\.");
 N = fields.length;
 }

 public int compareTo(Domain that)
 {
 for (int i = 0; i < Math.min(this.N, that.N); i++)
 {
 String s = fields[this.N - i - 1];
 String t = fields[that.N - i - 1];
 int cmp = s.compareTo(t);
 if (cmp < 0) return -1;
 else if (cmp > 0) return +1;
 }
 return this.N - that.N;
 }
}

ee.princeton.edu
cs.princeton.edu
princeton.edu
cnn.com
google.com
apple.com
www.cs.princeton.edu
bolle.cs.princeton.edu

com.apple
com.cnn
com.google
edu.princeton
edu.princeton.cs
edu.princeton.cs.bolle
edu.princeton.cs.www
edu.princeton.ee

only use this trick
when no danger

of overflow

Helper functions. Refer to data through compares and exchanges.

Less. Is object v less than w ?

Exchange. Swap object in array a[] at index i with the one at index j.

11

Two useful sorting abstractions

private static boolean less(Comparable v, Comparable w)
{ return v.compareTo(w) < 0; }

private static void exch(Comparable[] a, int i, int j)
{
 Comparable t = a[i];
 a[i] = a[j];
 a[j] = t;
}

Q. How to test if an array is sorted?

Q. If the sorting algorithm passes the test, did it correctly sort its input?
A. Yes, if data accessed only through exch() and less().

12

Testing

private static boolean isSorted(Comparable[] a)
{
 for (int i = 1; i < a.length; i++)
 if (less(a[i], a[i-1])) return false;
 return true;
}

‣ rules of the game
‣ selection sort
‣ insertion sort
‣ sorting challenges
‣ shellsort

13

14

Selection sort

Algorithm. ↑ scans from left to right.

Invariants.

• Elements to the left of ↑ (including ↑) fixed and in ascending order.

• No element to right of ↑ is smaller than any element to its left.

in final order
↑

15

Selection sort inner loop

To maintain algorithm invariants:

• Move the pointer to the right.

• Identify index of minimum item on right.

• Exchange into position.

i++;

↑

int min = i;
for (int j = i+1; j < N; j++)
 if (less(a[j], a[min]))
 min = j;

↑↑

exch(a, i, min);
↑↑

in final order

in final order

in final order

16

Selection sort: Java implementation

public class Selection {

 public static void sort(Comparable[] a)
 {
 int N = a.length;
 for (int i = 0; i < N; i++)
 {
 int min = i;
 for (int j = i+1; j < N; j++)
 if (less(a[j], a[min]))
 min = j;
 exch(a, i, min);
 }
 }

 private static boolean less(Comparable v, Comparable w)
 { /* as before */ }

 private static void exch(Comparable[] a, int i, int j)
 { /* as before */ }
}

Selection sort: mathematical analysis

Proposition A. Selection sort uses (N-1) + (N-2) + ... + 1 + 0 ~ N2/2
compares and N exchanges.

Running time insensitive to input. Quadratic time, even if array is presorted.
Data movement is minimal. Linear number of exchanges.

17

Trace of selection sort (array contents just after each exchange)

 a[]
 i min 0 1 2 3 4 5 6 7 8 9 10

 S O R T E X A M P L E

 0 6 S O R T E X A M P L E
 1 4 A O R T E X S M P L E
 2 10 A E R T O X S M P L E
 3 9 A E E T O X S M P L R
 4 7 A E E L O X S M P T R
 5 7 A E E L M X S O P T R
 6 8 A E E L M O S X P T R
 7 10 A E E L M O P X S T R
 8 8 A E E L M O P R S T X
 9 9 A E E L M O P R S T X
10 10 A E E L M O P R S T X

 A E E L M O P R S T X

entries in gray are
in final position

entries in black
are examined to find

the minimum

entries in red
are a[min]

Selection sort animations

18

in final order
not in final order

algorithm position

http://www.sorting-algorithms.com/selection-sort

20 random elements

Selection sort animations

19

in final order
not in final order

algorithm position

http://www.sorting-algorithms.com/selection-sort

20 partially-sorted elements

‣ rules of the game
‣ selection sort
‣ insertion sort
‣ sorting challenges
‣ shellsort

20

21

Insertion sort

Algorithm. ↑ scans from left to right.

Invariants.

• Elements to the left of ↑ (including ↑) are in ascending order.

• Elements to the right of ↑ have not yet been seen.

in order ↑ not yet seen

22

Insertion sort inner loop

To maintain algorithm invariants:

• Move the pointer to the right.

• Moving from right to left, exchange
a[i] with each larger element to its left.

for (int j = i; j > 0; j--)
 if (less(a[j], a[j-1]))
 exch(a, j, j-1);
 else break;

i++;

in order not yet seen

↑

in order not yet seen

↑↑↑↑

Insertion sort: Java implementation

23

public class Insertion {

 public static void sort(Comparable[] a)
 {
 int N = a.length;
 for (int i = 0; i < N; i++)
 for (int j = i; j > 0; j--)
 if (less(a[j], a[j-1]))
 exch(a, j, j-1);
 else break;
 }

 private static boolean less(Comparable v, Comparable w)
 { /* as before */ }

 private static void exch(Comparable[] a, int i, int j)
 { /* as before */ }
}

Proposition B. To sort a randomly-ordered array with distinct keys,
insertion sort uses ~ N2/4 compares and N2/4 exchanges on average.

Pf. For randomly-ordered data, we expect each element to move halfway back.

Insertion sort: mathematical analysis

24

Trace of insertion sort (array contents just after each insertion)

 a[]
 i j 0 1 2 3 4 5 6 7 8 9 10

 S O R T E X A M P L E

 1 0 O S R T E X A M P L E
 2 1 O R S T E X A M P L E
 3 3 O R S T E X A M P L E
 4 0 E O R S T X A M P L E
 5 5 E O R S T X A M P L E
 6 0 A E O R S T X M P L E
 7 2 A E M O R S T X P L E
 8 4 A E M O P R S T X L E
 9 2 A E L M O P R S T X E
10 2 A E E L M O P R S T X

 A E E L M O P R S T X

entries in black
moved one position
right for insertion

entries in gray
do not move

entry in red
is a[j]

Insertion sort: trace

25

Insertion sort animation

26

in order
not yet seen

algorithm position

http://www.sorting-algorithms.com/insertion-sort

40 random elements

Best case. If the input is in ascending order, insertion sort makes
N-1 compares and 0 exchanges.

Worst case. If the input is in descending order (and no duplicates),
insertion sort makes ~ N2/2 compares and ~ N2/2 exchanges.

Insertion sort: best and worst case

27

 X T S R P O M L E E A

 A E E L M O P R S T X

Insertion sort animation

28

http://www.sorting-algorithms.com/insertion-sort

40 reverse-sorted elements

in order
not yet seen

algorithm position

Def. An inversion is a pair of keys that are out of order.

Def. An array is partially sorted if the number of inversions is O(N).

• Ex 1. A small array appended to a large sorted array.

• Ex 2. An array with only a few elements out of place.

Proposition C. For partially-sorted arrays, insertion sort runs in linear time.
Pf. Number of exchanges equals the number of inversions.

Insertion sort: partially sorted inputs

29

 A E E L M O T R X P S

T-R T-P T-S R-P X-P X-S

(6 inversions)

number of compares = exchanges + (N-1)

Insertion sort animation

30

http://www.sorting-algorithms.com/insertion-sort

40 partially-sorted elements

in order
not yet seen

algorithm position

‣ rules of the game
‣ selection sort
‣ insertion sort
‣ sorting challenges
‣ shellsort

31

32

Sorting challenge 0

Input. Array of doubles.
Plot. Data proportional to length.

Name the sorting method.

• Insertion sort.

• Selection sort.

black entries
are involved
in compares

gray entries
are untouched

Visual traces of elementary sorting algorithms

insertion sort selection sort

33

Sorting challenge 1

Problem. Sort a file of huge records with tiny keys.
Ex. Reorganize your MP3 files.

Which sorting method to use?

• System sort.

• Insertion sort.

• Selection sort.

34

Sorting challenge 2

Problem. Sort a huge randomly-ordered file of small records.
Ex. Process transaction records for a phone company.

Which sorting method to use?

• System sort.

• Insertion sort.

• Selection sort.

35

Sorting challenge 3

Problem. Sort a huge number of tiny files (each file is independent).
Ex. Daily customer transaction records.

Which sorting method to use?

• System sort.

• Insertion sort.

• Selection sort.

36

Sorting challenge 4

Problem. Sort a huge file that is already almost in order.
Ex. Resort a huge database after a few changes.

Which sorting method to use?

• System sort.

• Insertion sort.

• Selection sort.

‣ rules of the game
‣ selection sort
‣ insertion sort
‣ animations
‣ shellsort

37

Idea. Move elements more than one position at a time by h-sorting the array.

Shellsort. h-sort the array for a decreasing sequence of values of h.

Shellsort overview

L E E A M H L E P S O L T S X R
L M P T
 E H S S
 E L O X
 A E L R

P H E L L S O R T E X A M S L E
P S
 H L
 E E
 L
 L

h = 4

h = 13

An h-sorted !le is h interleaved sorted !les

(8 additional files of size 1)

Shellsort trace (array contents after each pass)

P H E L L S O R T E X A M S L E

A E E E H L L L M O P R S S T X

L E E A M H L E P S O L T S X R

S H E L L S O R T E X A M P L Einput

13-sort

4-sort

1-sort

an h-sorted array is h interleaved sorted subsequences

38

How to h-sort an array? Insertion sort, with stride length h.

Why insertion sort?

• Big increments ⇒ small subarray.

• Small increments ⇒ nearly in order. [stay tuned]

h-sorting

M O L E E X A S P R T
E O L M E X A S P R T
E E L M O X A S P R T
E E L M O X A S P R T
A E L E O X M S P R T
A E L E O X M S P R T
A E L E O P M S X R T
A E L E O P M S X R T
A E L E O P M S X R T
A E L E O P M S X R T

3-sorting an array

39

Shellsort example: increments 7, 3, 1

S O R T E X A M P L E

input

S O R T E X A M P L E
M O R T E X A S P L E
M O R T E X A S P L E
M O L T E X A S P R E
M O L E E X A S P R T

7-sort

M O L E E X A S P R T
E O L M E X A S P R T
E E L M O X A S P R T
E E L M O X A S P R T
A E L E O X M S P R T
A E L E O X M S P R T
A E L E O P M S X R T
A E L E O P M S X R T
A E L E O P M S X R T

3-sort

A E L E O P M S X R T
A E L E O P M S X R T
A E L E O P M S X R T
A E E L O P M S X R T
A E E L O P M S X R T
A E E L O P M S X R T
A E E L M O P S X R T
A E E L M O P S X R T
A E E L M O P S X R T
A E E L M O P R S X T
A E E L M O P R S T X

1-sort

A E E L M O P R S T X

result

40

41

Shellsort: intuition

Proposition. A g-sorted array remains g-sorted after h-sorting it.
Pf. Harder than you'd think!

M O R T E X A S P L E
M O R T E X A S P L E
M O L T E X A S P R E
M O L E E X A S P R T
M O L E E X A S P R T

7-sort

M O L E E X A S P R T
E O L M E X A S P R T
E E L M O X A S P R T
E E L M O X A S P R T
A E L E O X M S P R T
A E L E O X M S P R T
A E L E O P M S X R T
A E L E O P M S X R T
A E L E O P M S X R T
A E L E O P M S X R T

3-sort

still 7-sorted

What increments to use?

1, 2, 4, 8, 16, 32 . . .
No.

1, 3, 7, 15, 31, 63, . . .
Maybe.

1, 4, 13, 40, 121, 364, . . .
OK, easy to compute 3x+1 sequence.

1, 5, 19, 41, 109, 209, 505, . . .
Tough to beat in empirical studies.

Interested in learning more?

• See Algs 3 section 6.8 or Knuth volume 3 for details.

• Consider doing a JP on the topic.
42

public class Shell
{
 public static void sort(Comparable[] a)
 {
 int N = a.length;

 int h = 1;
 while (h < N/3) h = 3*h + 1; // 1, 4, 13, 40, 121, 364, 1093, ...

 while (h >= 1)
 { // h-sort the array.
 for (int i = h; i < N; i++)
 {
 for (int j = i; j >= h && less(a[j], a[j-h]); j -= h)
 exch(a, j, j-h);
 }

 h = h/3;
 }
 }

 private static boolean less(Comparable v, Comparable w)
 { /* as before */ }
 private static boolean void(Comparable[] a, int i, int j)
 { /* as before */ }
}

Shellsort: Java implementation

43

insertion sort

magic increment
sequence

move to next
increment

Visual trace of shellsort

44Visual trace of shellsort

input

40-sorted

13-sorted

4-sorted

result

Shellsort animation

45

h-sorted
current subsequence

algorithm position

50 random elements

other elementshttp://www.sorting-algorithms.com/shell-sort

Shellsort animation

46

http://www.sorting-algorithms.com/shell-sort

50 partially-sorted elements

h-sorted
current subsequence

algorithm position

other elements

Proposition. The worst-case number of compares used by shellsort with the
3x+1 increments is O(N3/2).

Property. The number of compares used by shellsort with the 3x+1 increments
is at most by a small multiple of N times the # of increments used.

Remark. Accurate model has not yet been discovered (!)
47

Shellsort: analysis

measured in thousands

N compares N1.289 2.5 N lg N

5,000 93 58 106

10,000 209 143 230

20,000 467 349 495

40,000 1022 855 1059

80,000 2266 2089 2257

Why are we interested in shellsort?

Example of simple idea leading to substantial performance gains.

Useful in practice.

• Fast unless array size is huge.

• Tiny, fixed footprint for code (used in embedded systems).

• Hardware sort prototype.

Simple algorithm, nontrivial performance, interesting questions.

• Asymptotic growth rate?

• Best sequence of increments?

• Average case performance?

Lesson. Some good algorithms are still waiting discovery.

48

open problem: find a better increment sequence

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 22, 2010 2:31:50 PM

2.2 Mergesort

‣ mergesort
‣ bottom-up mergesort
‣ sorting complexity
‣ comparators

2

Two classic sorting algorithms

Critical components in the world’s computational infrastructure.

• Full scientific understanding of their properties has enabled us
to develop them into practical system sorts.

• Quicksort honored as one of top 10 algorithms of 20th century
in science and engineering.

Mergesort.

• Java sort for objects.

• Perl, Python stable sort.

Quicksort.

• Java sort for primitive types.

• C qsort, Unix, g++, Visual C++, Python.

today

next lecture

‣ mergesort
‣ bottom-up mergesort
‣ sorting complexity
‣ comparators

3

Basic plan.

• Divide array into two halves.

• Recursively sort each half.

• Merge two halves.

4

Mergesort

M E R G E S O R T E X A M P L E

E E G M O R R S T E X A M P L E

E E G M O R R S A E E L M P T X

A E E E E G L M M O P R R S T X

input

sort left half

sort right half

merge results

Mergesort overview

Q. How to combine two sorted subarrays into a sorted whole.
A. Use an auxiliary array.

5

Merging

 a[] aux[]

k 0 1 2 3 4 5 6 7 8 9 i j 0 1 2 3 4 5 6 7 8 9

 E E G M R A C E R T - - - - - - - - - -

 E E G M R A C E R T E E G M R A C E R T

 0 5

0 A 0 6 E E G M R A C E R T

1 A C 0 7 E E G M R C E R T

2 A C E 1 7 E E G M R E R T

3 A C E E 2 7 E G M R E R T

4 A C E E E 2 8 G M R E R T

5 A C E E E G 3 8 G M R R T

6 A C E E E G M 4 8 M R R T

7 A C E E E G M R 5 8 R R T

8 A C E E E G M R R 5 9 R T

9 A C E E E G M R R T 6 10 T

 A C E E E G M R R T

input

copy

Abstract in-place merge trace

merged result

6

Merging: Java implementation

A G L O R H I M S T

A G H I L M

i j

k

lo himid

aux[]

a[]

private static void merge(Comparable[] a, int lo, int mid, int hi)
{
 assert isSorted(a, lo, mid); // precondition: a[lo..mid] sorted
 assert isSorted(a, mid+1, hi); // precondition: a[mid+1..hi] sorted

 for (int k = lo; k <= hi; k++)
 aux[k] = a[k];

 int i = lo, j = mid+1;
 for (int k = lo; k <= hi; k++)
 {
 if (i > mid) a[k] = aux[j++];
 else if (j > hi) a[k] = aux[i++];
 else if (less(aux[j], aux[i])) a[k] = aux[j++];
 else a[k] = aux[i++];
 }

 assert isSorted(a, lo, hi); // postcondition: a[lo..hi] sorted
}

copy

merge

Assertion. Statement to test assumptions about your program.

• Helps detect logic bugs.

• Documents code.

Java assert statement. Throws an exception unless boolean condition is ture.

Can enable or disable at runtime. ⇒ No cost in production code.

Best practices. Use to check internal invariants. Assume assertions will be
disabled in production code (e.g., don't use for external argument-checking).

7

Assertions

assert isSorted(a, lo, hi);

java -ea MyProgram // enable assertions
java -da MyProgram // disable assertions (default)

8

Mergesort: Java implementation

lo mid hi

10 11 12 13 14 15 16 17 18 19

public class Merge
{
 private static Comparable[] aux;

 private static void merge(Comparable[] a, int lo, int mid, int hi)
 { /* as before */ }

 private static void sort(Comparable[] a, int lo, int hi)
 {
 if (hi <= lo) return;
 int mid = lo + (hi - lo) / 2;
 sort(a, lo, mid);
 sort(a, mid+1, hi);
 merge(a, lo, m, hi);
 }

 public static void sort(Comparable[] a)
 {
 aux = new Comparable[a.length];
 sort(a, 0, a.length - 1);
 }
}

9

Mergesort trace

result after recursive call

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Mergesort animation

10

http://www.sorting-algorithms.com/merge-sort

50 random elements

in order
current subarray

algorithm position

not in order

Mergesort animation

11

http://www.sorting-algorithms.com/merge-sort

50 reverse-sorted elements

in order
current subarray

algorithm position

not in order

12

Mergesort: empirical analysis

Running time estimates:

• Home pc executes 108 comparisons/second.

• Supercomputer executes 1012 comparisons/second.

Bottom line. Good algorithms are better than supercomputers.

insertion sort (Ninsertion sort (Ninsertion sort (N2) mergesort (N log N)mergesort (N log N)mergesort (N log N)

computer thousand million billion thousand million billion

home instant 2.8 hours 317 years instant 1 second 18 min

super instant 1 second 1 week instant instant instant

13

Mergesort: mathematical analysis

Proposition. Mergesort uses ~ 2 N lg N data moves to sort any array of size N.

Def. D(N) = number of data moves to mergesort an array of size N.
 = D(N / 2) + D(N / 2) + 2 N

Mergesort recurrence. D(N) = 2 D(N / 2) + 2 N for N > 1, with T(1) = 0.

• Not quite right for odd N.

• Similar recurrence holds for many divide-and-conquer algorithms.

Solution. D(N) ~ 2 N lg N.

• For simplicity, we'll prove when N is a power of 2.

• True for all N. [see COS 340]

left half right half merge

Mergesort recurrence. D(N) = 2 D(N / 2) + 2 N for N > 1, with D(1) = 0.

Proposition. If N is a power of 2, then D(N) = 2 N lg N.
Pf.

14

Mergesort recurrence: proof 1

D(N)

D(N/2)D(N/2)

D(N/4)D(N/4)D(N/4) D(N/4)

D(2) D(2) D(2) D(2) D(2) D(2) D(2)

2N

D(N / 2k)

2 (2N/2)

2k (2N/2k)

N/2 (4)

...

lg N

2N lg N

= 2N

= 2N

= 2N

= 2N

...

D(2)

4 (2N/4) = 2N

Mergesort recurrence. D(N) = 2 D(N / 2) + 2 N for N > 1, with D(1) = 0.

Proposition. If N is a power of 2, then D(N) = 2 N lg N.
Pf.

15

Mergesort recurrence: proof 2

 D(N) = 2 D(N/2) + 2N

D(N) / N = 2 D(N/2) / N + 2

 = D(N/2) / (N/2) + 2

 = D(N/4) / (N/4) + 2 + 2

 = D(N/8) / (N/8) + 2 + 2 + 2

 . . .

 = D(N/N) / (N/N) + 2 + 2 + ... + 2

 = 2 lg N

given

divide both sides by N

algebra

apply to first term

apply to first term again

stop applying, T(1) = 0

Mergesort recurrence. D(N) = 2 D(N / 2) + 2 N for N > 1, with D(1) = 0.

Proposition. If N is a power of 2, then D(N) = 2 N lg N.
Pf. [by induction on N]

• Base case: N = 1.

• Inductive hypothesis: D(N) = 2N lg N.

• Goal: show that D(2N) = 2(2N)lg (2N).

16

Mergesort recurrence: proof 3

D(2N) = 2 D(N) + 4N

 = 4 N lg N + 4 N

 = 4 N (lg (2N) - 1) + 4N

 = 4 N lg (2N)

given

inductive hypothesis

algebra

QED

Proposition. Mergesort uses between ½ N lg N and N lg N compares to sort
any array of size N.

Pf. The number of compares for the last merge is between ½ N lg N and N.

17

Mergesort: number of compares

18

Mergesort analysis: memory

Proposition G. Mergesort uses extra space proportional to N.
Pf. The array aux[] needs to be of size N for the last merge.

Def. A sorting algorithm is in-place if it uses O(log N) extra memory.
Ex. Insertion sort, selection sort, shellsort.

Challenge for the bored. In-place merge. [Kronrud, 1969]

 A C D G H I M N U V

 A B C D E F G H I J M N O P Q R S T U V

 B E F J O P Q R S T

two sorted subarrays

merged result

19

Mergesort: practical improvements

Use insertion sort for small subarrays.

• Mergesort has too much overhead for tiny subarrays.

• Cutoff to insertion sort for ≈ 7 elements.

Stop if already sorted.

• Is biggest element in first half ≤ smallest element in second half?

• Helps for partially-ordered arrays.

Eliminate the copy to the auxiliary array. Save time (but not space)
by switching the role of the input and auxiliary array in each recursive call.

Ex. See MergeX.java or Arrays.sort().

 A B C D E F G H I J

 A B C D E F G H I J M N O P Q R S T U V

 M N O P Q R S T U V

20

Mergesort visualization

Visual trace of top-down mergesort for with cuto! for small subarrays

"rst subarray

second subarray

"rst merge

"rst half sorted

second half sorted

result

2353.2 ! Mergesort

‣ mergesort
‣ bottom-up mergesort
‣ sorting complexity
‣ comparators

21

Basic plan.

• Pass through array, merging subarrays of size 1.

• Repeat for subarrays of size 2, 4, 8, 16,

Bottom line. No recursion needed!
22

Bottom-up mergesort

Bottom-up mergesort

public class MergeBU
{ // Bottom-up mergesort.
 private static Comparable[] aux; // auxiliary array for merges

 // See page 230 for merge() code.

 public static void sort(Comparable[] a)
 { // Do lg N passes of pairwise merges.
 int N = a.length;
 aux = new Comparable[N];
 for (int sz = 1; sz < N; sz = sz+sz) // sz: subarray size
 for (int lo = 0; lo < N-sz; lo += sz+sz) // lo: subarray index
 merge(a, lo, lo+sz-1, Math.min(lo+sz+sz-1, N-1));
 }
}

Bottom-up mergesort consists of a sequence of passes over the whole array, doing m-by-m merges,
starting with sz equal to 1 and doubling sz on each pass. The final subarray is of size m only when the
array size is an even multiple of sz (otherwise it is less than sz). When N is a power of two, as in our
example, the merges performed are the same as for top-down mergesort, in a different order.

Trace of merge results for bottom-up mergesort

 a[i]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, 4, 4, 5) E M G R E S O R T E X A M P L E
 merge(a, 6, 6, 7) E M G R E S O R T E X A M P L E
 merge(a, 8, 8, 9) E M G R E S O R E T X A M P L E
 merge(a, 10, 10, 11) E M G R E S O R E T A X M P L E
 merge(a, 12, 12, 13) E M G R E S O R E T A X M P L E
 merge(a, 14, 14, 15) E M G R E S O R E T A X M P E L

 merge(a, 0, 1, 3) E G M R E S O R E T A X M P E L
 merge(a, 4, 5, 7) E G M R E O R S E T A X M P E L
 merge(a, 8, 9, 11) E G M R E O R S A E T X M P E L
 merge(a, 12, 13, 15) E G M R E O R S A E T X E L M P

 merge(a, 0, 3, 7) E E G M O R R S A E T X E L M P
 merge(a, 8, 11, 15) E E G M O R R S A E E L M P T X

 merge(a, 0, 7, 15) A E E E E G L M M O P R R S T X

sz = 2

sz = 4

sz = 8

sz = 16

2373.2 ! Mergesort

Bottom line. Concise industrial-strength code, if you have the space.

23

Bottom-up mergesort: Java implementation

public class MergeBU
{
 private static Comparable[] aux;

 private static void merge(Comparable[] a, int lo, int mid, int hi)
 { /* as before */ }

 public static void sort(Comparable[] a)
 {
 int N = a.length;
 aux = new Comparable[N];
 for (int sz = 1; sz < N; sz = sz+sz)
 for (int lo = 0; lo < N-sz; lo += sz+sz)
 merge(a, lo, lo+sz-1, Math.min(lo+sz+sz-1, N-1));
 }
}

24

Bottom-up mergesort: visual trace

2

4

8

16

32

Visual trace of bottom-up mergesort

‣ mergesort
‣ bottom-up mergesort
‣ sorting complexity
‣ comparators

25

26

Computational complexity. Framework to study efficiency of algorithms for
solving a particular problem X.

Machine model. Focus on fundamental operations.
Upper bound. Cost guarantee provided by some algorithm for X.
Lower bound. Proven limit on cost guarantee of all algorithms for X.
Optimal algorithm. Algorithm with best cost guarantee for X.

Example: sorting.

• Machine model = # compares.

• Upper bound = ~ N lg N from mergesort.

• Lower bound = ~ N lg N ?

• Optimal algorithm = mergesort ?

lower bound ~ upper bound

access information only through compares

Complexity of sorting

27

Decision tree (for 3 distinct elements)

b < c

yes no

a < c

yes no

a < c

yes no

a c b c a b

b a ca b c b < c

yes no

b c a c b a

height of tree =
worst-case number

of compares

a < b

yes no

code between compares
(e.g., sequence of exchanges)

28

Compare-based lower bound for sorting

Proposition. Any compare-based sorting algorithm must use at least
lg N ! ~ N lg N compares in the worst-case.

Pf.

• Assume input consists of N distinct values a1 through aN.

• Worst case dictated by height h of decision tree.

• Binary tree of height h has at most 2 h leaves.

• N ! different orderings ⇒ at least N ! leaves.

at least N! leaves no more than 2h leaves

h

29

Compare-based lower bound for sorting

Proposition. Any compare-based sorting algorithm must use at least
lg N ! ~ N lg N compares in the worst-case.

Pf.

• Assume input consists of N distinct values a1 through aN.

• Worst case dictated by height h of decision tree.

• Binary tree of height h has at most 2 h leaves.

• N ! different orderings ⇒ at least N ! leaves.

2 h ≥ # leaves ≥ N !

⇒ h ≥ lg N ! ~ N lg N

Stirling's formula

30

Complexity of sorting

Machine model. Focus on fundamental operations.
Upper bound. Cost guarantee provided by some algorithm for X.
Lower bound. Proven limit on cost guarantee of all algorithms for X.
Optimal algorithm. Algorithm with best cost guarantee for X.

Example: sorting.

• Machine model = # compares.

• Upper bound = ~ N lg N from mergesort.

• Lower bound = ~ N lg N.

• Optimal algorithm = mergesort.

First goal of algorithm design: optimal algorithms.

31

Complexity results in context

Other operations? Mergesort optimality is only about number of compares.

Space?

• Mergesort is not optimal with respect to space usage.

• Insertion sort, selection sort, and shellsort are space-optimal.

Challenge. Find an algorithm that is both time- and space-optimal.

Lessons. Use theory as a guide.
Ex. Don't try to design sorting algorithm that uses ½ N lg N compares.

Lower bound may not hold if the algorithm has information about:

• The initial order of the input.

• The distribution of key values.

• The representation of the keys.

Partially-ordered arrays. Depending on the initial order of the input,
we may not need N lg N compares.

Duplicate keys. Depending on the input distribution of duplicates,
we may not need N lg N compares.

Digital properties of keys. We can use digit/character compares instead of
key compares for numbers and strings.

32

Complexity results in context (continued)

insertion sort requires only N-1
compares on an already sorted array

stay tuned for 3-way quicksort

stay tuned for radix sorts

‣ mergesort
‣ bottom-up mergesort
‣ sorting complexity
‣ comparators

33

34

Sort by artist name

35

Sort by song name

Comparable interface: sort uses type’s natural order.

36

Natural order

public class Date implements Comparable<Date>
{
 private final int month, day, year;

 public Date(int m, int d, int y)
 {
 month = m;
 day = d;
 year = y;
 }
 …
 public int compareTo(Date that)
 {
 if (this.year < that.year) return -1;
 if (this.year > that.year) return +1;
 if (this.month < that.month) return -1;
 if (this.month > that.month) return +1;
 if (this.day < that.day) return -1;
 if (this.day > that.day) return +1;
 return 0;
 }
}

natural order

37

Generalized compare

Comparable interface: sort uses type’s natural order.

Problem 1. May want to use a non-natural order.
Problem 2. Desired data type may not come with a “natural” order.

Ex. Sort strings by:

• Natural order. Now is the time

• Case insensitive. is Now the time

• Spanish. café cafetero cuarto churro nube ñoño

• British phone book. McKinley Mackintosh

String[] a;
...
Arrays.sort(a);
Arrays.sort(a, String.CASE_INSENSITIVE_ORDER);
Arrays.sort(a, Collator.getInstance(Locale.SPANISH));

pre-1994 order for digraphs
ch and ll and rr

import java.text.Collator;

38

Comparators

Solution. Use Java's Comparator interface.

Remark. The compare() method implements a total order like compareTo().

Advantages. Decouples the definition of the data type from the
definition of what it means to compare two objects of that type.

• Can add any number of new orders to a data type.

• Can add an order to a library data type with no natural order.

public interface Comparator<Key>
{
 public int compare(Key v, Key w);
}

39

Comparator example

Reverse order. Sort an array of strings in reverse order.

public class ReverseOrder implements Comparator<String>
{
 public int compare(String a, String b)
 {
 return b.compareTo(a);
 }
}

 ...
 Arrays.sort(a, new ReverseOrder());
 ...

comparator implementation

client

40

Sort implementation with comparators

To support comparators in our sort implementations:

• Pass Comparator to sort() and less().

• Use it in less().

Ex. Insertion sort.

public static void sort(Object[] a, Comparator comparator)
{
 int N = a.length;
 for (int i = 0; i < N; i++)
 for (int j = i; j > 0 && less(comparator, a[j], a[j-1]); j--)
 exch(a, j, j-1);
}

private static boolean less(Comparator c, Object v, Object w)
{ return c.compare(v, w) < 0; }

private static void exch(Object[] a, int i, int j)
{ Object swap = a[i]; a[i] = a[j]; a[j] = swap; }

41

Generalized compare

Comparators enable multiple sorts of a single array (by different keys).

Ex. Sort students by name or by section.

Andrews

Battle

Chen

Fox

Furia

Gazsi

Kanaga

Rohde

3

4

2

1

3

4

3

3

A

C

A

A

A

B

B

A

664-480-0023

874-088-1212

991-878-4944

884-232-5341

766-093-9873

665-303-0266

898-122-9643

232-343-5555

097 Little

121 Whitman

308 Blair

11 Dickinson

101 Brown

22 Brown

22 Brown

343 Forbes

Andrews

Battle

Chen

Fox

Furia

Gazsi

Kanaga

Rohde

3

4

2

1

3

4

3

3

A

C

A

A

A

B

B

A

664-480-0023

874-088-1212

991-878-4944

884-232-5341

766-093-9873

665-303-0266

898-122-9643

232-343-5555

097 Little

121 Whitman

308 Blair

11 Dickinson

101 Brown

22 Brown

22 Brown

343 Forbes

sort by name sort by section

Arrays.sort(students, Student.BY_NAME);
Arrays.sort(students, Student.BY_SECT);

Ex. Enable sorting students by name or by section.

public class Student
{
 public static final Comparator<Student> BY_NAME = new ByName();
 public static final Comparator<Student> BY_SECT = new BySect();

 private final String name;
 private final int section;
 ...
 private static class ByName implements Comparator<Student>
 {
 public int compare(Student a, Student b)
 { return a.name.compareTo(b.name); }
 }

 private static class BySect implements Comparator<Student>
 {
 public int compare(Student a, Student b)
 { return a.section - b.section; }
 }
}

42

Generalized compare

only use this trick if no danger of overflow

43

Generalized compare problem

A typical application. First, sort by name; then sort by section.

@#%&@!!. Students in section 3 no longer in order by name.

A stable sort preserves the relative order of records with equal keys.

Andrews

Battle

Chen

Fox

Furia

Gazsi

Kanaga

Rohde

3

4

2

1

3

4

3

3

A

C

A

A

A

B

B

A

664-480-0023

874-088-1212

991-878-4944

884-232-5341

766-093-9873

665-303-0266

898-122-9643

232-343-5555

097 Little

121 Whitman

308 Blair

11 Dickinson

101 Brown

22 Brown

22 Brown

343 Forbes

Andrews

Battle

Chen

Fox

Furia

Gazsi

Kanaga

Rohde

3

4

2

1

3

4

3

3

A

C

A

A

A

B

B

A

664-480-0023

874-088-1212

991-878-4944

884-232-5341

766-093-9873

665-303-0266

898-122-9643

232-343-5555

097 Little

121 Whitman

308 Blair

11 Dickinson

101 Brown

22 Brown

22 Brown

343 Forbes

Arrays.sort(students, Student.BY_NAME); Arrays.sort(students, Student.BY_SECT);

44

Sorting challenge 5

Q. Which sorts are stable?
Insertion sort? Selection sort? Shellsort? Mergesort?

Chicago 09:00:00
Phoenix 09:00:03
Houston 09:00:13
Chicago 09:00:59
Houston 09:01:10
Chicago 09:03:13
Seattle 09:10:11
Seattle 09:10:25
Phoenix 09:14:25
Chicago 09:19:32
Chicago 09:19:46
Chicago 09:21:05
Seattle 09:22:43
Seattle 09:22:54
Chicago 09:25:52
Chicago 09:35:21
Seattle 09:36:14
Phoenix 09:37:44

Chicago 09:00:00
Chicago 09:00:59
Chicago 09:03:13
Chicago 09:19:32
Chicago 09:19:46
Chicago 09:21:05
Chicago 09:25:52
Chicago 09:35:21
Houston 09:00:13
Houston 09:01:10
Phoenix 09:00:03
Phoenix 09:14:25
Phoenix 09:37:44
Seattle 09:10:11
Seattle 09:10:25
Seattle 09:22:43
Seattle 09:22:54
Seattle 09:36:14

Chicago 09:25:52
Chicago 09:03:13
Chicago 09:21:05
Chicago 09:19:46
Chicago 09:19:32
Chicago 09:00:00
Chicago 09:35:21
Chicago 09:00:59
Houston 09:01:10
Houston 09:00:13
Phoenix 09:37:44
Phoenix 09:00:03
Phoenix 09:14:25
Seattle 09:10:25
Seattle 09:36:14
Seattle 09:22:43
Seattle 09:10:11
Seattle 09:22:54

sorted by time sorted by location (not stable) sorted by location (stable)

no
longer
sorted

by time

still
sorted

by time

Stability when sorting on a second key

‣ mergesort
‣ bottom-up mergesort
‣ sorting complexity
‣ comparators
‣ sorting challenge

45

46

Sorting challenge 5A

Q. Is insertion sort stable?

A. Yes, equal elements never more past each other.

public class Insertion
{
 public static void sort(Comparable[] a)
 {
 int N = a.length;
 for (int i = 0; i < N; i++)
 for (int j = i; j > 0 && less(a[j], a[j-1]); j--)
 exch(a, j, j-1);
 }
}

i j 0 1 2 3 4

0 0 B1 A1 A2 A3 B2

1 0 A1 B1 A2 A3 B2

2 1 A1 A2 B1 A3 B2

3 2 A1 A2 A3 B1 B2

4 4 A1 A2 A3 B1 B2

A1 A2 A3 B1 B2

Q. Is selection sort stable ?

A. No, long-distance exchange might move left element to the right
of some equal element.

47

Sorting challenge 5B

public class Selection
{
 public static void sort(Comparable[] a)
 {
 int N = a.length;
 for (int i = 0; i < N; i++)
 {
 int min = i;
 for (int j = i+1; j < N; j++)
 if (less(a[j], a[min]))
 min = j;
 exch(a, i, min);
 }
 }
}

i min 0 1 2

0 2 B1 B2 A

1 1 A B2 B1

2 2 A B2 B1

A B2 B1

48

Sorting challenge 5C

Q. Is shellsort stable?

A. No. Long-distance exchanges.

public class Shell
{
 public static void sort(Comparable[] a)
 {
 int N = a.length;
 int h = 1;
 while (h < N/3) h = 3*h + 1;
 while (h >= 1)
 {
 for (int i = h; i < N; i++)
 {
 for (int j = i; j > h && less(a[j], a[j-h]); j -= h)
 exch(a, j, j-h);
 }
 h = h/3;
 }
 }
}

h 0 1 2 3 4

B1 B2 B3 B4 A1

4 A1 B2 B3 B4 B1

1 A1 B2 B3 B4 B1

A1 B2 B3 B4 B1

49

Sorting challenge 5D

Q. Is mergesort stable?

public class Merge
{
 private static Comparable[] aux;
 private static void merge(Comparable[] a, int lo, int mid, int hi)
 { /* as before */ }

 private static void sort(Comparable[] a, int lo, int hi)
 {
 if (hi <= lo) return;
 int mid = lo + (hi - lo) / 2;
 sort(a, lo, mid);
 sort(a, mid+1, hi);
 merge(a, lo, mid, hi);
 }

 public static void sort(Comparable[] a)
 {
 aux = new Comparable[a.length];
 sort(a, 0, a.length - 1);
 }
}

50

Sorting challenge 5D

Q. Is mergesort stable?

A. Yes, if merge is stable.

Trace of merge results for bottom-up mergesort

 a[i]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, 0, 7, 15) A E E E E G L M M O P R R S T X

lo m hi

51

Sorting challenge 5D (continued)

Q. Is merge stable?

A. Yes, if implemented carefully (take from left subarray if equal).

private static void merge(Comparable[] a, int lo, int mid, int hi)
{
 for (int k = lo; k <= hi; k++)
 aux[k] = a[k];

 int i = lo, j = mid+1;
 for (int k = lo; k <= hi; k++)
 {
 if (i > mid) a[k] = aux[j++];
 else if (j > hi) a[k] = aux[i++];
 else if (less(aux[j], aux[i])) a[k] = aux[j++];
 else a[k] = aux[i++];
 }
}

52

Sorting challenge 5 (summary)

Q. Which sorts are stable ?

Yes. Insertion sort, mergesort.
No. Selection sort, shellsort.

Note. Need to carefully check code (“less than” vs “less than or equal”).

Postscript: optimizing mergesort (a short history)

Goal. Remove instructions from the inner loop.

53

A G L O R H I M S T

A G H I L M

i j

k

lo himid

aux[]

a[]

private static void merge(Comparable[] a, int lo, int mid, int hi)
{

 for (int k = lo; k <= hi; k++)
 aux[k] = a[k];

 int i = lo, j = mid+1;
 for (int k = lo; k <= hi; k++)
 if (i > mid) a[k] = aux[j++];
 else if (j > hi) a[k] = aux[i++];
 else if (less(aux[j], aux[i])) a[k] = aux[j++];
 else a[k] = aux[i++];

}

Postscript: optimizing mergesort (a short history)

Idea 1 (1960s). Use sentinels.

Problem 1. Still need copy.
Problem 2. No good place to put sentinels.
Problem 3. Complicates data-type interface (what is infinity for your type?)

54

A G L O R

A G H I L M

i

k

0

a[]

aux[]

a[M] := maxint; b[N] := maxint;
for (int i = 0, j = 0, k = 0; k < M+1; k++)
 if (less(aux[j], aux[i])) aux[k] = a[i++];
 aux[k] = b[j++];

H I M S T

j

b[]

M N

∞ ∞

Postscript: Optimizing mergesort (a short history)

Idea 2 (1980s). Reverse copy.

Problem. Copy still in inner loop.
55

A G L O R T S M I H

A G H I L M

i j

k

lo himid

aux[]

a[]

private static void merge(Comparable[] a, int lo, int mid, int hi)
{
 for (int i = lo; i <= mid; i++)
 aux[i] = a[i];

 for (int j = mid+1; j <= hi; j++)
 aux[j] = a[hi-j+mid+1];

 int i = lo, j = hi;
 for (int k = lo; k <= hi; k++)
 if (less(aux[j], aux[i])) a[k] = aux[j--];
 else a[k] = aux[i++];
}

copy

reverse copy

merge

Postscript: Optimizing mergesort (a short history)

Idea 3 (1990s). Eliminate copy with recursive argument switch.

Problem. Complex interactions with reverse copy.
Solution. Go back to sentinels.

56

 int mid = (lo+hi)/2;
 mergesortABr(b, a, lo, mid);
 mergesortABr(b, a, mid+1, r);
 mergeAB(a, lo, b, lo, mid, b, mid+1, hi);

Arrays.sort()

57

Sorting challenge 6

Problem. Choose mergesort for Algs 4th edition.
Recursive argument switch is out (recommended only for pros).

Q. Why not use reverse array copy?

private static void merge(Comparable[] a, int lo, int mid, int hi)
{
 for (int i = lo; i <= mid; i++)
 aux[i] = a[i];

 for (int j = mid+1; j <= hi; j++)
 aux[j] = a[hi-j+mid+1];

 int i = lo, j = hi;
 for (int k = lo; k <= hi; k++)
 if (less(aux[j], aux[i])) a[k] = aux[j--];
 else a[k] = aux[i++];
}

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 22, 2010 4:05:04 PM

2.3 Quicksort

‣ quicksort
‣ selection
‣ duplicate keys
‣ system sorts

2

Two classic sorting algorithms

Critical components in the world’s computational infrastructure.

• Full scientific understanding of their properties has enabled us
to develop them into practical system sorts.

• Quicksort honored as one of top 10 algorithms of 20th century
in science and engineering.

Mergesort.

• Java sort for objects.

• Perl, Python stable sort.

Quicksort.

• Java sort for primitive types.

• C qsort, Unix, g++, Visual C++, Python.

last lecture

this lecture

‣ quicksort
‣ selection
‣ duplicate keys
‣ system sorts

3

4

Quicksort

Basic plan.

• Shuffle the array.

• Partition so that, for some j

- element a[j] is in place
- no larger element to the left of j

- no smaller element to the right of j

• Sort each piece recursively.
Sir Charles Antony Richard Hoare

1980 Turing Award

Q U I C K S O R T E X A M P L E

K R A T E L E P U I M Q C X O S

E C A I E K L P U T M Q R X O S

A C E E I K L P U T M Q R X O S

A C E E I K L M O P Q R S T U X

A C E E I K L M O P Q R S T U X

not greater not less

partitioning element

input

shu!e

partition

sort left

sort right

result

Quicksort overview

Quicksort partitioning

Basic plan.

• Scan i from left for an item that belongs on the right.

• Scan j from right for item item that belongs on the left.

• Exchange a[i] and a[j].

• Continue until pointers cross.

5

 a[i]
 i j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-1 15 K R A T E L E P U I M Q C X O S

 1 12 K R A T E L E P U I M Q C X O S

 1 12 K C A T E L E P U I M Q R X O S

 3 9 K C A T E L E P U I M Q R X O S

 3 9 K C A I E L E P U T M Q R X O S

 5 6 K C A I E L E P U T M Q R X O S

 5 6 K C A I E E L P U T M Q R X O S

 6 5 K C A I E E L P U T M Q R X O S

 0 5 E C A I E K L P U T M Q R X O S

 E C A I E K L P U T M Q R X O S

Partitioning trace (array contents before and after each exchange)

initial values

scan left, scan right

exchange

scan left, scan right

exchange

scan left, scan right

exchange

scan left, scan right

!nal exchange

result

v

6

Quicksort: Java code for partitioning

private static int partition(Comparable[] a, int lo, int hi)
{
 int i = lo, j = hi+1;
 while (true)
 {
 while (less(a[++i], a[lo]))
 if (i == hi) break;

 while (less(a[lo], a[--j]))
 if (j == lo) break;

 if (i >= j) break;
 exch(a, i, j);
 }

 exch(a, lo, j);
 return j;
}

swap with partitioning item

check if pointers cross

find item on right to swap

find item on left to swap

swap

return index of item now known to be in place

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

7

Quicksort: Java implementation

public class Quick
{
 private static int partition(Comparable[] a, int lo, int hi)
 { /* see previous slide */ }

 public static void sort(Comparable[] a)
 {
 StdRandom.shuffle(a);
 sort(a, 0, a.length - 1);
 }

 private static void sort(Comparable[] a, int lo, int hi)
 {
 if (hi <= lo) return;
 int j = partition(a, lo, hi);
 sort(a, lo, j-1);
 sort(a, j+1, hi);
 }
}

shuffle needed for
performance guarantee

Quicksort trace

8

 lo j hi 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 Q U I C K S O R T E X A M P L E
 K R A T E L E P U I M Q C X O S
 0 5 15 E C A I E K L P U T M Q R X O S
 0 3 4 E C A E I K L P U T M Q R X O S
 0 2 2 A C E E I K L P U T M Q R X O S
 0 0 1 A C E E I K L P U T M Q R X O S
 1 1 A C E E I K L P U T M Q R X O S
 4 4 A C E E I K L P U T M Q R X O S
 6 6 15 A C E E I K L P U T M Q R X O S
 7 9 15 A C E E I K L M O P T Q R X U S
 7 7 8 A C E E I K L M O P T Q R X U S
 8 8 A C E E I K L M O P T Q R X U S
 10 13 15 A C E E I K L M O P S Q R T U X
 10 12 12 A C E E I K L M O P R Q S T U X
 10 11 11 A C E E I K L M O P Q R S T U X
 10 10 A C E E I K L M O P Q R S T U X
 14 14 15 A C E E I K L M O P Q R S T U X
 15 15 A C E E I K L M O P Q R S T U X

 A C E E I K L M O P Q R S T U X

no partition
 for subarrays

 of size 1

initial values

random shu!e

result

Quicksort trace (array contents after each partition)

Quicksort animation

9

http://www.sorting-algorithms.com/quick-sort

50 random elements

in order
current subarray

algorithm position

not in order

10

Quicksort: implementation details

Partitioning in-place. Using a spare array makes partitioning easier
(and stable), but is not worth the cost.

Terminating the loop. Testing whether the pointers cross is a bit trickier
than it might seem.

Staying in bounds. The (j == lo) test is redundant (why?),
but the (i == hi) test is not.

Preserving randomness. Shuffling is needed for performance guarantee.

Equal keys. When duplicates are present, it is (counter-intuitively) best
to stop on elements equal to the partitioning element.

11

Quicksort: empirical analysis

Running time estimates:

• Home pc executes 108 compares/second.

• Supercomputer executes 1012 compares/second.

Lesson 1. Good algorithms are better than supercomputers.
Lesson 2. Great algorithms are better than good ones.

insertion sort (Ninsertion sort (Ninsertion sort (N2) mergesort (N log N)mergesort (N log N)mergesort (N log N) quicksort (N log N)quicksort (N log N)quicksort (N log N)

computer thousand million billion thousand million billion thousand million billion

home instant 2.8 hours 317 years instant 1 second 18 min instant 0.3 sec 6 min

super instant 1 second 1 week instant instant instant instant instant instant

12

Quicksort: best case analysis

Best case. Number of compares is ~ N lg N.

Worst case. Number of compares is ~ N2 / 2.

13

Quicksort: worst case analysis

Proposition I. The average number of compares CN to quicksort an array of N

elements is ~ 2N ln N (and the number of exchanges is ~ ⅓ N ln N).

Pf. CN satisfies the recurrence C0 = C1 = 0 and for N ≥ 2:

• Multiply both sides by N and collect terms:

• Subtract this from the same equation for N-1:

• Rearrange terms and divide by N(N+1):

14

Quicksort: average-case analysis

partitioning right partitioning probabilityleft

CN

N + 1
=

CN−1

N
+

2
N + 1

NCN = N(N + 1) + 2(C0 + C1 + . . . + CN−1)

CN = (N + 1) +
C0 + C1 + . . . + CN−1

N
+

CN−1 + CN−2 + . . . + C0

N

NCN − (N − 1)CN−1 = 2N + 2CN−1

CN

N + 1
=

CN−1

N
+

2
N + 1

=
CN−2

N − 1
+

2
N

+
2

N + 1

=
CN−3

N − 2
+

2
N − 1

+
2
N

+
2

N + 1

=
2
1

+
2
2

+
2
3

+ . . . +
2

N + 1

• Repeatedly apply above equation:

• Approximate sum by an integral:

• Finally, the desired result:

15

Quicksort: average-case analysis

CN ∼ 2(N + 1)
�

1 +
1
2

+
1
3

+ . . .
1
N

�

∼ 2(N + 1)
� N

1

1
x

dx

CN ∼ 2(N + 1) lnN ≈ 1.39N lg N

previous equation

16

Quicksort: summary of performance characteristics

Worst case. Number of compares is quadratic.

• N + (N-1) + (N-2) + … + 1 ~ N2 / 2.

• More likely that your computer is struck by lightning.

Average case. Number of compares is ~ 1.39 N lg N.

• 39% more compares than mergesort.

• But faster than mergesort in practice because of less data movement.

Random shuffle.

• Probabilistic guarantee against worst case.

• Basis for math model that can be validated with experiments.

Caveat emptor. Many textbook implementations go quadratic if input:

• Is sorted or reverse sorted.

• Has many duplicates (even if randomized!) [stay tuned]

17

Quicksort: practical improvements

Median of sample.

• Best choice of pivot element = median.

• Estimate true median by taking median of sample.

Insertion sort small subarrays.

• Even quicksort has too much overhead for tiny subarrays.

• Can delay insertion sort until end.

Optimize parameters.

• Median-of-3 random elements.

• Cutoff to insertion sort for ≈ 10 elements.

Non-recursive version.

• Use explicit stack.

• Always sort smaller half first.

guarantees O(log N) stack size

~ 12/7 N ln N compares
~ 12/35 N ln N exchanges

Quicksort with cutoff to insertion sort: visualization

18

partitioning element

Quicksort with median-of-3 partitioning and cuto! for small subarrays

input

result

result of
"rst partition

left subarray
partially sorted

both subarrays
partially sorted

‣ quicksort
‣ selection
‣ duplicate keys
‣ system sorts

19

20

Selection

Goal. Find the kth largest element.
Ex. Min (k = 0), max (k = N-1), median (k = N/2).

Applications.

• Order statistics.

• Find the “top k.”

Use theory as a guide.

• Easy O(N log N) upper bound.

• Easy O(N) upper bound for k = 1, 2, 3.

• Easy Ω(N) lower bound.

Which is true?

• Ω(N log N) lower bound?

• O(N) upper bound?
is selection as hard as sorting?

is there a linear-time algorithm for all k?

Partition array so that:

• Element a[j] is in place.

• No larger element to the left of j.

• No smaller element to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.

21

Quick-select

public static Comparable select(Comparable[] a, int k)
{
 StdRandom.shuffle(a);
 int lo = 0, hi = a.length - 1;
 while (hi > lo)
 {
 int j = partition(a, lo, hi);
 if (j < k) lo = j + 1;
 else if (j > k) hi = j - 1;
 else return a[k];
 }
 return a[k];
}

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

if a[k] is here
set hi to j-1

if a[k] is here
set lo to j+1

22

Quick-select: mathematical analysis

Proposition. Quick-select takes linear time on average.
Pf sketch.

• Intuitively, each partitioning step roughly splits array in half:
N + N/2 + N/4 + … + 1 ~ 2N compares.

• Formal analysis similar to quicksort analysis yields:

Ex. (2 + 2 ln 2) N compares to find the median.

Remark. Quick-select uses ~ N2/2 compares in worst case,
but as with quicksort, the random shuffle provides a probabilistic guarantee.

CN = 2 N + k ln (N / k) + (N - k) ln (N / (N - k))

23

Theoretical context for selection

Challenge. Design algorithm whose worst-case running time is linear.

Proposition. [Blum, Floyd, Pratt, Rivest, Tarjan, 1973] There exists a
compare-based selection algorithm whose worst-case running time is linear.

Remark. But, algorithm is too complicated to be useful in practice.

Use theory as a guide.

• Still worthwhile to seek practical linear-time (worst-case) algorithm.

• Until one is discovered, use quick-select if you don’t need a full sort.

24

Generic methods

In our select() implementation, client needs a cast.

The compiler also complains.

Q. How to fix?

 % javac Quick.java
 Note: Quick.java uses unchecked or unsafe operations.
 Note: Recompile with -Xlint:unchecked for details.

 Double[] a = new Double[N];
 for (int i = 0; i < N; i++)
 a[i] = StdRandom.uniform();
 Double median = (Double) Quick.select(a, N/2);

unsafe cast
required

25

Generic methods

Pedantic (safe) version. Compiles cleanly, no cast needed in client.

Remark. Obnoxious code needed in system sort; not in this course (for brevity).

public class QuickPedantic
{
 public static <Key extends Comparable<Key>> Key select(Key[] a, int k)
 { /* as before */ }

 public static <Key extends Comparable<Key>> void sort(Key[] a)
 { /* as before */ }

 private static <Key extends Comparable<Key>> int partition(Key[] a, int lo, int hi)
 { /* as before */ }

 private static <Key extends Comparable<Key>> boolean less(Key v, Key w)
 { /* as before */ }

 private static <Key extends Comparable<Key>> void exch(Key[] a, int i, int j)
 { Key swap = a[i]; a[i] = a[j]; a[j] = swap; }

}

generic type variable
(value inferred from argument a[])

return type matches array type

can declare variables of generic type

http://www.cs.princeton.edu/algs4/35applications/QuickPedantic.java.html

‣ quicksort
‣ selection
‣ duplicate keys
‣ system sorts

26

27

Duplicate keys

Often, purpose of sort is to bring records with duplicate keys together.

• Sort population by age.

• Find collinear points.

• Remove duplicates from mailing list.

• Sort job applicants by college attended.

 Typical characteristics of such applications.

• Huge array.

• Small number of key values.

see Assignment 3

Chicago 09:00:00
Phoenix 09:00:03
Houston 09:00:13
Chicago 09:00:59
Houston 09:01:10
Chicago 09:03:13
Seattle 09:10:11
Seattle 09:10:25
Phoenix 09:14:25
Chicago 09:19:32
Chicago 09:19:46
Chicago 09:21:05
Seattle 09:22:43
Seattle 09:22:54
Chicago 09:25:52
Chicago 09:35:21
Seattle 09:36:14
Phoenix 09:37:44

Chicago 09:00:00
Chicago 09:00:59
Chicago 09:03:13
Chicago 09:19:32
Chicago 09:19:46
Chicago 09:21:05
Chicago 09:25:52
Chicago 09:35:21
Houston 09:00:13
Houston 09:01:10
Phoenix 09:00:03
Phoenix 09:14:25
Phoenix 09:37:44
Seattle 09:10:11
Seattle 09:10:25
Seattle 09:22:43
Seattle 09:22:54
Seattle 09:36:14

Chicago 09:25:52
Chicago 09:03:13
Chicago 09:21:05
Chicago 09:19:46
Chicago 09:19:32
Chicago 09:00:00
Chicago 09:35:21
Chicago 09:00:59
Houston 09:01:10
Houston 09:00:13
Phoenix 09:37:44
Phoenix 09:00:03
Phoenix 09:14:25
Seattle 09:10:25
Seattle 09:36:14
Seattle 09:22:43
Seattle 09:10:11
Seattle 09:22:54

Stability when sorting on a second key

sorted

sorted by time sorted by city (unstable) sorted by city (stable)

NOT
sorted

key

28

Duplicate keys

Mergesort with duplicate keys. Always ~ N lg N compares.

Quicksort with duplicate keys.

• Algorithm goes quadratic unless partitioning stops on equal keys!

• 1990s C user found this defect in qsort().

several textbook and system implementations
also have this defect

S T O P O N E Q U A L K E Y S

swap if we don't stop
on equal keys

if we stop on
equal keys

Duplicate keys: the problem

Mistake. Put all keys equal to the partitioning element on one side.
Consequence. ~ N2 / 2 compares when all keys equal.

Recommended. Stop scans on keys equal to the partitioning element.
Consequence. ~ N lg N compares when all keys equal.

Desirable. Put all keys equal to the partitioning element in place.

29

B A A B A B B B C C C A A A A A A A A A A A

B A A B A B C C B C B A A A A A A A A A A A

A A A B B B B B C C C A A A A A A A A A A A

Goal. Partition array into 3 parts so that:

• Elements between lt and gt equal to partition element v.

• No larger elements to left of lt.

• No smaller elements to right of gt.

Dutch national flag problem. [Edsger Dijkstra]

• Conventional wisdom until mid 1990s: not worth doing.

• New approach discovered when fixing mistake in C library qsort().

• Now incorporated into qsort() and Java system sort.
30

3-way partitioning

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

31

3-way partitioning: Dijkstra's solution

3-way partitioning.

• Let v be partitioning element a[lo].

• Scan i from left to right.
- a[i] less than v: exchange a[lt] with a[i] and increment both lt and i
- a[i] greater than v: exchange a[gt] with a[i] and decrement gt
- a[i] equal to v: increment i

All the right properties.

• In-place.

• Not much code.

• Small overhead if no equal keys.

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

32

3-way partitioning: trace

 a[]
lt i gt 0 1 2 3 4 5 6 7 8 9 10 11
 0 0 11 R B W W R W B R R W B R
 0 1 11 R B W W R W B R R W B R
 1 2 11 B R W W R W B R R W B R
 1 2 10 B R R W R W B R R W B W
 1 3 10 B R R W R W B R R W B W
 1 3 9 B R R B R W B R R W W W
 2 4 9 B B R R R W B R R W W W
 2 5 9 B B R R R W B R R W W W
 2 5 8 B B R R R W B R R W W W
 2 5 7 B B R R R R B R W W W W
 2 6 7 B B R R R R B R W W W W
 3 7 7 B B B R R R R R W W W W
 3 8 7 B B B R R R R R W W W W

v

3-way partitioning trace (array contents after each loop iteration)

private static void sort(Comparable[] a, int lo, int hi)
{
 if (hi <= lo) return;
 int lt = lo, gt = hi;
 Comparable v = a[lo];
 int i = lo;
 while (i <= gt)
 {
 int cmp = a[i].compareTo(v);
 if (cmp < 0) exch(a, lt++, i++);
 else if (cmp > 0) exch(a, i, gt--);
 else i++;
 }

 sort(a, lo, lt - 1);
 sort(a, gt + 1, hi);
}

33

3-way quicksort: Java implementation

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

34

3-way quicksort: visual trace

equal to partitioning element

Visual trace of quicksort with 3-way partitioning

35

Duplicate keys: lower bound

Sorting lower bound. If there are n distinct keys and the ith one occurs
xi times, any compare-based sorting algorithm must use at least

compares in the worst case.

Proposition. [Sedgewick-Bentley, 1997]
Quicksort with 3-way partitioning is entropy-optimal.
Pf. [beyond scope of course]

Bottom line. Randomized quicksort with 3-way partitioning reduces running
time from linearithmic to linear in broad class of applications.

N lg N when all distinct;
linear when only a constant number of distinct keys

proportional to lower bound

lg
�

N !
x1! x2! · · · xn!

�
∼ −

n�

i=1

xi lg
xi

N

‣ selection
‣ duplicate keys
‣ comparators
‣ system sorts

36

Sorting algorithms are essential in a broad variety of applications:
• Sort a list of names.

• Organize an MP3 library.

• Display Google PageRank results.

• List RSS news items in reverse chronological order.

• Find the median.

• Find the closest pair.

• Binary search in a database.

• Identify statistical outliers.

• Find duplicates in a mailing list.

• Data compression.

• Computer graphics.

• Computational biology.

• Supply chain management.

• Load balancing on a parallel computer.
. . .

Every system needs (and has) a system sort!
37

obvious applications

problems become easy once items
are in sorted order

non-obvious applications

Sorting applications

38

Java system sorts

Java uses both mergesort and quicksort.

• Arrays.sort() sorts array of Comparable or any primitive type.

• Uses quicksort for primitive types; mergesort for objects.

Q. Why use different algorithms, depending on type?

 import java.util.Arrays;

 public class StringSort
 {
 public static void main(String[] args)
 {
 String[] a = StdIn.readAll().split("\\s+");
 Arrays.sort(a);
 for (int i = 0; i < N; i++)
 StdOut.println(a[i]);
 }
 }

39

Java system sort for primitive types

Engineering a sort function. [Bentley-McIlroy, 1993]

• Original motivation: improve qsort().

• Basic algorithm = 3-way quicksort with cutoff to insertion sort.

• Partition on Tukey's ninther: median of the medians of 3 samples,
each of 3 elements.

Why use Tukey's ninther?

• Better partitioning than random shuffle.

• Less costly than random shuffle.

approximate median-of-9

LR A P M C AG X JK R BZ E

A MR X KG J EB

K EM

Kninther

medians

groups of 3

nine evenly
spaced elements

R J

40

Achilles heel in Bentley-McIlroy implementation (Java system sort)

Based on all this research, Java’s system sort is solid, right?

A killer input.

• Blows function call stack in Java and crashes program.

• Would take quadratic time if it didn’t crash first.

more disastrous consequences in C

% more 250000.txt
0
218750
222662
11
166672
247070
83339
...

% java IntegerSort < 250000.txt
Exception in thread "main"
java.lang.StackOverflowError
 at java.util.Arrays.sort1(Arrays.java:562)
 at java.util.Arrays.sort1(Arrays.java:606)
 at java.util.Arrays.sort1(Arrays.java:608)
 at java.util.Arrays.sort1(Arrays.java:608)
 at java.util.Arrays.sort1(Arrays.java:608)
 ...

Java's sorting library crashes, even if
you give it as much stack space as Windows allows

250,000 integers
between 0 and 250,000

41

Achilles heel in Bentley-McIlroy implementation (Java system sort)

McIlroy's devious idea. [A Killer Adversary for Quicksort]

• Construct malicious input while running system quicksort,
in response to elements compared.

• If v is partitioning element, commit to (v < a[i]) and (v < a[j]), but don't
commit to (a[i] < a[j]) or (a[j] > a[i]) until a[i] and a[j] are compared.

Consequences.

• Confirms theoretical possibility.

• Algorithmic complexity attack: you enter linear amount of data;
server performs quadratic amount of work.

Remark. Attack is not effective if array is shuffled before sort.

Q. Why do you think system sort is deterministic?

42

System sort: Which algorithm to use?

Many sorting algorithms to choose from:

Internal sorts.

• Insertion sort, selection sort, bubblesort, shaker sort.

• Quicksort, mergesort, heapsort, samplesort, shellsort.

• Solitaire sort, red-black sort, splaysort, Dobosiewicz sort, psort, ...

External sorts. Poly-phase mergesort, cascade-merge, oscillating sort.

Radix sorts. Distribution, MSD, LSD, 3-way radix quicksort.

Parallel sorts.

• Bitonic sort, Batcher even-odd sort.

• Smooth sort, cube sort, column sort.

• GPUsort.

43

System sort: Which algorithm to use?

Applications have diverse attributes.

• Stable?

• Parallel?

• Deterministic?

• Keys all distinct?

• Multiple key types?

• Linked list or arrays?

• Large or small records?

• Is your array randomly ordered?

• Need guaranteed performance?

Elementary sort may be method of choice for some combination.
Cannot cover all combinations of attributes.

Q. Is the system sort good enough?
A. Usually.

many more combinations of
attributes than algorithms

44

Sorting summary

inplace? stable? worst average best remarks

selection

insertion

shell

quick

3-way quick

merge

???

x N 2 / 2 N 2 / 2 N 2 / 2 N exchanges

x x N 2 / 2 N 2 / 4 N use for small N or partially ordered

x ? ? N tight code, subquadratic

x N 2 / 2 2 N ln N N lg N N log N probabilistic guarantee
fastest in practice

x N 2 / 2 2 N ln N N improves quicksort in presence of
duplicate keys

x N lg N N lg N N lg N N log N guarantee, stable

x x N lg N N lg N N lg N holy sorting grail

45

Which sorting algorithm?

original sorted? ? ? ? ? ?

lifo
fifo
data
type
hash
heap
sort
link
list
push
find
root
leaf
tree
null
path
node
left
less
exch
sink
swim
next
swap

find
fifo
data
exch
hash
heap
less
left
leaf
lifo
push
root
list
tree
null
path
node
link
sort
type
sink
swim
next
swap

data
fifo
find
hash
heap
lifo
link
list
push
root
sort
type
leaf
left
node
null
path
tree
exch
less
next
sink
swap
swim

data
fifo
find
hash
heap
lifo
link
list
push
root
sort
type
leaf
tree
null
path
node
left
less
exch
sink
swim
next
swap

data
exch
fifo
find
hash
heap
leaf
left
less
lifo
link
list
sort
tree
null
path
node
type
root
push
sink
swim
next
swap

data
fifo
lifo
type
hash
heap
link
sort
find
list
push
root
leaf
null
path
tree
exch
left
less
node
next
sink
swap
swim

hash
fifo
data
link
leaf
heap
exch
node
lifo
left
find
path
list
next
less
root
sink
swim
null
sort
type
tree
push
swap

data
exch
fifo
find
hash
heap
leaf
left
less
lifo
link
list
next
node
null
path
push
root
sink
sort
swap
swim
tree
type

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 22, 2010 4:15:59 PM

2.4 Priority Queues

‣ API
‣ elementary implementations
‣ binary heaps
‣ heapsort
‣ event-based simulation

2

Priority queue API

public class MaxPQ<Key extends Comparable<Key>>

MaxPQ() create a priority queue

MaxPQ(maxN) create a priority queue of initial capacity maxN

void insert(Key v) insert a key into the priority queue

Key max() return the largest key

Key delMax() return and remove the largest key

boolean isEmpty() is the priority queue empty?

int size() number of entries in the priority queue

API for a generic priority queue

P 1 P P
Q 2 P Q P Q
E 3 P Q E E P Q
 Q 2 P E E P
X 3 P E X E P X
A 4 P E X A A E P X
M 5 P E X A M A E M P X
 X 4 P E M A A E M P
P 5 P E M A P A E M P P
L 6 P E M A P L A E L M P P
E 7 P E M A P L E A E E L M P P
 P 6 E M A P L E A E E L M P

insert
insert
insert

remove max
insert
insert
insert

remove max
insert
insert
insert

remove max

operation argument
return
value

contents
(unordered)

contents
(ordered)size

A sequence of operations on a priority queue

data type delete

stack last in, first out

queue first in, first out

priority queue largest value out

3

Priority queue applications

• Event-driven simulation. [customers in a line, colliding particles]

• Numerical computation. [reducing roundoff error]

• Data compression. [Huffman codes]

• Graph searching. [Dijkstra's algorithm, Prim's algorithm]

• Computational number theory. [sum of powers]

• Artificial intelligence. [A* search]

• Statistics. [maintain largest M values in a sequence]

• Operating systems. [load balancing, interrupt handling]

• Discrete optimization. [bin packing, scheduling]

• Spam filtering. [Bayesian spam filter]

Generalizes: stack, queue, randomized queue.

Problem. Find the largest M in a stream of N elements.

• Fraud detection: isolate $$ transactions.

• File maintenance: find biggest files or directories.

Constraint. Not enough memory to store N elements.
Solution. Use a min-oriented priority queue.

4

Priority queue client example

implementation time space

sort N log N N

elementary PQ M N M

binary heap N log M M

best in theory N M

cost of finding the largest M
in a stream of N items

MinPQ<String> pq = new MinPQ<String>();

while(!StdIn.isEmpty())
{
 String s = StdIn.readString();
 pq.insert(s);
 if (pq.size() > M)
 pq.delMin();
}

while (!pq.isEmpty())
 System.out.println(pq.delMin());

‣ API
‣ elementary implementations
‣ binary heaps
‣ heapsort
‣ event-based simulation

5 6

Priority queue: unordered and ordered array implementation

P 1 P P
Q 2 P Q P Q
E 3 P Q E E P Q
 Q 2 P E E P
X 3 P E X E P X
A 4 P E X A A E P X
M 5 P E X A M A E M P X
 X 4 P E M A A E M P
P 5 P E M A P A E M P P
L 6 P E M A P L A E L M P P
E 7 P E M A P L E A E E L M P P
 P 6 E M A P L E A E E L M P

insert
insert
insert

remove max
insert
insert
insert

remove max
insert
insert
insert

remove max

operation argument
return
value

contents
(unordered)

contents
(ordered)size

A sequence of operations on a priority queue

7

Priority queue: unordered array implementation

public class UnorderedMaxPQ<Key extends Comparable<Key>>
{
 private Key[] pq; // pq[i] = ith element on pq
 private int N; // number of elements on pq

 public UnorderedMaxPQ(int capacity)
 { pq = (Key[]) new Comparable[capacity]; }

 public boolean isEmpty()
 { return N == 0; }

 public void insert(Key x)
 { pq[N++] = x; }

 public Key delMax()
 {
 int max = 0;
 for (int i = 1; i < N; i++)
 if (less(max, i)) max = i;
 exch(max, N-1);
 return pq[--N];
 }
}

no generic
array creation

less() and exch()
as for sorting

8

Priority queue elementary implementations

Challenge. Implement all operations efficiently.

order-of-growth running time for PQ with N items

implementation insert del max max

unordered array 1 N N

ordered array N 1 1

goal log N log N log N

‣ API
‣ elementary implementations
‣ binary heaps
‣ heapsort
‣ event-based simulation

9

Binary tree. Empty or node with links to left and right binary trees.

Complete tree. Perfectly balanced, except for bottom level.

Property. Height of complete tree with N nodes is 1 + !lg N".
Pf. Height only increases when N is exactly a power of 2.

10

Binary tree

complete tree of height 5
 N = 16

!lg N" = 4
height = 5

11

A complete binary tree in nature

 i 0 1 2 3 4 5 6 7 8 9 10 11
a[i] - T S R P N O A E I H G

 E I H G

P N O A

S R
T

1

2

4 5 6 7

10 118 9

3

E

P

I

S

H

N

G

T

O

R

A

Heap representations
12

Binary heap

Binary heap. Array representation of a heap-ordered complete binary tree.

Heap-ordered binary tree.

• Keys in nodes.

• No smaller than children’s keys.

Array representation.

• Take nodes in level order.

• No explicit links needed!

13

Binary heap properties

Property A. Largest key is a[1], which is root of binary tree.

Property B. Can use array indices to move through tree.

• Parent of node at k is at k/2.

• Children of node at k are at 2k and 2k+1.

indices start at 1

 i 0 1 2 3 4 5 6 7 8 9 10 11
a[i] - T S R P N O A E I H G

 E I H G

P N O A

S R
T

1

2

4 5 6 7

10 118 9

3

E

P

I

S

H

N

G

T

O

R

A

Heap representations

Scenario. Node's key becomes larger key than its parent's key.

To eliminate the violation:

• Exchange key in node with key in parent.

• Repeat until heap order restored.

Peter principle. Node promoted to level of incompetence.

private void swim(int k)
{
 while (k > 1 && less(k/2, k))
 {
 exch(k, k/2);
 k = k/2;
 }
}

14

Promotion in a heap

parent of node at k is at k/2

5

E

G

I

P

H

T

G

S

O

R

A

violates heap order
(larger key than parent)

E

G

I

S

H

P

G

T

O

R

A5

2

1

Bottom-up heapify (swim)

15

Insertion in a heap

Insert. Add node at end, then swim it up.
Running time. At most ~ lg N compares.

public void insert(Key x)
{
 pq[++N] = x;
 swim(N);
}

Heap operations

E

P

I

N

G

H

S

T

O

R

A

key to insert

E

P

I

N

G

H

S

T

O

R

A

add key to heap
violates heap order

E

P

I

S

G

N

H

T

O

R

A

swim up

E

P

I

S

G

N

H

T

O

R

A

key to remove

violates
heap order

exchange keys
with root

E

P

I

S

G

N

T

H

O

R

A

remove node
from heap

E

H

I

P

G

N

S

O

R

A

sink down

insert remove the maximum

Scenario. Node's key becomes smaller than one (or both) of its children's keys.

To eliminate the violation:

• Exchange key in node with key in larger child.

• Repeat until heap order restored.

Power struggle. Better subordinate promoted.

private void sink(int k)
{
 while (2*k <= N)
 {
 int j = 2*k;
 if (j < N && less(j, j+1)) j++;
 if (!less(k, j)) break;
 exch(k, j);
 k = j;
 }
}

16

Demotion in a heap

children of node
at k are 2k and 2k+1

5

E

P

I

H

N

S

G

T

O

R

A

violates heap order
(smaller than a child)

E

P

I

S

H

N

G

T

O

R

A5

10

2

2

Top-down reheapify (sink)

Delete max. Exchange root with node at end, then sink it down.
Running time. At most ~ 2 lg N compares.

17

Delete the maximum in a heap

public Key delMax()
{
 Key max = pq[1];
 exch(1, N--);
 sink(1);
 pq[N+1] = null;
 return max;
}

prevent loitering

Heap operations

E

P

I

N

G

H

S

T

O

R

A

key to insert

E

P

I

N

G

H

S

T

O

R

A

add key to heap
violates heap order

E

P

I

S

G

N

H

T

O

R

A

swim up

E

P

I

S

G

N

H

T

O

R

A

key to remove

violates
heap order

exchange keys
with root

E

P

I

S

G

N

T

H

O

R

A

remove node
from heap

E

H

I

P

G

N

S

O

R

A

sink down

insert remove the maximum

18

Heap operations

P

Q

P

Q

E

E

P

E

X

P

A

M

E

X

P

A

M

P

E

A

P

M

P

E

A

P

M

P

E

L

A

P

M

P

E

L

E

A

M

E

P

L

L

P

E

X

P

A

Priority queue operations
in a heap

insert P

insert Q

insert E

remove max (Q)

insert X

insert A

insert M

remove max (X)

insert P

insert L

insert E

remove max (P)

P

Q

P

Q

E

E

P

E

X

P

A

M

E

X

P

A

M

P

E

A

P

M

P

E

A

P

M

P

E

L

A

P

M

P

E

L

E

A

M

E

P

L

L

P

E

X

P

A

Priority queue operations
in a heap

insert P

insert Q

insert E

remove max (Q)

insert X

insert A

insert M

remove max (X)

insert P

insert L

insert E

remove max (P)

19

Binary heap: Java implementation

public class MaxPQ<Key extends Comparable<Key>>
{
 private Key[] pq;
 private int N;

 public MaxPQ(int capacity)
 { pq = (Key[]) new Comparable[capacity+1]; }

 public boolean isEmpty()
 { return N == 0; }
 public void insert(Key key)
 { /* see previous code */ }
 public Key delMax()
 { /* see previous code */ }

 private void swim(int k)
 { /* see previous code */ }
 private void sink(int k)
 { /* see previous code */ }

 private boolean less(int i, int j)
 { return pq[i].compareTo(pq[j] < 0; }
 private void exch(int i, int j)
 { Key t = pq[i]; pq[i] = pq[j]; pq[j] = t; }
}

array helper functions

heap helper functions

PQ ops

20

Priority queues implementation cost summary

Hopeless challenge. Make all operations constant time.
Q. Why hopeless?

order-of-growth running time for PQ with N items

implementation insert del max max

unordered array 1 N N

ordered array N 1 1

binary heap log N log N 1

21

Binary heap considerations

Minimum-oriented priority queue.

• Replace less() with greater().

• Implement greater().

Dynamic array resizing.

• Add no-arg constructor.

• Apply repeated doubling and shrinking.

Immutability of keys.

• Assumption: client does not change keys while they're on the PQ.

• Best practice: use immutable keys.

Other operations.

• Remove an arbitrary item.

• Change the priority of an item.

leads to O(log N) amortized time per op

easy to implement with sink() and swim() [stay tuned]

‣ API
‣ elementary implementations
‣ binary heaps
‣ heapsort
‣ event-based simulation

22

23

Heapsort

Basic plan for in-place sort.

• Create max-heap with all N keys.

• Repeatedly remove the maximum key.

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap

M

T

P

O

L

E

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

R

X

A

M

P

O

T

E

L

E

S

R

X

A

M

P

O

T

E

L

E

X

R

S

A

R

A

S

L

T

E

X

M

O

E

P

R

A

S

E

T

M

X

L

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

E

T

M

X

A

O

E

P

R

L

S

E

T

M

X

A

O

E

P

M

P

O

T

E

L

E

X

R

S

A

M

O

E

P

E

L

X

T

R

S

A

M

O

E

P

T

L

X

S

E

R

A

M

O

S

P

T

L

X

R

E

E

A

R

M

S

O

T

L

X

P

E

E

A

R

A

S

M

T

L

X

O

E

E

P

1

2

4 5 6 7

8 9 10 11

3

1

2

4 5 6 7

8 9 10 11

3

heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap

M

T

P

O

L

E

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

R

X

A

M

P

O

T

E

L

E

S

R

X

A

M

P

O

T

E

L

E

X

R

S

A

R

A

S

L

T

E

X

M

O

E

P

R

A

S

E

T

M

X

L

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

E

T

M

X

A

O

E

P

R

L

S

E

T

M

X

A

O

E

P

M

P

O

T

E

L

E

X

R

S

A

M

O

E

P

E

L

X

T

R

S

A

M

O

E

P

T

L

X

S

E

R

A

M

O

S

P

T

L

X

R

E

E

A

R

M

S

O

T

L

X

P

E

E

A

R

A

S

M

T

L

X

O

E

E

P

1

2

4 5 6 7

8 9 10 11

3

1

2

4 5 6 7

8 9 10 11

3

heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap

M

T

P

O

L

E

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

R

X

A

M

P

O

T

E

L

E

S

R

X

A

M

P

O

T

E

L

E

X

R

S

A

R

A

S

L

T

E

X

M

O

E

P

R

A

S

E

T

M

X

L

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

E

T

M

X

A

O

E

P

R

L

S

E

T

M

X

A

O

E

P

M

P

O

T

E

L

E

X

R

S

A

M

O

E

P

E

L

X

T

R

S

A

M

O

E

P

T

L

X

S

E

R

A

M

O

S

P

T

L

X

R

E

E

A

R

M

S

O

T

L

X

P

E

E

A

R

A

S

M

T

L

X

O

E

E

P

1

2

4 5 6 7

8 9 10 11

3

1

2

4 5 6 7

8 9 10 11

3

heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)

start with array of keys
in arbitrary order

build a max-heap
(in place)

sorted result
(in place)

24

Heapsort: heap construction

First pass. Build heap using bottom-up method.

for (int k = N/2; k >= 1; k--)
 sink(a, k, N);

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap

M

T

P

O

L

E

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

R

X

A

M

P

O

T

E

L

E

S

R

X

A

M

P

O

T

E

L

E

X

R

S

A

R

A

S

L

T

E

X

M

O

E

P

R

A

S

E

T

M

X

L

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

E

T

M

X

A

O

E

P

R

L

S

E

T

M

X

A

O

E

P

M

P

O

T

E

L

E

X

R

S

A

M

O

E

P

E

L

X

T

R

S

A

M

O

E

P

T

L

X

S

E

R

A

M

O

S

P

T

L

X

R

E

E

A

R

M

S

O

T

L

X

P

E

E

A

R

A

S

M

T

L

X

O

E

E

P

1

2

4 5 6 7

8 9 10 11

3

1

2

4 5 6 7

8 9 10 11

3

heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap

M

T

P

O

L

E

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

R

X

A

M

P

O

T

E

L

E

S

R

X

A

M

P

O

T

E

L

E

X

R

S

A

R

A

S

L

T

E

X

M

O

E

P

R

A

S

E

T

M

X

L

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

E

T

M

X

A

O

E

P

R

L

S

E

T

M

X

A

O

E

P

M

P

O

T

E

L

E

X

R

S

A

M

O

E

P

E

L

X

T

R

S

A

M

O

E

P

T

L

X

S

E

R

A

M

O

S

P

T

L

X

R

E

E

A

R

M

S

O

T

L

X

P

E

E

A

R

A

S

M

T

L

X

O

E

E

P

1

2

4 5 6 7

8 9 10 11

3

1

2

4 5 6 7

8 9 10 11

3

heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)

25

Heapsort: sortdown

Second pass.

• Remove the maximum, one at a time.

• Leave in array, instead of nulling out.

while (N > 1)
{
 exch(a, 1, N--);
 sink(a, 1, N);
}

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap

M

T

P

O

L

E

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

R

X

A

M

P

O

T

E

L

E

S

R

X

A

M

P

O

T

E

L

E

X

R

S

A

R

A

S

L

T

E

X

M

O

E

P

R

A

S

E

T

M

X

L

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

E

T

M

X

A

O

E

P

R

L

S

E

T

M

X

A

O

E

P

M

P

O

T

E

L

E

X

R

S

A

M

O

E

P

E

L

X

T

R

S

A

M

O

E

P

T

L

X

S

E

R

A

M

O

S

P

T

L

X

R

E

E

A

R

M

S

O

T

L

X

P

E

E

A

R

A

S

M

T

L

X

O

E

E

P

1

2

4 5 6 7

8 9 10 11

3

1

2

4 5 6 7

8 9 10 11

3

heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)

26

Heapsort: Java implementation

public class Heap
{
 public static void sort(Comparable[] pq)
 {
 int N = pq.length;
 for (int k = N/2; k >= 1; k--)
 sink(pq, k, N);
 while (N > 1)
 {
 exch(pq, 1, N);
 sink(pq, 1, --N);
 }
 }

 private static void sink(Comparable[] pq, int k, int N)
 { /* as before */ }

 private static boolean less(Comparable[] pq, int i, int j)
 { /* as before */ }

 private static void exch(Comparable[] pq, int i, int j)
 { /* as before */ }

}

but use 1-based indexing

27

Heapsort: trace

 a[i]
 N k 0 1 2 3 4 5 6 7 8 9 10 11
 S O R T E X A M P L E
 11 5 S O R T L X A M P E E
 11 4 S O R T L X A M P E E
 11 3 S O X T L R A M P E E
 11 2 S T X P L R A M O E E
 11 1 X T S P L R A M O E E
 X T S P L R A M O E E
 10 1 T P S O L R A M E E X
 9 1 S P R O L E A M E T X
 8 1 R P E O L E A M S T X
 7 1 P O E M L E A R S T X
 6 1 O M E A L E P R S T X
 5 1 M L E A E O P R S T X
 4 1 L E E A M O P R S T X
 3 1 E A E L M O P R S T X
 2 1 E A E L M O P R S T X
 1 1 A E E L M O P R S T X
 A E E L M O P R S T X

initial values

heap-ordered

sorted result

Heapsort trace (array contents just after each sink)

Proposition Q. At most 2 N lg N compares and exchanges.

Significance. Sort in N log N worst-case without using extra memory.

• Mergesort: no, linear extra space.

• Quicksort: no, quadratic time in worst case.

• Heapsort: yes!

Bottom line. Heapsort is optimal for both time and space, but:

• Inner loop longer than quicksort’s.

• Makes poor use of cache memory.

• Not stable.

28

Heapsort: mathematical analysis

in-place merge possible, not practical

N log N worst-case quicksort possible,
not practical

Heapsort animation

29

http://www.sorting-algorithms.com/heap-sort

50 random elements

in order
algorithm position

not in order

30

Sorting algorithms: summary

key comparisons to sort N distinct randomly-ordered keys

inplace? stable? worst average best remarks

selection

insertion

shell

quick

3-way quick

merge

heap

???

x N 2 / 2 N 2 / 2 N 2 / 2 N exchanges

x x N 2 / 2 N 2 / 4 N use for small N or partially ordered

x ? ? N tight code, subquadratic

x N 2 / 2 2 N ln N N lg N N log N probabilistic guarantee
fastest in practice

x N 2 / 2 2 N ln N N improves quicksort in presence
of duplicate keys

x N lg N N lg N N lg N N log N guarantee, stable

x 2 N lg N 2 N lg N N lg N N log N guarantee, in-place

x x N lg N N lg N N lg N holy sorting grail

‣ API
‣ elementary implementations
‣ binary heaps
‣ heapsort
‣ event-based simulation

31 32

Molecular dynamics simulation of hard discs

Goal. Simulate the motion of N moving particles that behave
according to the laws of elastic collision.

33

Molecular dynamics simulation of hard discs

Goal. Simulate the motion of N moving particles that behave
according to the laws of elastic collision.

Hard disc model.

• Moving particles interact via elastic collisions with each other and walls.

• Each particle is a disc with known position, velocity, mass, and radius.

• No other forces.

Significance. Relates macroscopic observables to microscopic dynamics.

• Maxwell-Boltzmann: distribution of speeds as a function of temperature.

• Einstein: explain Brownian motion of pollen grains.

motion of individual
atoms and molecules

temperature, pressure,
diffusion constant

Time-driven simulation. N bouncing balls in the unit square.

Warmup: bouncing balls

34

public class BouncingBalls
{
 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 Ball balls[] = new Ball[N];
 for (int i = 0; i < N; i++)
 balls[i] = new Ball();
 while(true)
 {
 StdDraw.clear();
 for (int i = 0; i < N; i++)
 {
 balls[i].move(0.5);
 balls[i].draw();
 }
 StdDraw.show(50);
 }
 }
}

% java BouncingBalls 100

main simulation loop

Missing. Check for balls colliding with each other.

• Physics problems: when? what effect?

• CS problems: which object does the check? too many checks?

Warmup: bouncing balls

35

public class Ball
{
 private double rx, ry; // position
 private double vx, vy; // velocity
 private final double radius; // radius
 public Ball()
 { /* initialize position and velocity */ }

 public void move(double dt)
 {
 if ((rx + vx*dt < radius) || (rx + vx*dt > 1.0 - radius)) { vx = -vx; }
 if ((ry + vy*dt < radius) || (ry + vy*dt > 1.0 - radius)) { vy = -vy; }
 rx = rx + vx*dt;
 ry = ry + vy*dt;
 }
 public void draw()
 { StdDraw.filledCircle(rx, ry, radius); }
}

check for collision with walls

36

Time-driven simulation

• Discretize time in quanta of size dt.

• Update the position of each particle after every dt units of time,
and check for overlaps.

• If overlap, roll back the clock to the time of the collision, update the
velocities of the colliding particles, and continue the simulation.

t t + dt t + 2 dt
(collision detected)

t + !t
(roll back clock)

Main drawbacks.

• ~ N2/2 overlap checks per time quantum.

• Simulation is too slow if dt is very small.

• May miss collisions if dt is too large.
(if colliding particles fail to overlap when we are looking)

37

Time-driven simulation

dt too small: excessive computation

dt too large: may miss collisions

Fundamental challenge for
time-driven simulation

dt too small: excessive computation

dt too large: may miss collisions

Fundamental challenge for
time-driven simulation

Change state only when something happens.

• Between collisions, particles move in straight-line trajectories.

• Focus only on times when collisions occur.

• Maintain PQ of collision events, prioritized by time.

• Remove the min = get next collision.

Collision prediction. Given position, velocity, and radius of a particle,
when will it collide next with a wall or another particle?

Collision resolution. If collision occurs, update colliding particle(s) according
to laws of elastic collisions.

38

Event-driven simulation

prediction (at time t)
 particles hit unless one passes
 intersection point before the other
 arrives (see Exercise 3.6.X)

resolution (at time t + dt)
 velocities of both particles
 change after collision (see Exercise 3.6.X)

Predicting and resolving a particle-particle collision

39

Particle-wall collision

Collision prediction and resolution.

• Particle of radius s at position (rx, ry).

• Particle moving in unit box with velocity (vx, vy).

• Will it collide with a vertical wall? If so, when?

Predicting and resolving a particle-wall collision

prediction (at time t)
 dt ! time to hit wall
 = distance/velocity

resolution (at time t + dt)
 velocity after collision = (− vx , vy)
 position after collision = (1 − s , ry + vydt)

 = (1 − s − rx)/vx

1 − s − rx

(rx , ry
)

s

wall at
x = 1

vx

vy

40

Particle-particle collision prediction

Collision prediction.

• Particle i: radius si, position (rxi, ryi), velocity (vxi, vyi).

• Particle j: radius sj, position (rxj, ryj), velocity (vxj, vyj).

• Will particles i and j collide? If so, when?

sj

si

(rxi , ryi)

time = t

(vxi , vyi)

m i

i

j

(rxi', ryi')

time = t + !t

(vxj', vyj')

(vxi', vyi')

(vxj , vyj)

Collision prediction.

• Particle i: radius si, position (rxi, ryi), velocity (vxi, vyi).

• Particle j: radius sj, position (rxj, ryj), velocity (vxj, vyj).

• Will particles i and j collide? If so, when?

Particle-particle collision prediction

41

!

"v = ("vx, "vy) = (vxi # vx j , vyi # vyj)

!

"r = ("rx, "ry) = (rxi # rx j , ryi # ryj)

!

"v # "v = ("vx)2 + ("vy)2

!

"r # "r = ("rx)2 + ("ry)2

!

"v # "r = ("vx)("rx)+ ("vy)("ry)

!

"t =
 # if "v $"r % 0
 # if d < 0
 - "v $"r + d

"v $"v
 otherwise

&

'
((

)
(
(

!

d = ("v #"r)2 $ ("v #"v) ("r #"r $ %2)

!

" = " i +" j

Important note: This is high-school physics, so we won’t be testing you on it!

Collision resolution. When two particles collide, how does velocity change?

42

Particle-particle collision resolution

!

vxi" = vxi + Jx / mi

vyi" = vyi + Jy / mi

vx j" = vx j # Jx / mj

vyj" = vx j # Jy / mj

!

Jx = J "rx
#

, Jy = J "ry
#

, J =
2mi mj ("v $"r)
#(mi +mj)

impulse due to normal force
(conservation of energy, conservation of momentum)

Newton's second law
(momentum form)

Important note: This is high-school physics, so we won’t be testing you on it!

!

vxi" = vxi + Jx / mi

vyi" = vyi + Jy / mi

vx j" = vx j # Jx / mj

vyj" = vx j # Jy / mj

Particle data type skeleton

43

public class Particle
{
 private double rx, ry; // position
 private double vx, vy; // velocity
 private final double radius; // radius
 private final double mass; // mass
 private int count; // number of collisions

 public Particle(...) { }

 public void move(double dt) { }
 public void draw() { }

 public double timeToHit(Particle that) { }
 public double timeToHitVerticalWall() { }
 public double timeToHitHorizontalWall() { }

 public void bounceOff(Particle that) { }
 public void bounceOffVerticalWall() { }
 public void bounceOffHorizontalWall() { }

}

predict collision with
particle or wall

resolve collision with
particle or wall

Particle-particle collision and resolution implementation

44

 public double timeToHit(Particle that)
 {
 if (this == that) return INFINITY;
 double dx = that.rx - this.rx, dy = that.ry - this.ry;
 double dvx = that.vx - this.vx; dvy = that.vy - this.vy;
 double dvdr = dx*dvx + dy*dvy;
 if(dvdr > 0) return INFINITY;
 double dvdv = dvx*dvx + dvy*dvy;
 double drdr = dx*dx + dy*dy;
 double sigma = this.radius + that.radius;
 double d = (dvdr*dvdr) - dvdv * (drdr - sigma*sigma);
 if (d < 0) return INFINITY;
 return -(dvdr + Math.sqrt(d)) / dvdv;
 }

 public void bounceOff(Particle that)
 {
 double dx = that.rx - this.rx, dy = that.ry - this.ry;
 double dvx = that.vx - this.vx, dvy = that.vy - this.vy;
 double dvdr = dx*dvx + dy*dvy;
 double dist = this.radius + that.radius;
 double J = 2 * this.mass * that.mass * dvdr / ((this.mass + that.mass) * dist);
 double Jx = J * dx / dist;
 double Jy = J * dy / dist;
 this.vx += Jx / this.mass;
 this.vy += Jy / this.mass;
 that.vx -= Jx / that.mass;
 that.vy -= Jy / that.mass;
 this.count++;
 that.count++;
 }

no collision

Important note: This is high-school physics, so we won’t be testing you on it!

45

Collision system: event-driven simulation main loop

Initialization.

• Fill PQ with all potential particle-wall collisions.

• Fill PQ with all potential particle-particle collisions.

Main loop.

• Delete the impending event from PQ (min priority = t).

• If the event has been invalidated, ignore it.

• Advance all particles to time t, on a straight-line trajectory.

• Update the velocities of the colliding particle(s).

• Predict future particle-wall and particle-particle collisions involving the
colliding particle(s) and insert events onto PQ.

“potential” since collision may not happen if
some other collision intervenes

An invalidated event

two particles on a collision course

third particle interferes: no collision

Conventions.

• Neither particle null # particle-particle collision.

• One particle null # particle-wall collision.

• Both particles null # redraw event.

Event data type

46

private class Event implements Comparable<Event>
{
 private double time; // time of event
 private Particle a, b; // particles involved in event
 private int countA, countB; // collision counts for a and b

 public Event(double t, Particle a, Particle b) { }

 public int compareTo(Event that)
 { return this.time - that.time; }

 public boolean isValid()
 { }
}

ordered by time

invalid if intervening
collision

create event

public class CollisionSystem
{
 private MinPQ<Event> pq; // the priority queue
 private double t = 0.0; // simulation clock time
 private Particle[] particles; // the array of particles

 public CollisionSystem(Particle[] particles) { }

 private void predict(Particle a)
 {
 if (a == null) return;
 for (int i = 0; i < N; i++)
 {
 double dt = a.timeToHit(particles[i]);
 pq.insert(new Event(t + dt, a, particles[i]));
 }
 pq.insert(new Event(t + a.timeToHitVerticalWall() , a, null));
 pq.insert(new Event(t + a.timeToHitHorizontalWall(), null, a));
 }

 private void redraw() { }

 public void simulate() { /* see next slide */ }
}

Collision system implementation: skeleton

47

add to PQ all particle-wall and particle-
particle collisions involving this particle

public void simulate()
{
 pq = new MinPQ<Event>();
 for(int i = 0; i < N; i++) predict(particles[i]);
 pq.insert(new Event(0, null, null));

 while(!pq.isEmpty())
 {
 Event event = pq.delMin();
 if(!event.isValid()) continue;
 Particle a = event.a;
 Particle b = event.b;

 for(int i = 0; i < N; i++)
 particles[i].move(event.time - t);
 t = event.time;

 if (a != null && b != null) a.bounceOff(b);
 else if (a != null && b == null) a.bounceOffVerticalWall()
 else if (a == null && b != null) b.bounceOffHorizontalWall();
 else if (a == null && b == null) redraw();

 predict(a);
 predict(b);
 }
}

Collision system implementation: main event-driven simulation loop

48

initialize PQ with
collision events and
redraw event

get next event

update positions
and time

process event

predict new events
based on changes

49

Simulation example 1

% java CollisionSystem 100

50

Simulation example 2

% java CollisionSystem < billiards.txt

51

Simulation example 3

% java CollisionSystem < brownian.txt

52

Simulation example 4

% java CollisionSystem < diffusion.txt

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 22, 2010 10:24:40 PM

3.1 Symbol Tables

‣ API
‣ sequential search
‣ binary search
‣ ordered operations

2

Symbol tables

Key-value pair abstraction.

• Insert a value with specified key.

• Given a key, search for the corresponding value.

Ex. DNS lookup.

• Insert URL with specified IP address.

• Given URL, find corresponding IP address.

key

URL IP address

www.cs.princeton.edu 128.112.136.11

www.princeton.edu 128.112.128.15

www.yale.edu 130.132.143.21

www.harvard.edu 128.103.060.55

www.simpsons.com 209.052.165.60

value

3

Symbol table applications

application purpose of search key value

dictionary find definition word definition

book index find relevant pages term list of page numbers

file share find song to download name of song computer ID

financial account process transactions account number transaction details

web search find relevant web pages keyword list of page names

compiler find properties of variables variable name type and value

routing table route Internet packets destination best route

DNS find IP address given URL URL IP address

reverse DNS find URL given IP address IP address URL

genomics find markers DNA string known positions

file system find file on disk filename location on disk

API The symbol table is an abstract data type (see Chapter 2): It represents a well-
defined set values and operations on those values, enabling us to develop application-
programs (clients) and implementations separately. As usual, we precisely define the
operations by specifying an application programming interface (API) that provides the
contract between client and implementation:

public class ST<Key, Value>

ST() create a symbol table

void put(Key key, Value val)
put key-value pair into the table
(remove key from table if value is null)

Value get(Key key)
value paired with key
(null if key is absent)

void delete(Key key) remove key (and its value) from table
boolean contains(Key key) is there a value paired with key?
boolean isEmpty() is the table empty?

int size() number of key-value pairs in the table
Iterable<Key> keys() all the keys in the table

API for a generic basic symbol table

As we did with sorting, we will consider the methods without specifying the types of
the items being processed, using generics. For symbol tables, we emphasize the separate
roles played by keys and values in search by specifying the key and value types sepa-
rately instead of combining them in a single data type. After we have considered some
of the characteristics of this basic API, we will consider an extension for the typical case
when keys are Comparable, which enables numerous additional methods. We will then
consider implementations of each.

Before examining client code, we consider several design choices for our implemen-
tations to make our code consistent, compact, and useful. These are not difficult con-
ceptually, but worth examining because they anticipate the answers to questions that
would otherwise arise later.

Duplicate keys. We adopt the following conventions in all of our implementations:
!" Only one value is associated with each key (no duplicate keys in a table).
!" When a client puts a key-value pair into a table already containing that key (and

an associated value), the new value replaces the old one.

3294.1 ! Fundamentals

4

Symbol table API

Associative array abstraction. Associate one value with each key.

a[key] = val;

a[key]

5

Conventions

• Values are not null.

• Method get() returns null if key not present.

• Method put() overwrites old value with new value.

Intended consequences.

• Easy to implement contains().

• Can implement lazy version of delete().

 public boolean contains(Key key)
 { return get(key) != null; }

 public void delete(Key key)
 { put(key, null); }

6

Keys and values

Value type. Any generic type.

Key type: several natural assumptions.

• Assume keys are Comparable, use compareTo().

• Assume keys are any generic type, use equals() to test equality.

• Assume keys are any generic type, use equals() to test equality
and hashCode() to scramble key.

Best practices. Use immutable types for symbol table keys.

• Immutable in Java: String, Integer, Double, File, …

• Mutable in Java: Date, StringBuilder, Url, ...

ST test client for traces

Build ST by associating value i with ith string from standard input.

7

public static void main(String[] args)
{
 ST<String, Integer> st = new ST<String, Integer>();
 String[] a = StdIn.readAll().split("\\s+");
 for (int i = 0; i < a.length; i++)
 st.put(a[i], i);
 for (String s : st.keys())
 StdOut.println(s + " " + st.get(s));
}

Keys, values, and output for test client

STunordered output
(one possibility) ST output

keys

values

S E A R C H E X A M P L E

0 1 2 3 4 5 6 7 8 9 10 11 12

L 11
P 10
M 9
X 7
H 5
C 4
R 3
A 8
E 12
S 0

A 8
C 4
E 12
H 5
L 9
M 11
P 10
R 3
S 0
X 7

Keys, values, and output for test client

STunordered output
(one possibility) ST output

keys

values

S E A R C H E X A M P L E

0 1 2 3 4 5 6 7 8 9 10 11 12

L 11
P 10
M 9
X 7
H 5
C 4
R 3
A 8
E 12
S 0

A 8
C 4
E 12
H 5
L 9
M 11
P 10
R 3
S 0
X 7

keys

values

output

ST test client for analysis

Frequency counter. Read a sequence of strings from standard input
and print out one that occurs with highest frequency.

8

% more tinyTale.txt
it was the best of times
it was the worst of times
it was the age of wisdom
it was the age of foolishness
it was the epoch of belief
it was the epoch of incredulity
it was the season of light
it was the season of darkness
it was the spring of hope
it was the winter of despair

% java FrequencyCounter 1 < tinyTale.txt
it 10

% java FrequencyCounter 8 < tale.txt
business 122

% java FrequencyCounter 10 < leipzig1M.txt
government 24763

tiny example (60 words, 20 distinct)

real example (135,635 words, 10,769 distinct)

real example (21,191,455 words, 534,580 distinct)

public class FrequencyCounter
{
 public static void main(String[] args)
 {
 int minlen = Integer.parseInt(args[0]);
 ST<String, Integer> st = new ST<String, Integer>();
 while (!StdIn.isEmpty())
 {
 String word = StdIn.readString();
 if (word.length() < minlen) continue;
 if (!st.contains(word)) st.put(word, 1);
 else st.put(word, st.get(word) + 1);
 }
 String max = "";
 st.put(max, 0);
 for (String word : st.keys())
 if (st.get(word) > st.get(max))
 max = word;
 StdOut.println(max + " " + st.get(max));
 }
}

9

Frequency counter implementation

read string and
update frequency

print a string
with max freq

create ST

ignore short strings

10

‣ API
‣ sequential search
‣ binary search
‣ ordered operations

Data structure. Maintain an (unordered) linked list of key-value pairs.

Search. Scan through all keys until find a match.
Insert. Scan through all keys until find a match; if no match add to front.

11

Sequential search in a linked list

Trace of linked-list ST implementation for standard indexing client

red nodes
are new

black nodes
are accessed

in search

first

S 0

S 0E 1

S 0E 1A 2

S 0E 1A 2R 3

S 0E 1A 2R 3C 4

S 0E 1A 2R 3C 4H 5

S 0E 6A 2R 3C 4H 5

S 0E 6A 2R 3C 4H 5

S 0E 6A 8R 3C 4H 5

X 7

X 7

M 9

P 10

L 11

L 11

circled entries are
changed values

gray nodes
are untouched

S 0E 6A 8R 3C 4H 5X 7

M 9 S 0E 6A 8R 3C 4H 5X 7

P 10 M 9 S 0E 6A 8R 3C 4H 5X 7

P 10 M 9 S 0E 12A 8R 3C 4H 5X 7

key value

S 0

E 1

A 2

R 3

C 4

H 5

E 6

X 7

A 8

M 9

P 10

L 11

E 12

Challenge. Efficient implementations of both search and insert.
12

Elementary ST implementations: summary

ST implementation
worst caseworst case average caseaverage case ordered

iteration?
operations

on keysST implementation
search insert search hit insert

ordered
iteration?

operations
on keys

sequential search
(unordered list)

N N N / 2 N no equals()

Costs for java FrequencyCounter 8 < tale.txt using LinkedListST

5000

2246

0

13

‣ API
‣ sequential search
‣ binary search
‣ ordered symbol table ops

14

Binary search

Data structure. Maintain an ordered array of key-value pairs.

Rank helper function. How many keys < k?

loop exits with lo > hi: return 7

entries in black
are a[lo..hi]

entry in red is a[m]

successful search for P

loop exits with keys[m] = P: return 6

lo hi m

unsuccessful search for Q

lo hi m

 keys[]
 0 1 2 3 4 5 6 7 8 9

0 9 4 A C E H L M P R S X
5 9 7 A C E H L M P R S X
5 6 5 A C E H L M P R S X
6 6 6 A C E H L M P R S X

0 9 4 A C E H L M P R S X
5 9 7 A C E H L M P R S X
5 6 5 A C E H L M P R S X
7 6 6 A C E H L M P R S X

Trace of binary search for rank in an ordered array

15

Binary search: Java implementation

 public Value get(Key key)
 {
 if (isEmpty()) return null;
 int i = rank(key);
 if (i < N && keys[i].compareTo(key) == 0) return vals[i];
 else return null;
 }

 private int rank(Key key)
 {
 int lo = 0, hi = N-1;
 while (lo <= hi)
 {
 int mid = lo + (hi - lo) / 2;
 int cmp = key.compareTo(keys[mid]);
 if (cmp < 0) hi = mid - 1;
 else if (cmp > 0) lo = mid + 1;
 else if (cmp == 0) return mid;
 }
 return lo;
 }

number of keys < key

16

Binary search: mathematical analysis

Proposition. Binary search uses ~ lg N compares to search any array of size N.

Def. T(N) ≡ number of compares to binary search in a sorted array of size N.
 ≤ T(N / 2) + 1

Binary search recurrence. T(N) ≤ T(N / 2) + 1 for N > 1, with T(1) = 1.

• Not quite right for odd N.

• Same recurrence holds for many algorithms.

Solution. T(N) ~ lg N.

• For simplicity, we'll prove when N is a power of 2.

• True for all N. [see COS 340]

left or right half

Binary search recurrence. T(N) ≤ T(N / 2) + 1 for N > 1, with T(1) = 1.

Proposition. If N is a power of 2, then T(N) ≤ lg N + 1.
Pf.

17

Binary search recurrence

 T(N) ≤ T(N / 2) + 1

 ≤ T(N / 4) + 1 + 1

 ≤ T(N / 8) + 1 + 1 + 1

 . . .

 ≤ T(N / N) + 1 + 1 + … + 1

 = lg N + 1

given

apply recurrence to first term

apply recurrence to first term

stop applying, T(1) = 1

Problem. To insert, need to shift all greater keys over.

18

Binary search: trace of standard indexing client

Trace of ordered-array ST implementation for standard indexing client

 keys[] vals[]
 0 1 2 3 4 5 6 7 8 9 N 0 1 2 3 4 5 6 7 8 9

 S 0 S 1 0
 E 1 E S 2 1 0
 A 2 A E S 3 2 1 0
 R 3 A E R S 4 2 1 3 0
 C 4 A C E R S 5 2 4 1 3 0
 H 5 A C E H R S 6 2 4 1 5 3 0
 E 6 A C E H R S 6 2 4 6 5 3 0
 X 7 A C E H R S X 7 2 4 6 5 3 0 7
 A 8 A C E H R S X 7 8 4 6 5 3 0 7
 M 9 A C E H M R S X 8 8 4 6 5 9 3 0 7
 P 10 A C E H M P R S X 9 8 4 6 5 9 10 3 0 7
 L 11 A C E H L M P R S X 10 8 4 6 5 11 9 10 3 0 7
 E 12 A C E H L M P R S X 10 8 4 12 5 11 9 10 3 0 7

 A C E H L M P R S X 8 4 12 5 11 9 10 3 0 7

entries in gray
did not move circled entries are

changed values

entries in black
moved to the rightentries in red

were inserted

key value

19

Elementary ST implementations: summary

Challenge. Efficient implementations of both search and insert.

ST implementation
worst caseworst case average caseaverage case ordered operationsST implementation

search insert search hit insert
ordered

iteration?
operations

on keys

sequential search
(unordered list)

N N N / 2 N no equals()

binary search
(ordered array)

 log N N log N N / 2 yes compareTo()

Costs for java FrequencyCounter 8 < tale.txt using OrderedArrayST

5000

484
0

20

‣ API
‣ sequential search
‣ binary search
‣ ordered operations

21

Ordered symbol table API

Your signal that one of our programs is implementing this API is the presence of the
Key extends Comparable<Key> generic type variable in the class declaration, which
specifies that the code depends on keys being Comparable and implements the richer
set of operations available for symbol tables based on such keys. Together, these opera-
tions define for client programs an ordered symbol table.

Minimum and maximum. Perhaps the most natural queries for a set of ordered keys
are to ask for the smallest and largest keys. We have already encountered the need for
these operations (in our discussion of priority queues in Section 3.4).

Floor and ceiling. Given a key, it is often use-
ful to be able to perform the floor operation
(find the largest key that is less than or equal to
the given key) and the ceiling operation (find
the smallest key that is greater than or equal to
the given key). The nomenclature comes from
functions defined on real numbers (the floor
of a real number x is the largest integer that is
smaller than or equal to x and the ceiling of
a real number x is the smallest integer that is
greater than or equal to x).

Rank and selection. The basic operations for
determining where a new key fits in the order
are the rank operation (find the number of
keys less than a given key) and the select opera-
tion (find the key with a given rank). To test
your understanding of their meaning, confirm
for yourself that both i = rank(select(i))
for all i between 0 and size()-1 and all keys
in the table satisfy key = select(rank(key)).
We also have already encountered the need for these operations, in our discussion of
sort applications in Section 3.5. For symbol tables, the challenge is to be able to per-
form these operations quickly, intermixed with insertions and deletions.

Range queries. How many keys fall within a given range? Which keys fall in a given
range? The two-argument size() and keys() methods that answer these questions
are useful in many applications, particularly in large databases. The capability to han-
dle such queries is one prime reason that ordered symbol tables are so widely used in
practice.

09:00:00 Chicago
09:00:03 Phoenix
09:00:13 Houston
09:00:59 Chicago
09:01:10 Houston
09:03:13 Chicago
09:10:11 Seattle
09:10:25 Seattle
09:14:25 Phoenix
09:19:32 Chicago
09:19:46 Chicago
09:21:05 Chicago
09:22:43 Seattle
09:22:54 Seattle
09:25:52 Chicago
09:35:21 Chicago
09:36:14 Seattle
09:37:44 Phoenix

keys values

get(09:00:13)

ceiling(09:30:00)

keys(09:15:00, 09:25:00)

size(09:15:00, 09:25:00) is 5
rank(09:10:25) is 7

floor(09:05:00)

min()

select(7)

max()

Examples of ordered symbol-table operations

3334.1 ! Fundamentals

22

Ordered symbol table API

Ordered symbol tables In typical applications, keys are Comparable objects, so
the option exists of using the code a.compareTo(b) to compare two keys a and b. Sev-
eral symbol-table implementations take advantage of order among the keys that is im-
plied by Comparable to provide efficient implementations of the put() and get() op-
erations. More important, in such implementations, we can think of the symbol table as
keeping the keys in order and consider a significantly expanded API that defines numer-
ous natural and useful operations involving relative key order. For example, suppose
that your keys are times. You might be interested in knowing the earliest or the latest
time, the set of keys that fall between two given times, and so forth. In most cases, such
operations are not difficult to implement with the same data structures and methods
underlying the put() and get() implementations. Specifically, for applications where
keys are Comparable, we implement in this chapter the following API:

public class ST<Key extends Comparable<Key>, Value>

ST() create an ordered symbol table

void put(Key key, Value val) put key-value pair into the table
(remove key from table if value is null)

Value get(Key key) value paired with key
(null if key is absent)

void delete(Key key) remove key (and its value) from table
boolean contains(Key key) is there a value paired with key?
boolean isEmpty() is the table empty?

int size() number of key-value pairs
Key min() smallest key
Key max() largest key
Key floor(Key key) largest key less than or equal to key
Key ceiling(Key key) smallest key greater than or equal to key
int rank(Key key) number of keys less than key
Key select(int k) key of rank k
void deleteMin() delete smallest key
void deleteMax() delete largest key
int size(Key lo, Key hi) number of keys in [lo..hi]

Iterable<Key> keys(Key lo, Key hi) keys in [lo..hi], in sorted order
Iterable<Key> keys() all keys in the table, in sorted order

API for a generic ordered symbol table

332 CHAPTER FOUR ! Searching

23

Binary search: ordered symbol table operations summary

sequential
search

binary
search

search

insert

min / max

floor / ceiling

rank

select

ordered iteration

N lg N

1 N

N 1

N lg N

N lg N

N 1

N log N N

worst-case running time of ordered symbol table operations

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 22, 2010 10:21:42 PM

3.2 Binary Search Trees

‣ BSTs
‣ ordered operations
‣ deletion

Definition. A BST is a binary tree in symmetric order.

A binary tree is either:

• Empty.

• Two disjoint binary trees (left and right).

Symmetric order.
Each node has a key, and every node’s key is:

• Larger than all keys in its left subtree.

• Smaller than all keys in its right subtree.

2

Binary search trees

right child
of root

a left link

a subtree

root

null links

Anatomy of a binary tree

value
associated

with R

parent of A and R

left link
of E

keys smaller than E keys larger than E

key

A
C

E

H
R

S
X

9

Anatomy of a binary search tree

Java definition. A BST is a reference to a root Node.

A Node is comprised of four fields:

• A Key and a Value.

• A reference to the left and right subtree.

3

BST representation in Java

smaller keys larger keys

private class Node
{
 private Key key;
 private Value val;
 private Node left, right;
 public Node(Key key, Value val)
 {
 this.key = key;
 this.val = val;
 }
}

Key and Value are generic types; Key is Comparable

Binary search tree

BST with smaller keys BST with larger keys

key

left right

val

BST

Node

public class BST<Key extends Comparable<Key>, Value>
{
 private Node root;

 private class Node
 { /* see previous slide */ }

 public void put(Key key, Value val)
 { /* see next slides */ }

 public Value get(Key key)
 { /* see next slides */ }

 public void delete(Key key)
 { /* see next slides */ }

 public Iterable<Key> iterator()
 { /* see next slides */ }

}

4

BST implementation (skeleton)

root of BST

Get. Return value corresponding to given key, or null if no such key.

5

BST search

R is less than S
so look to the left

black nodes could
match the search key

gray nodes cannot
match the search key

found R
(search hit)

so return value

R is greater than E
so look to the right

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

T is less than X
so look to the left

link is null
so T is not in tree

(search miss)

T is greater than S
so look to the right

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

Successful (left) and unsuccessful (right) search in a BST

successful search for R unsuccessful search for T

Get. Return value corresponding to given key, or null if no such key.

Running time. Proportional to depth of node.

6

BST search: Java implementation

 public Value get(Key key)
 {
 Node x = root;
 while (x != null)
 {
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x = x.left;
 else if (cmp > 0) x = x.right;
 else if (cmp == 0) return x.val;
 }
 return null;
 }

Put. Associate value with key.

Search for key, then two cases:

• Key in tree ⇒ reset value.

• Key not in tree ⇒ add new node.

7

BST insert

search for L ends
at this null link

reset links
on the way up

create new node

A
C

E

H
M

P

R

S
X

A
C

E

H

L

M
P

R

S
X

A
C

E

H

L
M

P

R

S
X

Insertion into a BST

inserting L

Put. Associate value with key.

Running time. Proportional to depth of node.
8

BST insert: Java implementation

 public void put(Key key, Value val)
 { root = put(root, key, val); }

 private Node put(Node x, Key key, Value val)
 {
 if (x == null) return new Node(key, val);
 int cmp = key.compareTo(x.key);
 if (cmp < 0)
 x.left = put(x.left, key, val);
 else if (cmp > 0)
 x.right = put(x.right, key, val);
 else if (cmp == 0)
 x.val = val;
 return x;
 }

concise, but tricky,
recursive code;
read carefully!

9

BST trace: standard indexing client

S

A
C

E

H
R

S
X

A
C

E

H
R

S

A
C

E

H
R

S

A
C

E
R

S

A
E

R

A
E

S

S

E
S

S

6

S 0

E 1

A 2

R 3

C 4

H 5

E 6

X 7

red nodes
are new

black nodes
are accessed

in search

changed
value

changed
value

changed
value

gray nodes
are untouched

A
C

E

H
M

P

R

S
X

A
C

E

H
M

R

S
X

A
C

E

H
R

S
X

A
C

E

H

L
M

P

R

S
X

A
C

E

H

L
M

P

R

S
X12

8

A 8

M 9

P 10

L 11

E 12

BST trace for standard indexing client

key value key value

• Many BSTs correspond to same set of keys.

• Cost of search/insert is proportional to depth of node.

Remark. Tree shape depends on order of insertion.

10

Tree shape

A

H

S
R

X

C
E

X
S

R
C

E

H

A

A
C

E

H
R

S
X

BST possibilities

best case

typical case

worst case

A

H

S
R

X

C
E

X
S

R
C

E

H

A

A
C

E

H
R

S
X

BST possibilities

best case

typical case

worst case

A

H

S
R

X

C
E

X
S

R
C

E

H

A

A
C

E

H
R

S
X

BST possibilities

best case

typical case

worst case

Observation. If keys inserted in random order, tree stays relatively flat.

11

BST insertion: random order

12

BST insertion: random order visualization

Ex. Insert keys in random order.

13

Correspondence between BSTs and quicksort partitioning

Remark. Correspondence is 1-1 if no duplicate keys.

A

C

E

I

K

L

M

O

P

Q

R

S

T

U

UE

14

BSTs: mathematical analysis

Proposition. If keys are inserted in random order, the expected number of
compares for a search/insert is ~ 2 ln N.

Pf. 1-1 correspondence with quicksort partitioning.

Proposition. [Reed, 2003] If keys are inserted in random order,
expected height of tree is ~ 4.311 ln N.

But… Worst-case for search/insert/height is N.
(exponentially small chance when keys are inserted in random order)

15

ST implementations: summary

implementation
guaranteeguarantee average caseaverage case ordered

ops?
operations

on keys
implementation

search insert search hit insert

ordered
ops?

operations
on keys

sequential search
(unordered list) N N N/2 N no equals()

binary search
(ordered array) lg N N lg N N/2 yes compareTo()

BST N N 1.39 lg N 1.39 lg N ? compareTo()

Costs for java FrequencyCounter 8 < tale.txt using BST

20

13

0

16

‣ BSTs
‣ ordered operations
‣ deletion

Minimum. Smallest key in table.
Maximum. Largest key in table.

Q. How to find the min / max.

Minimum and maximum

17

Examples of BST order queries

A
C

E

H
M

R

S
X

min()
max()max

min

Floor. Largest key ≤ to a given key.
Ceiling. Smallest key ≥ to a given key.

Q. How to find the floor /ceiling.

Floor and ceiling

18

Examples of BST order queries

A
C

E

H
M

R

S
X

min()
max()

floor(D)

ceiling(Q)

floor(G)

Case 1. [k equals the key at root]
The floor of k is k.

Case 2. [k is less than the key at root]
The floor of k is in the left subtree.

Case 3. [k is greater than the key at root]
The floor of k is in the right subtree
(if there is any key ≤ k in right subtree);
otherwise it is the key in the root.

Computing the floor

19

floor(G)in left
subtree is null

result

!nding floor(G)

G is greater than E so
floor(G) could be

on the right

G is less than S so
floor(G) must be

on the left

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

Computing the "oor function

Computing the floor

20

floor(G)in left
subtree is null

result

!nding floor(G)

G is greater than E so
floor(G) could be

on the right

G is less than S so
floor(G) must be

on the left

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

Computing the "oor function

public Key floor(Key key)
{
 Node x = floor(root, key);
 if (x == null) return null;
 return x.key;
}
private Node floor(Node x, Key key)
{
 if (x == null) return null;
 int cmp = key.compareTo(x.key);

 if (cmp == 0) return x;

 if (cmp < 0) return floor(x.left, key);

 Node t = floor(x.right, key);
 if (t != null) return t;
 else return x;

}

In each node, we store the number of nodes in the subtree rooted at that node.
To implement size(), return the count at the root.

Remark. This facilitates efficient implementation of rank() and select().
21

Subtree counts

A

A C E H M R S X

C

E

H
M

R

S
X

A

A C E H M R S X

C
E

H
M

R

S
X

2

6

5

8

8

1

1

1

1

1 1

3

2

22

2

node count N

Two BSTs that represent
the same set of keys

A

A C E H M R S X

C

E

H
M

R

S
X

A

A C E H M R S X

C
E

H
M

R

S
X

2

6

5

8

8

1

1

1

1

1 1

3

2

22

2

node count N

Two BSTs that represent
the same set of keys

 public int size()
 { return size(root); }

 private int size(Node x)
 {
 if (x == null) return 0;
 return x.N;
 }

22

BST implementation: subtree counts

private class Node
{
 private Key key;
 private Value val;
 private Node left;
 private Node right;
 private int N;
}

 private Node put(Node x, Key key, Value val)
 {
 if (x == null) return new Node(key, val);
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x.left = put(x.left, key, val);
 else if (cmp > 0) x.right = put(x.right, key, val);
 else if (cmp == 0) x.val = val;
 x.N = 1 + size(x.left) + size(x.right);
 return x;
 }

nodes in subtree

23

Rank

Rank. How many keys < k?

Easy recursive algorithm (4 cases!)

public int rank(Key key)
{ return rank(key, root); }

private int rank(Key key, Node x)
{
 if (x == null) return 0;
 int cmp = key.compareTo(x.key);
 if (cmp < 0) return rank(key, x.left);
 else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
 else return size(x.left);
}

A

A C E H M R S X

C

E

H
M

R

S
X

A

A C E H M R S X

C
E

H
M

R

S
X

2

6

5

8

8

1

1

1

1

1 1

3

2

22

2

node count N

Two BSTs that represent
the same set of keys

• Traverse left subtree.

• Enqueue key.

• Traverse right subtree.

Property. Inorder traversal of a BST yields keys in ascending order.

key

key

val

BST with smaller keys

smaller keys, in order larger keys, in order

all keys, in order

BST with larger keys

left right

BST

Inorder traversal

24

public Iterable<Key> keys()
{
 Queue<Key> q = new Queue<Key>();
 inorder(root, queue);
 return q;
}

private void inorder(Node x, Queue<Key> q)
{
 if (x == null) return;
 inorder(x.left, q);
 q.enqueue(x.key);
 inorder(x.right, q);
}

• Traverse left subtree.

• Enqueue key.

• Traverse right subtree.

Inorder traversal

25

function call stack

inorder(S)
 inorder(E)
 inorder(A)
 enqueue A
 inorder(C)
 enqueue C
 enqueue E
 inorder(R)
 inorder(H)
 enqueue H
 inorder(M)
 enqueue M
 print R
 enqueue S
 inorder(X)
 enqueue X

 A

 C
 E

 H

 M
 R
 S

 X

S
S E
S E A

S E A C

S E R
S E R H

S E R H M

S X

queuerecursive calls

A

A C E H M R S X

C

E

H
M

R

S
X

26

BST: ordered symbol table operations summary

sequential
search

binary
search

BST

search

insert

min / max

floor / ceiling

rank

select

ordered iteration

N lg N h

1 N h

N 1 h

N lg N h

N lg N h

N 1 h

N log N N N

h = height of BST
(proportional to log N

if keys inserted in random order)

worst-case running time of ordered symbol table operations

27

‣ BSTs
‣ ordered operations
‣ deletion

28

ST implementations: summary

Next. Deletion in BSTs.

implementation

guaranteeguarantee average caseaverage caseaverage case
ordered

iteration?
operations

on keysimplementation

search insert delete search
hit

insert delete

ordered
iteration?

operations
on keys

sequential search
(linked list)

N N N N/2 N N/2 no equals()

binary search
(ordered array)

lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.39 lg N 1.39 lg N ??? yes compareTo()

29

BST deletion: lazy approach

To remove a node with a given key:

• Set its value to null.

• Leave key in tree to guide searches (but don't consider it equal to search key).

Cost. O(log N') per insert, search, and delete (if keys in random order),
where N' is the number of key-value pairs ever inserted in the BST.

Unsatisfactory solution. Tombstone overload.

delete I

S

E

C

A

N

RH

I

S

E

C

A

N

RH

☠ tombstone

To delete the minimum key:

• Go left until finding a node with a null left link.

• Replace that node by its right link.

• Update subtree counts.

30

Deleting the minimum

 public void deleteMin()
 { root = deleteMin(root); }

 private Node deleteMin(Node x)
 {
 if (x.left == null) return x.right;
 x.left = deleteMin(x.left);
 x.N = 1 + size(x.left) + size(x.right);
 return x;
 }

go left until
reaching null

left link

return that
node’s right link

available for
garbage collection

5

7

update links and counts
after recursive calls

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

C
E

H
M

R

S
X

Deleting the minimum in a BST

node to delete

replace with
null link

available for
garbage

collection

update counts after
recursive calls

5

1

7

A
C

E

H
M

C

R

S
X

A
E

H
M

R

S
X

A
E

H
M

R

S
X

deleting C

To delete a node with key k: search for node t containing key k.

Case 0. [0 children] Delete t by setting parent link to null.

31

Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 1. [1 child] Delete t by replacing parent link.

32

Hibbard deletion

node to delete
replace with

child link available for
garbage

collection

A
C C C

E

H
M

R

R

S
X

A
E

H
M

S
X

A
E

H
M

S
X

deleting R
update counts after

recursive calls

5

7

To delete a node with key k: search for node t containing key k.

Case 2. [2 children]

• Find successor x of t.

• Delete the minimum in t's right subtree.

• Put x in t's spot.

33

Hibbard deletion

x has no left child

but don't garbage collect x

still a BST

search for key E

node to delete

deleteMin(t.right)

t

5

7

x

successor
 min(t.right)

t.left

x

update links and
node counts after

recursive calls

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

H

A
C

H

M
R

M
R

S
X

E
S

X

deleting E

Deletion in a BST

go right, then
go left until

reaching null
left link

search for key E

node to delete

deleteMin(t.right)

t

5

7

x

successor
 min(t.right)

t.left

x

update links and
node counts after

recursive calls

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

H

A
C

H

M
R

M
R

S
X

E
S

X

deleting E

Deletion in a BST

go right, then
go left until

reaching null
left link

34

Hibbard deletion: Java implementation

 public void delete(Key key)
 { root = delete(root, key); }

 private Node delete(Node x, Key key) {
 if (x == null) return null;
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x.left = delete(x.left, key);
 else if (cmp > 0) x.right = delete(x.right, key);
 else {
 if (x.right == null) return x.left;

 Node t = x;
 x = min(t.right);
 x.right = deleteMin(t.right);
 x.left = t.left;
 }
 x.N = size(x.left) + size(x.right) + 1;
 return x;
 }

no right child

replace with
successor

search for key

update subtree
counts

35

Hibbard deletion: analysis

Unsatisfactory solution. Not symmetric.

Surprising consequence. Trees not random (!) ⇒ sqrt(N) per op.
Longstanding open problem. Simple and efficient delete for BSTs.

Next lecture. Guarantee logarithmic performance for all operations.
36

ST implementations: summary

implementation

guaranteeguarantee average caseaverage caseaverage case
ordered

iteration?
operations

on keysimplementation

search insert delete
search

hit insert delete

ordered
iteration?

operations
on keys

sequential search
(linked list)

N N N N/2 N N/2 no equals()

binary search
(ordered array)

lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.39 lg N 1.39 lg N √N yes compareTo()

other operations also become √N
if deletions allowed

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 22, 2010 10:30:33 PM

3.3 Balanced Trees

‣ 2-3 trees
‣ red-black trees
‣ B-trees

2

Symbol table review

Challenge. Guarantee performance.
This lecture. 2-3 trees, left-leaning red-black trees, B-trees.

introduced to the world in
COS 226, Fall 2007

implementation

guaranteeguarantee average caseaverage case
ordered operationsimplementation

search insert delete search hit insert delete

ordered
iteration?

operations
on keys

sequential search
(linked list)

N N N N/2 N N/2 no equals()

binary search
(ordered array)

lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.39 lg N 1.39 lg N ? yes compareTo()

Goal log N log N log N log N log N log N yes compareTo()

3

‣ 2-3 trees
‣ red-black trees
‣ B-trees

Allow 1 or 2 keys per node.

• 2-node: one key, two children.

• 3-node: two keys, three children.

Symmetric order. Inorder traversal yields keys in ascending order.
Perfect balance. Every path from root to null link has same length.

2-3 tree

4

between E and J

larger than Jsmaller than E E J

H L

2-node3-node

null link

M

R

P S XA C

Anatomy of a 2-3 search tree

• Compare search key against keys in node.

• Find interval containing search key.

• Follow associated link (recursively).

5

Search in a 2-3 tree

found H so return value (search hit)

H is less than M so
look to the left

H is between E and L so
look in the middle

B is between A and C so look in the middle

B is less than M so
look to the left

B is less than E
so look to the left

link is null so B is not in the tree (search miss)

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

successful search for H unsuccessful search for B

Successful (left) and unsuccessful (right) search in a 2-3 tree

6

Insertion in a 2-3 tree

Case 1. Insert into a 2-node at bottom.

• Search for key, as usual.

• Replace 2-node with 3-node.

search for K ends here

replace 2-node with
new 3-node containing K

E J

H L

M

R

P S XA C

E J

H

M

R

P S XK LA C

inserting K

Insert into a 2-node

7

Insertion in a 2-3 tree

Case 2. Insert into a 3-node at bottom.

• Add new key to 3-node to create temporary 4-node.

• Move middle key in 4-node into parent.

why middle key?

split 4-node into two 2-nodes
pass middle key to parent

replace 3-node with
temporary 4-node

containing Z

replace 2-node
with new 3-node

containing
middle key

S X Z

S Z

E J

H L

L

M

R

PA C

search for Z ends
at this 3-nodeE J

H L

M

R

P S XA C

E J

H

M

P

R X

A C

inserting Z

Insert into a 3-node whose parent is a 2-node

8

Insertion in a 2-3 tree

Case 2. Insert into a 3-node at bottom.

• Add new key to 3-node to create temporary 4-node.

• Move middle key in 4-node into parent.

• Repeat up the tree, as necessary.

split 4-node into two 2-nodes
pass middle key to parent

split 4-node into two 2-nodes
pass middle key to parent

add middle key E to 2-node
to make new 3-node

add middle key C to 3-node
to make temporary 4-node

add new key D to 3-node
to make temporary 4-node

A C D

A D

search for D ends
at this 3-node E J

H L

M

R

P S XA C

E J

H L

M

R

P S X

C E J

H L

M

R

P S X

A D H L

C J R

P S X

E M

inserting D

Insert into a 3-node whose parent is a 3-node

split 4-node into two 2-nodes
pass middle key to parent

split 4-node into two 2-nodes
pass middle key to parent

add middle key E to 2-node
to make new 3-node

add middle key C to 3-node
to make temporary 4-node

add new key D to 3-node
to make temporary 4-node

A C D

A D

search for D ends
at this 3-node E J

H L

M

R

P S XA C

E J

H L

M

R

P S X

C E J

H L

M

R

P S X

A D H L

C J R

P S X

E M

inserting D

Insert into a 3-node whose parent is a 3-node

Case 2. Insert into a 3-node at bottom.

• Add new key to 3-node to create temporary 4-node.

• Move middle key in 4-node into parent.

• Repeat up the tree, as necessary.

• If you reach the root and it's a 4-node, split it into three 2-nodes.

Remark. Splitting the root increases height by 1.
9

Insertion in a 2-3 tree

split 4-node into two 2-nodes
pass middle key to parent

split 4-node into
three 2-nodes
increasing tree

height by 1

add middle key C to 3-node
to make temporary 4-node

A C D

A D

search for D ends
at this 3-node E J

H LA C

E J

H L

C E J

H L

A D H L

C J

E

add new key D to 3-node
to make temporary 4-node

inserting D

Splitting the root

split 4-node into two 2-nodes
pass middle key to parent

split 4-node into
three 2-nodes
increasing tree

height by 1

add middle key C to 3-node
to make temporary 4-node

A C D

A D

search for D ends
at this 3-node E J

H LA C

E J

H L

C E J

H L

A D H L

C J

E

add new key D to 3-node
to make temporary 4-node

inserting D

Splitting the root

Standard indexing client.

10

2-3 tree construction trace

S

S

S

PA

E

A

E S

R S

E

A S

C

A E

M

E R

H P

H

E

R S

S X

A C

E R

A C

H

E R

A C

A

L

C

A

A C

E H

S X

E R

A C H M

S XA C

H

C M

E L

A

H

C M

E L

M

E R

P S XA C H L

A E L M

P R

P S X

C H

A E

C H

M R

H

C

LA E

P

M R

H

C

LA E

 standard indexing client same keys in increasing order

E

A

R

C

H

X

M

P

L

C

E

H

L

M

P

R

S

X

insert S insert A

2-3 construction traces

S

S

S

PA

E

A

E S

R S

E

A S

C

A E

M

E R

H P

H

E

R S

S X

A C

E R

A C

H

E R

A C

A

L

C

A

A C

E H

S X

E R

A C H M

S XA C

H

C M

E L

A

H

C M

E L

M

E R

P S XA C H L

A E L M

P R

P S X

C H

A E

C H

M R

H

C

LA E

P

M R

H

C

LA E

 standard indexing client same keys in increasing order

E

A

R

C

H

X

M

P

L

C

E

H

L

M

P

R

S

X

insert S insert A

2-3 construction traces

The same keys inserted in ascending order.

11

2-3 tree construction trace

S

S

S

PA

E

A

E S

R S

E

A S

C

A E

M

E R

H P

H

E

R S

S X

A C

E R

A C

H

E R

A C

A

L

C

A

A C

E H

S X

E R

A C H M

S XA C

H

C M

E L

A

H

C M

E L

M

E R

P S XA C H L

A E L M

P R

P S X

C H

A E

C H

M R

H

C

LA E

P

M R

H

C

LA E

 standard indexing client same keys in increasing order

E

A

R

C

H

X

M

P

L

C

E

H

L

M

P

R

S

X

insert S insert A

2-3 construction traces

S

S

S

PA

E

A

E S

R S

E

A S

C

A E

M

E R

H P

H

E

R S

S X

A C

E R

A C

H

E R

A C

A

L

C

A

A C

E H

S X

E R

A C H M

S XA C

H

C M

E L

A

H

C M

E L

M

E R

P S XA C H L

A E L M

P R

P S X

C H

A E

C H

M R

H

C

LA E

P

M R

H

C

LA E

 standard indexing client same keys in increasing order

E

A

R

C

H

X

M

P

L

C

E

H

L

M

P

R

S

X

insert S insert A

2-3 construction traces

12

Local transformations in a 2-3 tree

Splitting a 4-node is a local transformation: constant number of operations.

b c d

a e

between
a and b

less
than a

between
b and c

between
d and e

greater
than e

between
c and d

between
a and b

less
than a

between
b and c

between
d and e

greater
than e

between
c and d

b d

a c e

Splitting a 4-node is a local transformation that preserves balance

Invariant. Symmetric order.
Invariant. Perfect balance.

Pf. Each transformation maintains order and balance.

d

right

middle

left

right

left

b db c d

a ca

a b c

d

ca

b d

a b c
ca

root

parent is a 2-node

parent is a 3-node

Splitting a temporary 4-node in a 2-3 tree (summary)

c e

b d

c d e

a b

b c d

a e

a b d

a c e

a b c

d e

ca

b d e

13

Global properties in a 2-3 tree

14

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.

• Worst case:

• Best case:

Typical 2-3 tree built from random keys

15

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.

• Worst case: lg N. [all 2-nodes]

• Best case: log3 N ≈ .631 lg N. [all 3-nodes]

• Between 12 and 20 for a million nodes.

• Between 18 and 30 for a billion nodes.

Guaranteed logarithmic performance for search and insert.

Typical 2-3 tree built from random keys

ST implementations: summary

16

constants depend upon
implementation

implementation

guaranteeguarantee average caseaverage case
ordered operations

implementation

search insert delete search hit insert delete
iteration? on keys

sequential search
(linked list)

N N N N/2 N N/2 no equals()

binary search
(ordered array)

lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.39 lg N 1.39 lg N ? yes compareTo()

2-3 tree c lg N c lg N c lg N c lg N c lg N c lg N yes compareTo()

17

2-3 tree: implementation?

Direct implementation is complicated, because:

• Maintaining multiple node types is cumbersome.

• Need multiple compares to move down tree.

• Need to move back up the tree to split 4-nodes.

• Large number of cases for splitting.

Bottom line. Could do it, but there's a better way.

18

‣ 2-3-4 trees
‣ red-black trees
‣ B-trees

1. Represent 2–3 tree as a BST.
2. Use "internal" left-leaning links as "glue" for 3–nodes.

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

19

Left-leaning red-black trees (Guibas-Sedgewick 1979 and Sedgewick 2007)

larger key is root

Encoding a 3-node with two 2-nodes
 connected by a left-leaning red link

a b3-node

between
a and b

less
than a

greater
than b

a

b

between
a and b

less
than a

greater
than b

Encoding a 3-node with two 2-nodes
 connected by a left-leaning red link

a b3-node

between
a and b

less
than a

greater
than b

a

b

between
a and b

less
than a

greater
than b

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

black links connect
2-nodes and 3-nodesred links "glue"

nodes within a 3-node

2-3 tree red-black tree

A BST such that:

• No node has two red links connected to it.

• Every path from root to null link has the same number of black links.

• Red links lean left.

20

An equivalent definition

"perfect black balance"

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

Key property. 1–1 correspondence between 2–3 and LLRB.

21

Left-leaning red-black trees: 1-1 correspondence with 2-3 trees

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

Search implementation for red-black trees

Observation. Search is the same as for elementary BST (ignore color).

Remark. Many other ops (e.g., ceiling, selection, iteration) are also identical.
22

public Val get(Key key)
{
 Node x = root;
 while (x != null)
 {
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x = x.left;
 else if (cmp > 0) x = x.right;
 else if (cmp == 0) return x.val;
 }
 return null;
}

but runs faster because of better balance

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

Red-black tree representation

Each node is pointed to by precisely one link (from its parent) ⇒
can encode color of links in nodes.

23

 private static final boolean RED = true;
 private static final boolean BLACK = false;

 private class Node
 {
 Key key;
 Value val;
 Node left, right;
 boolean color; // color of parent link
 }

 private boolean isRed(Node x)
 {
 if (x == null) return false;
 return x.color == RED;
 }

null links are black

private static final boolean RED = true;
private static final boolean BLACK = false;

private class Node
{
 Key key; // key
 Value val; // associated data
 Node left, right; // subtrees
 int N; // # nodes in this subtree
 boolean color; // color of link from
 // parent to this node

 Node(Key key, Value val)
 {
 this.key = key;
 this.val = val;
 this.N = 1;
 this.color = RED;
 }
}

private boolean isRed(Node x)
{
 if (x == null) return false;
 return x.color == RED;
}

J
G

E

A D
C

Node representation for red−black trees

h
h.left.color

is RED
h.right.color

is BLACK

Elementary red-black tree operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

Invariants. Maintains symmetric order and perfect black balance.
24

 private Node rotateLeft(Node h)
 {
 assert (h != null) && isRed(h.right);
 Node x = h.right;
 h.right = x.left;
 x.left = h;
 x.color = h.color;
 h.color = RED;
 return x;
 }

Left rotate (right link of h)

Node rotateLeft(Node h)
{
 x = h.right;
 h.right = x.left;
 x.left = h;
 x.color = h.color;
 h.color = RED;
 x.N = h.N;
 h.N = 1 + size(h.left)
 + size(h.right);
 return x;
}

h

x

x

h

E

S

between
E and S

less
than E

greater
than S

E
S

between
E and S

could be right or left,
red or black

less
than E

greater
than S

Left rotate (right link of h)

Node rotateLeft(Node h)
{
 x = h.right;
 h.right = x.left;
 x.left = h;
 x.color = h.color;
 h.color = RED;
 x.N = h.N;
 h.N = 1 + size(h.left)
 + size(h.right);
 return x;
}

h

x

x

h

E

S

between
E and S

less
than E

greater
than S

E
S

between
E and S

could be right or left,
red or black

less
than E

greater
than S

Elementary red-black tree operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

Invariants. Maintains symmetric order and perfect black balance.
25

Node rotateRight(Node h)
{
 x = h.left;
 h.left = x.right;
 x.right = h;
 x.color = h.color;
 h.color = RED;
 x.N = h.N;
 h.N = 1 + size(h.left)
 + size(h.right);
 return x;
}

x

h

h

x

E

S

between
S and E

less
than E

greater
than S

E
S

between
S and E

less
than E

greater
than S

Right rotate (left link of h)Node rotateRight(Node h)
{
 x = h.left;
 h.left = x.right;
 x.right = h;
 x.color = h.color;
 h.color = RED;
 x.N = h.N;
 h.N = 1 + size(h.left)
 + size(h.right);
 return x;
}

x

h

h

x

E

S

between
S and E

less
than E

greater
than S

E
S

between
S and E

less
than E

greater
than S

Right rotate (left link of h)

 private Node rotateRight(Node h)
 {
 assert (h != null) && isRed(h.left);
 Node x = h.left;
 h.left = x.right;
 x.right = h;
 x.color = h.color;
 h.color = RED;
 return x;
 }

Elementary red-black tree operations

Color flip. Recolor to split a (temporary) 4-node.

Invariants. Maintains symmetric order and perfect black balance.
26

 private void flipColors(Node h)
 {
 assert !isRed(h) && isRed(h.left) && isRed(h.right);

 h.color = RED;
 h.left.color = BLACK;
 h.right.color = BLACK;
 }

void flipColors(Node h)
{
 h.color = RED;
 h.left.color = BLACK;
 h.right.color = BLACK;
}

h

A

E

between
A and E

less
than A

S

between
E and S

could be left
or right link

red link attaches
middle node

to parent

black links split
to 2-nodes

greater
than S

A

E

between
A and E

less
than A

S

between
E and S

greater
than S

Flipping colors to split a 4-node
void flipColors(Node h)
{
 h.color = RED;
 h.left.color = BLACK;
 h.right.color = BLACK;
}

h

A

E

between
A and E

less
than A

S

between
E and S

could be left
or right link

red link attaches
middle node

to parent

black links split
to 2-nodes

greater
than S

A

E

between
A and E

less
than A

S

between
E and S

greater
than S

Flipping colors to split a 4-node

Basic strategy. Maintain 1-1 correspondence with 2-3 trees by
applying elementary red-black tree operations

Insertion in a LLRB tree: overview

27

E

A

LLRB tree

 insert C

E

R
S

R
S

A
C

E

R
S

C
A

add new
node here

rotate left

E

A R S

E

R SA C

2-3 tree

E

A

E

R
S

R
S

A
C

E

R
S

C
A

add new
node here

right link red
so rotate left

insert C

Insert into a 2-node
at the bottom

Warmup 1. Insert into a tree with exactly 1 node.

Insertion in a LLRB tree

28

search ends
at this null link

red link to
 new node

containing a
converts 2-node

to 3-node

search ends
at this null link

attached new node
with red link

rotated left
to make a

legal 3-node

a

b

a

a

b

b

a

b

root

root

root

root

left

right

Insert into a single
2-node (two cases)

search ends
at this null link

red link to
 new node

containing a
converts 2-node

to 3-node

search ends
at this null link

attached new node
with red link

rotated left
to make a

legal 3-node

a

b

a

a

b

b

a

b

root

root

root

root

left

right

Insert into a single
2-node (two cases)

Case 1. Insert into a 2-node at the bottom.

• Do standard BST insert; color new link red.

• If new red link is a right link, rotate left.

Insertion in a LLRB tree

29

E

A

LLRB tree

 insert C

E

R
S

R
S

A
C

E

R
S

C
A

add new
node here

rotate left

E

A R S

E

R SA C

2-3 tree

E

A

E

R
S

R
S

A
C

E

R
S

C
A

add new
node here

right link red
so rotate left

insert C

Insert into a 2-node
at the bottom

Insertion in a LLRB tree

30

search ends
at this null link

search ends
at this null link

attached new
node with
red link

a

c
b

attached new
node with
red link

rotated left

rotated
right

rotated
right

colors flipped
to black

colors flipped
to black

search ends
at this

null link

attached new
node with
red link

colors flipped
to black

a

c
b

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

c

a

c

b

smaller between

a

b

a

b

c

a

b

c

larger

Insert into a single 3-node (three cases)

search ends
at this null link

search ends
at this null link

attached new
node with
red link

a

c
b

attached new
node with
red link

rotated left

rotated
right

rotated
right

colors flipped
to black

colors flipped
to black

search ends
at this

null link

attached new
node with
red link

colors flipped
to black

a

c
b

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

c

a

c

b

smaller between

a

b

a

b

c

a

b

c

larger

Insert into a single 3-node (three cases)

Warmup 2. Insert into a tree with exactly 2 nodes.

search ends
at this null link

search ends
at this null link

attached new
node with
red link

a

c
b

attached new
node with
red link

rotated left

rotated
right

rotated
right

colors flipped
to black

colors flipped
to black

search ends
at this

null link

attached new
node with
red link

colors flipped
to black

a

c
b

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

c

a

c

b

smaller between

a

b

a

b

c

a

b

c

larger

Insert into a single 3-node (three cases)

Case 2. Insert into a 3-node at the bottom.

• Do standard BST insert; color new link red.
• Rotate to balance the 4-node (if needed).

• Flip colors to pass red link up one level.
• Rotate to make lean left (if needed).

Insertion in a LLRB tree

31

H

E

R
S

A
C

S

S

R

E
H

add new
node here

E

R
S

A
C

right link red
so rotate left

two lefts in a row
so rotate right

E

H
R

A
C

both children red
so flip colors

S

E

H
R

A
C

A
C

inserting H

Insert into a 3-node
at the bottom

H

E

R
S

A
C

S

S

R

E
H

add new
node here

E

R
S

A
C

right link red
so rotate left

two lefts in a row
so rotate right

E

H
R

A
C

both children red
so flip colors

S

E

H
R

A
C

A
C

inserting H

Insert into a 3-node
at the bottom

H

E

R
S

A
C

S

S

R

E
H

add new
node here

E

R
S

A
C

right link red
so rotate left

two lefts in a row
so rotate right

E

H
R

A
C

both children red
so flip colors

S

E

H
R

A
C

A
C

inserting H

Insert into a 3-node
at the bottom

H

E

R
S

A
C

S

S

R

E
H

add new
node here

E

R
S

A
C

right link red
so rotate left

two lefts in a row
so rotate right

E

H
R

A
C

both children red
so flip colors

S

E

H
R

A
C

A
C

inserting H

Insert into a 3-node
at the bottom

H

E

R
S

A
C

S

S

R

E
H

add new
node here

E

R
S

A
C

right link red
so rotate left

two lefts in a row
so rotate right

E

H
R

A
C

both children red
so flip colors

S

E

H
R

A
C

A
C

inserting H

Insert into a 3-node
at the bottom

Case 2. Insert into a 3-node at the bottom.

• Do standard BST insert; color new link red.

• Rotate to balance the 4-node (if needed).

• Flip colors to pass red link up one level.

• Rotate to make lean left (if needed).

• Repeat Case 1 or Case 2 up the tree (if needed).

Insertion in a LLRB tree: passing red links up the tree

32

P

S

R

E

add new
node here

right link red
so rotate left

both children
red so

flip colors

A
C

H
M

inserting P

S

R

E

A
C

H
M

P

S

R

E

A
C

H
M

P
S

R

E

A
C H

M

Passing a red link up the tree

two lefts in a row
so rotate right

P S

RE

A
C H

M

both children red
so flip colors

P S

RE

A
C H

M

P

S

R

E

add new
node here

right link red
so rotate left

both children
red so

flip colors

A
C

H
M

inserting P

S

R

E

A
C

H
M

P

S

R

E

A
C

H
M

P
S

R

E

A
C H

M

Passing a red link up the tree

two lefts in a row
so rotate right

P S

RE

A
C H

M

both children red
so flip colors

P S

RE

A
C H

M

P

S

R

E

add new
node here

right link red
so rotate left

both children
red so

flip colors

A
C

H
M

inserting P

S

R

E

A
C

H
M

P

S

R

E

A
C

H
M

P
S

R

E

A
C H

M

Passing a red link up the tree

two lefts in a row
so rotate right

P S

RE

A
C H

M

both children red
so flip colors

P S

RE

A
C H

M

P

S

R

E

add new
node here

right link red
so rotate left

both children
red so

flip colors

A
C

H
M

inserting P

S

R

E

A
C

H
M

P

S

R

E

A
C

H
M

P
S

R

E

A
C H

M

Passing a red link up the tree

two lefts in a row
so rotate right

P S

RE

A
C H

M

both children red
so flip colors

P S

RE

A
C H

M

P

S

R

E

add new
node here

right link red
so rotate left

both children
red so

flip colors

A
C

H
M

inserting P

S

R

E

A
C

H
M

P

S

R

E

A
C

H
M

P
S

R

E

A
C H

M

Passing a red link up the tree

two lefts in a row
so rotate right

P S

RE

A
C H

M

both children red
so flip colors

P S

RE

A
C H

M

P

S

R

E

add new
node here

right link red
so rotate left

both children
red so

flip colors

A
C

H
M

inserting P

S

R

E

A
C

H
M

P

S

R

E

A
C

H
M

P
S

R

E

A
C H

M

Passing a red link up the tree

two lefts in a row
so rotate right

P S

RE

A
C H

M

both children red
so flip colors

P S

RE

A
C H

M

Standard indexing client.

33

LLRB tree construction trace

S

E

A S

E

A

PA

H

C M

E L

A

H

C M

E L

E

A

R

C

H

X

M

P

L

C

E

H

L

M

P

R

S

X

E

R
S

L
M

P
R

S
X

A

H

C

E

R
S

C

A
E

H

A
C

E
S

A

C

A E

A
C

S
X

M

R

E

A H
C

S
X

R

E

A
C H

P
R

S
X

M

E

A
C H

P
R

SH
X

M

E

A
C L

S

R

E

A
C H

L

H

C
A E

S

R

M
L P

A

H

C

E

R

M
L P

H

C
A E

Red-black tree construction traces

 standard indexing client same keys in increasing order

insert S insert A
S

S

E

A

E S

R S

E

A S

E

R SA C

H

E R

A C

red black tree 2-3 tree

Standard indexing client (continued).

34

LLRB tree construction trace

S

E

A S

E

A

PA

H

C M

E L

A

H

C M

E L

E

A

R

C

H

X

M

P

L

C

E

H

L

M

P

R

S

X

E

R
S

L
M

P
R

S
X

A

H

C

E

R
S

C

A
E

H

A
C

E
S

A

C

A E

A
C

S
X

M

R

E

A H
C

S
X

R

E

A
C H

P
R

S
X

M

E

A
C H

P
R

SH
X

M

E

A
C L

S

R

E

A
C H

L

H

C
A E

S

R

M
L P

A

H

C

E

R

M
L P

H

C
A E

Red-black tree construction traces

 standard indexing client same keys in increasing order

insert S insert A

M

E R

H P

H S X

E R

A C

S X

E R

A C H M

S XA C

M

E R

P S XA C H L

red black tree 2-3 tree

Insertion in a LLRB tree: Java implementation

Same code for both cases.

• Right child red, left child black: rotate left.

• Left child, left-left grandchild red: rotate right.

• Both children red: flip colors.

35

 private Node put(Node h, Key key, Value val)
 {
 if (h == null) return new Node(key, val, RED);
 int cmp = key.compareTo(h.key);
 if (cmp < 0) h.left = put(h.left, key, val);
 else if (cmp > 0) h.right = put(h.right, key, val);
 else h.val = val;

 if (isRed(h.right) && !isRed(h.left)) h = rotateLeft(h);
 if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);
 if (isRed(h.left) && isRed(h.right)) h = flipColors(h);

 return h;
 }

insert at bottom

split 4-node
balance 4-node
lean left

only a few extra lines of code
to provide near-perfect balance

flip
colors

right
rotate

left
rotate

Passing a red link up a red-black tree

h

h

h

Insertion in a LLRB tree: visualization

36

255 insertions in ascending order

37

Insertion in a LLRB tree: visualization

255 insertions in descending order

Insertion in a LLRB tree: visualization

38

50 random insertions

39

Insertion in a LLRB tree: visualization

255 random insertions

40

Balance in LLRB trees

Proposition. Height of tree is ≤ 2 lg N in the worst case.
Pf.

• Every path from root to null link has same number of black links.

• Never two red links in-a-row.

Property. Height of tree is ~ 1.00 lg N in typical applications.

ST implementations: summary

41

implementation
guaranteeguaranteeguarantee average caseaverage caseaverage case ordered

iteration?
operations

on keys
implementation

search insert delete search hit insert delete iteration? on keys

sequential search
(linked list) N N N N/2 N N/2 no equals()

binary search
(ordered array) lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.39 lg N 1.39 lg N ? yes compareTo()

2-3 tree c lg N c lg N c lg N c lg N c lg N c lg N yes compareTo()

red-black tree 2 lg N 2 lg N 2 lg N 1.00 lg N * 1.00 lg N * 1.00 lg N * yes compareTo()

* exact value of coefficient unknown but extremely close to 1

Costs for java FrequencyCounter 8 < tale.txt using RedBlackBST

20

12

0

Why left-leaning trees?

42

private Node put(Node x, Key key, Value val, boolean sw)
{
 if (x == null)
 return new Node(key, value, RED);
 int cmp = key.compareTo(x.key);

 if (isRed(x.left) && isRed(x.right))
 {
 x.color = RED;
 x.left.color = BLACK;
 x.right.color = BLACK;
 }
 if (cmp < 0)
 {
 x.left = put(x.left, key, val, false);
 if (isRed(x) && isRed(x.left) && sw)
 x = rotateRight(x);
 if (isRed(x.left) && isRed(x.left.left))
 {
 x = rotateRight(x);
 x.color = BLACK; x.right.color = RED;
 }
 }
 else if (cmp > 0)
 {
 x.right = put(x.right, key, val, true);
 if (isRed(h) && isRed(x.right) && !sw)
 x = rotateLeft(x);
 if (isRed(h.right) && isRed(h.right.right))
 {
 x = rotateLeft(x);
 x.color = BLACK; x.left.color = RED;
 }
 }
 else x.val = val;
 return x;
}

 public Node put(Node h, Key key, Value val)
 {
 if (h == null)
 return new Node(key, val, RED);
 int cmp = kery.compareTo(h.key);
 if (cmp < 0)
 h.left = put(h.left, key, val);
 else if (cmp > 0)
 h.right = put(h.right, key, val);
 else h.val = val;

 if (isRed(h.right) && !isRed(h.left))
 h = rotateLeft(h);
 if (isRed(h.left) && isRed(h.left.left))
 h = rotateRight(h);
 if (isRed(h.left) && isRed(h.right))
 h = flipColors(h);

 return h;
 }

old code (that students had to learn in the past) new code (that you have to learn)

extremely tricky

straightforward
 (if you’ve paid attention)

Why left-leaning trees?

43

Simplified code.

• Left-leaning restriction reduces number of cases.

• Short inner loop.

Same ideas simplify implementation of other operations.

• Delete min/max.

• Arbitrary delete.

Improves widely-used algorithms.

• AVL trees, 2-3 trees, 2-3-4 trees.

• Red-black trees.

Bottom line. Left-leaning red-black trees are the simplest balanced BST
to implement and the fastest in practice.

new

1972

1978

2008

44

‣ 2-3-4 trees
‣ red-black trees
‣ B-trees

45

File system model

Page. Contiguous block of data (e.g., a file or 4096-byte chunk).
Probe. First access to a page (e.g., from disk to memory).

Model. Time required for a probe is much larger than time to access
data within a page.

Goal. Access data using minimum number of probes.

slow fast

B-tree. Generalize 2-3 trees by allowing up to M-1 key-link pairs per node.

• At least 2 key-link pairs at root.

• At least M/2 key-link pairs in other nodes.

• External nodes contain client keys.

• Internal nodes contain copies of keys to guide search.

46

B-trees (Bayer-McCreight, 1972)

choose M as large as possible so
that M links fit in a page, e.g., M = 1000

Anatomy of a B-tree set (M = 6)

2-node

external
3-node external 5-node (full)

 internal 3-node

 external 4-node

all nodes except the root are 3-, 4- or 5-nodes

* B C

 sentinel key

D E F H I J K M N O P Q R T

* D H

* K

K Q U

U W X Y

each red key is a copy
of min key in subtree

client keys (black)
are in external nodes

• Start at root.

• Find interval for search key and take corresponding link.

• Search terminates in external node.

* B C

searching for E

D E F H I J K M N O P Q R T

* D H

* K

K Q U

U W X

search for E in
this external node

follow this link because
E is between * and K

follow this link because
E is between D and H

Searching in a B-tree set (M = 6)

47

Searching in a B-tree

• Search for new key.

• Insert at bottom.

• Split nodes with M key-link pairs on the way up the tree.

48

Insertion in a B-tree

* A B C E F H I J K M N O P Q R T

* C H

* K

K Q U

U W X

* A B C E F H I J K M N O P Q R T U W X

* C H K Q U

* A B C E F H I J K M N O P Q R T U W X

* H K Q U

* B C E F H I J K M N O P Q R T U W X

* H K Q U

new key (A) causes
overflow and split

root split causes
a new root to be created

new key (C) causes
overflow and split

Inserting a new key into a B-tree set

inserting A

Proposition. A search or an insertion in a B-tree of order M with N keys
requires between logM-1N and logM/2N probes.

Pf. All internal nodes (besides root) have between M/2 and M-1 links.

In practice. Number of probes is at most 4.

Optimization. Always keep root page in memory.

49

Balance in B-tree

M = 1000; N = 62 billion
log M/2 N ≤ 4

50

Building a large B tree

full page, about to split

Building a large B-tree

external nodes
(line segment of length proportional

to number of keys in that node)

51

Balanced trees in the wild

Red-black trees are widely used as system symbol tables.

• Java: java.util.TreeMap, java.util.TreeSet.

• C++ STL: map, multimap, multiset.

• Linux kernel: completely fair scheduler, linux/rbtree.h.

B-tree variants. B+ tree, B*tree, B# tree, …

B-trees (and variants) are widely used for file systems and databases.

• Windows: HPFS.

• Mac: HFS, HFS+.

• Linux: ReiserFS, XFS, Ext3FS, JFS.

• Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL.

52

Red-black trees in the wild

Common sense. Sixth sense.
Together they're the
FBI's newest team.

Red-black trees in the wild

53

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 22, 2010 10:54:35 PM

3.4 Hash Tables

‣ hash functions
‣ separate chaining
‣ linear probing
‣ applications

2

Optimize judiciously

Reference: Effective Java by Joshua Bloch

“ More computing sins are committed in the name of efficiency
(without necessarily achieving it) than for any other single reason—
including blind stupidity. ” — William A. Wulf

“ We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil. ” — Donald E. Knuth

“ We follow two rules in the matter of optimization:
 Rule 1: Don't do it.
 Rule 2 (for experts only). Don't do it yet - that is, not until
 you have a perfectly clear and unoptimized solution. ” — M. A. Jackson

ST implementations: summary

Q. Can we do better?
A. Yes, but with different access to the data.

3

implementation

guaranteeguarantee average caseaverage case
ordered operations

implementation

search insert delete search hit insert delete

ordered
iteration?

operations
on keys

sequential search
(linked list)

N N N N/2 N N/2 no equals()

binary search
(ordered array)

lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.38 lg N 1.38 lg N ? yes compareTo()

red-black tree 2 lg N 2 lg N 2 lg N 1.00 lg N 1.00 lg N 1.00 lg N yes compareTo()

4

Hashing: basic plan

Save items in a key-indexed table (index is a function of the key).

Hash function. Method for computing array index from key.

Issues.

• Computing the hash function.

• Equality test: Method for checking whether two keys are equal.

hash("it") = 3

0

1

2

3 "it"

4

5

5

Hashing: basic plan

Save items in a key-indexed table (index is a function of the key).

Hash function. Method for computing array index from key.

Issues.

• Computing the hash function.

• Equality test: Method for checking whether two keys are equal.

• Collision resolution: Algorithm and data structure
to handle two keys that hash to the same array index.

Classic space-time tradeoff.

• No space limitation: trivial hash function with key as index.

• No time limitation: trivial collision resolution with sequential search.

• Limitations on both time and space: hashing (the real world).

hash("times") = 3

??

0

1

2

3 "it"

4

5

hash("it") = 3

6

‣ hash functions
‣ separate chaining
‣ linear probing
‣ applications

7

Equality test

Needed because hash methods do not use compareTo().

All Java classes inherit a method equals().

Java requirements. For any references x, y and z:

• Reflexive: x.equals(x) is true.

• Symmetric: x.equals(y) iff y.equals(x).

• Transitive: if x.equals(y) and y.equals(z), then x.equals(z).

• Non-null: x.equals(null) is false.

Default implementation. (x == y)
Customized implementations. Integer, Double, String, File, URL, Date, …
User-defined implementations. Some care needed.

do x and y refer to
the same object?

equivalence
relation

Seems easy

public class Record
{
 private final String name;
 private final long val;
 ...

 public boolean equals(Record y)
 {

 Record that = y;
 return (this.val == that.val) &&
 (this.name.equals(that.name));
 }
}

Implementing equals for user-defined types

8

check that all significant
fields are the same

Seems easy, but requires some care.

public final class Record
{
 private final String name;
 private final long val;
 ...

 public boolean equals(Object y)
 {
 if (y == this) return true;

 if (y == null) return false;

 if (y.getClass() != this.getClass())
 return false;

 Record that = (Record) y;
 return (this.val == that.val) &&
 (this.name.equals(that.name));
 }
}

Implementing equals for user-defined types

9

check for null

optimize for true object equality

no safe way to use equals() with inheritance

must be Object.
Why? Experts still debate.

objects must be in the same class

check that all significant
fields are the same

10

Computing the hash function

Idealistic goal. Scramble the keys uniformly to produce a table index.

• Efficiently computable.

• Each table index equally likely for each key.

Ex 1. Phone numbers.

• Bad: first three digits.

• Better: last three digits.

Ex 2. Social Security numbers.

• Bad: first three digits.

• Better: last three digits.

Practical challenge. Need different approach for each key type.

573 = California, 574 = Alaska
(assigned in chronological order within geographic region)

thoroughly researched problem,
still problematic in practical applications

key

table
index

11

Java’s hash code conventions

All Java classes inherit a method hashCode(), which returns a 32-bit int.

Requirement. If x.equals(y), then (x.hashCode() == y.hashCode()).

Highly desirable. If !x.equals(y), then (x.hashCode() != y.hashCode()).

Default implementation. Memory address of x.
Customized implementations. Integer, Double, String, File, URL, Date, …
User-defined types. Users are on their own.

x.hashCode()

x

y.hashCode()

y

12

Implementing hash code: integers and doubles

public final class Integer
{
 private final int value;
 ...

 public int hashCode()
 { return value; }
}

convert to IEEE 64-bit representation;
xor most significant 32-bits
with least significant 32-bits

public final class Double
{
 private final double value;
 ...

 public int hashCode()
 {
 long bits = doubleToLongBits(value);
 return (int) (bits ^ (bits >>> 32));
 }
}

• Horner's method to hash string of length L: L multiplies/adds.

• Equivalent to h = 31L-1 · s0 + … + 312 · sL-3 + 311 · sL-2 + 310 · sL-1.

Ex.

public final class String
{
 private final char[] s;
 ...

 public int hashCode()
 {
 int hash = 0;
 for (int i = 0; i < length(); i++)
 hash = s[i] + (31 * hash);
 return hash;
 }
}

13

Implementing hash code: strings

3045982 = 99·313 + 97·312 + 108·311 + 108·310

 = 108 + 31· (108 + 31 · (97 + 31 · (99)))

ith character of s

String s = "call";
int code = s.hashCode();

char Unicode

… …

'a' 97

'b' 98

'c' 99

… ...

Ex. Strings (in Java 1.1).

• For long strings: only examine 8-9 evenly spaced characters.

• Benefit: saves time in performing arithmetic.

• Downside: great potential for bad collision patterns.

14

A poor hash code

public int hashCode()
{
 int hash = 0;
 int skip = Math.max(1, length() / 8);
 for (int i = 0; i < length(); i += skip)
 hash = s[i] + (37 * hash);
 return hash;
}

http://www.cs.princeton.edu/introcs/13loop/Hello.java
http://www.cs.princeton.edu/introcs/13loop/Hello.class
http://www.cs.princeton.edu/introcs/13loop/Hello.html
http://www.cs.princeton.edu/introcs/13loop/index.html
http://www.cs.princeton.edu/introcs/12type/index.html

15

Implementing hash code: user-defined types

public final class Record
{
 private String name;
 private int id;
 private double value;

 public Record(String name, int id, double value)
 { /* as before */ }

 ...

 public boolean equals(Object y)
 { /* as before */ }

 public int hashCode()
 {
 int hash = 17;
 hash = 31*hash + name.hashCode();
 hash = 31*hash + id;
 hash = 31*hash + Double.valueOf(value).hashCode();
 return hash;
 }
} typically a small prime

nonzero constant

16

Hash code design

"Standard" recipe for user-defined types.

• Combine each significant field using the 31x + y rule.

• If field is a primitive type, use built-in hash code.

• If field is an array, apply to each element.

• If field is an object, apply rule recursively.

In practice. Recipe works reasonably well; used in Java libraries.
In theory. Need a theorem for each type to ensure reliability.

Basic rule. Need to use the whole key to compute hash code;
consult an expert for state-of-the-art hash codes.

Hash code. An int between -231 and 231-1.
Hash function. An int between 0 and M-1 (for use as array index).

17

 Modular hashing

typically a prime or power of 2

 private int hash(Key key)
 { return key.hashCode() % M; }

bug

 private int hash(Key key)
 { return Math.abs(key.hashCode()) % M; }

1-in-a-billion bug

 private int hash(Key key)
 { return (key.hashCode() & 0x7fffffff) % M; }

correct

18

Uniform hashing assumption

Assumption J (uniform hashing hashing assumption).
Each key is equally likely to hash to an integer between 0 and M-1.

Bins and balls. Throw balls uniformly at random into M bins.

Birthday problem. Expect two balls in the same bin after ~ π M / 2 tosses.

Coupon collector. Expect every bin has ≥ 1 ball after ~ M ln M tosses.

Load balancing. After M tosses, expect most loaded bin has
Θ(log M / log log M) balls.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

19

Uniform hashing assumption

Assumption J (uniform hashing hashing assumption).
Each key is equally likely to hash to an integer between 0 and M-1.

Bins and balls. Throw balls uniformly at random into M bins.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Hash value frequencies for words in Tale of Two Cities (M = 97)

Java's String data uniformly distribute the keys of Tale of Two Cities

20

‣ hash functions
‣ separate chaining
‣ linear probing
‣ applications

21

Collisions

Collision. Two distinct keys hashing to same index.

• Birthday problem ⇒ can't avoid collisions unless you have
a ridiculous amount (quadratic) of memory.

• Coupon collector + load balancing ⇒ collisions will be evenly distributed.

Challenge. Deal with collisions efficiently.

hash("times") = 3

??

0

1

2

3 "it"

4

5

hash("it") = 3

Use an array of M < N linked lists. [H. P. Luhn, IBM 1953]

• Hash: map key to integer i between 0 and M-1.

• Insert: put at front of ith chain (if not already there).

• Search: only need to search ith chain.

22

Separate chaining ST

Hashing with separate chaining for standard indexing client

st

first

0

1

2

3

4

S 0X 7

E 12

first

first

first

first

A 8

P 10L 11

R 3C 4H 5M 9

independent
SequentialSearchST

objects

S 2 0

E 0 1

A 0 2

R 4 3

C 4 4

H 4 5

E 0 6

X 2 7

A 0 8

M 4 9

P 3 10

L 3 11

E 0 12

null

key hash value

public class SeparateChainingHashST<Key, Value>
{
 private int N; // number of key-value pairs
 private int M; // hash table size
 private SequentialSearchST<Key, Value> [] st; // array of STs

 public SeparateChainingHashST()
 { this(997); }

 public SeparateChainingHashST(int M)
 {
 this.M = M;
 st = (SequentialSearchST<Key, Value>[]) new SequentialSearchST[M];
 for (int i = 0; i < M; i++)
 st[i] = new SequentialSearchST<Key, Value>();
 }
 private int hash(Key key)
 { return (key.hashCode() & 0x7fffffff) % M; }

 public Value get(Key key)
 { return st[hash(key)].get(key); }

 public void put(Key key, Value val)
 { st[hash(key)].put(key, val); }
}

Separate chaining ST: Java implementation

23

array doubling code omitted

Proposition K. Under uniform hashing assumption, probability that the number
of keys in a list is within a constant factor of N/M is extremely close to 1.

Pf sketch. Distribution of list size obeys a binomial distribution.

Consequence. Number of probes for search/insert is proportional to N/M.

• M too large ⇒ too many empty chains.

• M too small ⇒ chains too long.

• Typical choice: M ~ N/5 ⇒ constant-time ops.
24

Analysis of separate chaining

M times faster than
sequential search

Binomial distribution (N = 104 , M = 103 , ! = 10)

.125

0

0 10 20 30

(10, .12511...)

equals() and hashCode()

25

‣ hash functions
‣ separate chaining
‣ linear probing
‣ applications

Open addressing. [Amdahl-Boehme-Rocherster-Samuel, IBM 1953]
When a new key collides, find next empty slot, and put it there.

26

Collision resolution: open addressing

null

null

linear probing (M = 30001, N = 15000)

jocularly

listen

suburban

browsing

st[0]

st[1]

st[2]

st[30000]

st[3]

Use an array of size M > N.

• Hash: map key to integer i between 0 and M-1.

• Insert: put at table index i if free; if not try i+1, i+2, etc.

• Search: search table index i; if occupied but no match, try i+1, i+2, etc.

27

Linear probing

- - - S H - - A C E R - -

0 1 2 3 4 5 6 7 8 9 10 11 12

insert I
hash(I) = 11

- - - S H - - A C E R I -

0 1 2 3 4 5 6 7 8 9 10 11 12

insert N
hash(N) = 8

- - - S H - - A C E R I N

0 1 2 3 4 5 6 7 8 9 10 11 12

28

Linear probing: trace of standard indexing client

0 1 2 3 4 5 6 7 8 9
 S
 0
 S E
 0 1
 A S E
 2 0 1
 A S E R
 2 0 1 3
 A C S E R
 2 5 0 1 3
 A C S H E R
 2 5 0 5 1 3
 A C S H E R
 2 5 0 5 6 3
 A C S H E R X
 2 5 0 5 6 3 7
 A C S H E R X
 8 5 0 5 6 3 7
 M A C S H E R X
 9 8 5 0 5 6 3 7
P M A C S H E R X
 9 8 5 0 5 6 3 7
P M A C S H L E R X
 9 8 5 0 5 6 3 7
P M A C S H L E R X
 9 8 5 0 5 3 7

10 11 12 13 14 15

11 12

1110

10

10

Trace of linear-probing ST implementation for standard indexing client

entries in gray
are untouched

probe sequence
wraps to 0

entries in red
are new

keys in black
are probes

S 6 0

E 10 1

A 4 2

R 14 3

C 5 4

H 4 5

E 10 6

X 15 7

A 4 8

M 1 9

P 14 10

L 6 11

E 10 12 keys[]
vals[]

key hash value

public class LinearProbingHashST<Key, Value>
{
 private int M = 30001;
 private Value[] vals = (Value[]) new Object[M];
 private Key[] keys = (Key[]) new Object[M];

 private int hash(Key key) { /* as before */ }

 public void put(Key key, Value val)
 {
 int i;
 for (i = hash(key); keys[i] != null; i = (i+1) % M)
 if (keys[i].equals(key))
 break;
 keys[i] = key;
 vals[i] = val;
 }

 public Value get(Key key)
 {
 for (int i = hash(key); keys[i] != null; i = (i+1) % M)
 if (key.equals(keys[i]))
 return vals[i];
 return null;
 }
}

Linear probing ST implementation

29

array doubling
code omitted

Cluster. A contiguous block of items.
Observation. New keys likely to hash into middle of big clusters.

30

Clustering

Model. Cars arrive at one-way street with M parking spaces.
Each desires a random space i: if space i is taken, try i+1, i+2, …

Q. What is mean displacement of a car?

Empty. With M/2 cars, mean displacement is ~ 3/2.
Full. With M cars, mean displacement is ~ π M / 8

31

Knuth's parking problem

displacement = 3

Proposition M. Under uniform hashing assumption, the average number of
probes in a hash table of size M that contains N = α M keys is:

Pf. [Knuth 1962] A landmark in analysis of algorithms.

Parameters.

• M too large ⇒ too many empty array entries.

• M too small ⇒ search time blows up.

• Typical choice: α = N/M ~ ½.

32

Analysis of linear probing

∼ 1
2

�
1 +

1
1− α

�
∼ 1

2

�
1 +

1
(1− α)2

�

search hit search miss / insert

probes for search hit is about 3/2
probes for search miss is about 5/2

ST implementations: summary

33

implementation

guaranteeguarantee average caseaverage case
ordered operations

implementation

search insert delete search hit insert delete
iteration? on keys

sequential search
(linked list) N N N N/2 N N/2 no equals()

binary search
(ordered array) lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.38 lg N 1.38 lg N ? yes compareTo()

red-black tree 2 lg N 2 lg N 2 lg N 1.00 lg N 1.00 lg N 1.00 lg N yes compareTo()

hashing lg N * lg N * lg N * 3-5 * 3-5 * 3-5 * no equals()

* under uniform hashing assumption

34

Algorithmic complexity attacks

Q. Is the uniform hashing assumption important in practice?
A. Obvious situations: aircraft control, nuclear reactor, pacemaker.
A. Surprising situations: denial-of-service attacks.

Real-world exploits. [Crosby-Wallach 2003]

• Bro server: send carefully chosen packets to DOS the server,
using less bandwidth than a dial-up modem.

• Perl 5.8.0: insert carefully chosen strings into associative array.

• Linux 2.4.20 kernel: save files with carefully chosen names.

malicious adversary learns your hash function
(e.g., by reading Java API) and causes a big pile-up

in single slot that grinds performance to a halt

Goal. Find family of strings with the same hash code.
Solution. The base-31 hash code is part of Java's string API.

35

Algorithmic complexity attack on Java

2N strings of length 2N that hash to same value!

key hashCode()

"AaAaAaAa" -540425984

"AaAaAaBB" -540425984

"AaAaBBAa" -540425984

"AaAaBBBB" -540425984

"AaBBAaAa" -540425984

"AaBBAaBB" -540425984

"AaBBBBAa" -540425984

"AaBBBBBB" -540425984

key hashCode()

"BBAaAaAa" -540425984

"BBAaAaBB" -540425984

"BBAaBBAa" -540425984

"BBAaBBBB" -540425984

"BBBBAaAa" -540425984

"BBBBAaBB" -540425984

"BBBBBBAa" -540425984

"BBBBBBBB" -540425984

key hashCode()

"Aa" 2112

"BB" 2112

36

Diversion: one-way hash functions

One-way hash function. Hard to find a key that will hash to a desired value,
or to find two keys that hash to same value.

Ex. MD4, MD5, SHA-0, SHA-1, SHA-2, WHIRLPOOL, RIPEMD-160.

Applications. Digital fingerprint, message digest, storing passwords.
Caveat. Too expensive for use in ST implementations.

known to be insecure

String password = args[0];
MessageDigest sha1 = MessageDigest.getInstance("SHA1");
byte[] bytes = sha1.digest(password);

/* prints bytes as hex string */

Separate chaining vs. linear probing

Separate chaining.

• Easier to implement delete.

• Performance degrades gracefully.

• Clustering less sensitive to poorly-designed hash function.

Linear probing.

• Less wasted space.

• Better cache performance.

37

Hashing: variations on the theme

Many improved versions have been studied.

Two-probe hashing. (separate chaining variant)

• Hash to two positions, put key in shorter of the two chains.

• Reduces average length of the longest chain to log log N.

Double hashing. (linear probing variant)

• Use linear probing, but skip a variable amount, not just 1 each time.

• Effectively eliminates clustering.

• Can allow table to become nearly full.

38

Hashing vs. balanced trees

Hashing.

• Simpler to code.

• No effective alternative for unordered keys.

• Faster for simple keys (a few arithmetic ops versus log N compares).

• Better system support in Java for strings (e.g., cached hash code).

Balanced trees.

• Stronger performance guarantee.

• Support for ordered ST operations.

• Easier to implement compareTo() correctly than equals() and hashCode().

Java system includes both.

• Red-black trees: java.util.TreeMap, java.util.TreeSet.

• Hashing: java.util.HashMap, java.util.IdentityHashMap.

39

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 22, 2010 10:56:33 PM

3.5 Symbol Tables Applications

‣ sets
‣ dictionary clients
‣ indexing clients
‣ sparse vectors

2

‣ sets
‣ dictionary clients
‣ indexing clients
‣ sparse vectors

3

Set API

Mathematical set. A collection of distinct keys.

Q. How to implement?

 public class SET<Key extends Comparable<Key>> public class SET<Key extends Comparable<Key>> public class SET<Key extends Comparable<Key>>

SET() create an empty set

void add(Key key) add the key to the set

boolean contains(Key key) is the key in the set?

void remove(Key key) remove the key from the set

int size() return the number of keys in the set

Iterator<Key> iterator() iterator through keys in the set

• Read in a list of words from one file.

• Print out all words from standard input that are { in, not in } the list.

4

Exception filter

% more list.txt
was it the of

% java WhiteList list.txt < tinyTale.txt
it was the of it was the of
it was the of it was the of
it was the of it was the of
it was the of it was the of
it was the of it was the of

% java BlackList list.txt < tinyTale.txt
best times worst times
age wisdom age foolishness
epoch belief epoch incredulity
season light season darkness
spring hope winter despair

list of exceptional words

• Read in a list of words from one file.

• Print out all words from standard input that are { in, not in } the list.

5

Exception filter applications

application purpose key in list

spell checker identify misspelled words word dictionary words

browser mark visited pages URL visited pages

parental controls block sites URL bad sites

chess detect draw board positions

spam filter eliminate spam IP address spam addresses

credit cards check for stolen cards number stolen cards

• Read in a list of words from one file.

• Print out all words from standard input that are { in, not in } the list.

6

Exception filter: Java implementation

public class WhiteList
{
 public static void main(String[] args)
 {
 SET<String> set = new SET<String>();

 In in = new In(args[0]);
 while (!in.isEmpty())
 set.add(in.readString());

 while (!StdIn.isEmpty())
 {
 String word = StdIn.readString();
 if (set.contains(word))
 StdOut.println(word);
 }
 }
}

create empty set of strings

read in whitelist

print words in list

• Read in a list of words from one file.

• Print out all words from standard input that are { in, not in } the list.

7

Exception filter: Java implementation

public class BlackList
{
 public static void main(String[] args)
 {
 SET<String> set = new SET<String>();

 In in = new In(args[0]);
 while (!in.isEmpty())
 set.add(in.readString());

 while (!StdIn.isEmpty())
 {
 String word = StdIn.readString();
 if (!set.contains(word))
 StdOut.println(word);
 }
 }
}

create empty set of strings

read in blacklist

print words not in list

8

‣ sets
‣ dictionary clients
‣ indexing clients
‣ sparse vectors

Dictionary lookup

Command-line arguments.

• A comma-separated value (CSV) file.

• Key field.

• Value field.

Ex 1. DNS lookup.

9

% more ip.csv
www.princeton.edu,128.112.128.15
www.cs.princeton.edu,128.112.136.35
www.math.princeton.edu,128.112.18.11
www.cs.harvard.edu,140.247.50.127
www.harvard.edu,128.103.60.24
www.yale.edu,130.132.51.8
www.econ.yale.edu,128.36.236.74
www.cs.yale.edu,128.36.229.30
espn.com,199.181.135.201
yahoo.com,66.94.234.13
msn.com,207.68.172.246
google.com,64.233.167.99
baidu.com,202.108.22.33
yahoo.co.jp,202.93.91.141
sina.com.cn,202.108.33.32
ebay.com,66.135.192.87
adobe.com,192.150.18.60
163.com,220.181.29.154
passport.net,65.54.179.226
tom.com,61.135.158.237
nate.com,203.226.253.11
cnn.com,64.236.16.20
daum.net,211.115.77.211
blogger.com,66.102.15.100
fastclick.com,205.180.86.4
wikipedia.org,66.230.200.100
rakuten.co.jp,202.72.51.22
...

% java LookupCSV ip.csv 0 1
adobe.com
192.150.18.60
www.princeton.edu
128.112.128.15
ebay.edu
Not found

% java LookupCSV ip.csv 1 0
128.112.128.15
www.princeton.edu
999.999.999.99
Not found

URL is key IP is value

IP is key URL is value

Dictionary lookup

Command-line arguments.

• A comma-separated value (CSV) file.

• Key field.

• Value field.

Ex 2. Amino acids.

10

% more amino.csv
TTT,Phe,F,Phenylalanine
TTC,Phe,F,Phenylalanine
TTA,Leu,L,Leucine
TTG,Leu,L,Leucine
TCT,Ser,S,Serine
TCC,Ser,S,Serine
TCA,Ser,S,Serine
TCG,Ser,S,Serine
TAT,Tyr,Y,Tyrosine
TAC,Tyr,Y,Tyrosine
TAA,Stop,Stop,Stop
TAG,Stop,Stop,Stop
TGT,Cys,C,Cysteine
TGC,Cys,C,Cysteine
TGA,Stop,Stop,Stop
TGG,Trp,W,Tryptophan
CTT,Leu,L,Leucine
CTC,Leu,L,Leucine
CTA,Leu,L,Leucine
CTG,Leu,L,Leucine
CCT,Pro,P,Proline
CCC,Pro,P,Proline
CCA,Pro,P,Proline
CCG,Pro,P,Proline
CAT,His,H,Histidine
CAC,His,H,Histidine
CAA,Gln,Q,Glutamine
CAG,Gln,Q,Glutamine
CGT,Arg,R,Arginine
CGC,Arg,R,Arginine
...

% java Lookup amino.csv 0 3
ACT
Threonine
TAG
Stop
CAT
Histidine

codon is key name is value

Dictionary lookup

Command-line arguments.

• A comma-separated value (CSV) file.

• Key field.

• Value field.

Ex 3. Class list.

11

% more classlist.csv
13,Berl,Ethan Michael,P01,eberl
11,Bourque,Alexander Joseph,P01,abourque
12,Cao,Phillips Minghua,P01,pcao
11,Chehoud,Christel,P01,cchehoud
10,Douglas,Malia Morioka,P01,malia
12,Haddock,Sara Lynn,P01,shaddock
12,Hantman,Nicole Samantha,P01,nhantman
11,Hesterberg,Adam Classen,P01,ahesterb
13,Hwang,Roland Lee,P01,rhwang
13,Hyde,Gregory Thomas,P01,ghyde
13,Kim,Hyunmoon,P01,hktwo
11,Kleinfeld,Ivan Maximillian,P01,ikleinfe
12,Korac,Damjan,P01,dkorac
11,MacDonald,Graham David,P01,gmacdona
10,Michal,Brian Thomas,P01,bmichal
12,Nam,Seung Hyeon,P01,seungnam
11,Nastasescu,Maria Monica,P01,mnastase
11,Pan,Di,P01,dpan
12,Partridge,Brenton Alan,P01,bpartrid
13,Rilee,Alexander,P01,arilee
13,Roopakalu,Ajay,P01,aroopaka
11,Sheng,Ben C,P01,bsheng
12,Webb,Natalie Sue,P01,nwebb
...

% java Lookup classlist.csv 4 1
eberl
Ethan
nwebb
Natalie

% java Lookup classlist.csv 4 3
dpan
P01

login is key
first name
is value

login is key
precept
is value

public class LookupCSV
{
 public static void main(String[] args)
 {
 In in = new In(args[0]);
 int keyField = Integer.parseInt(args[1]);
 int valField = Integer.parseInt(args[2]);

 ST<String, String> st = new ST<String, String>();
 while (!in.isEmpty())
 {
 String line = in.readLine();
 String[] tokens = database[i].split(",");
 String key = tokens[keyField];
 String val = tokens[valField];
 st.put(key, val);
 }

 while (!StdIn.isEmpty())
 {
 String s = StdIn.readString();
 if (!st.contains(s)) StdOut.println("Not found");
 else StdOut.println(st.get(s));
 }
 }
}

12

Dictionary lookup: Java implementation

process input file

build symbol table

process lookups
with standard I/O

13

‣ sets
‣ dictionary clients
‣ indexing clients
‣ sparse vectors

Goal. Index a PC (or the web).

File indexing

14

Goal. Given a list of files specified as command-line arguments, create an
index so that can efficiently find all files containing a given query string.

Solution. Key = query string; value = set of files containing that string.
15

File indexing

% ls *.txt
aesop.txt magna.txt moby.txt
sawyer.txt tale.txt

% java FileIndex *.txt
freedom
magna.txt moby.txt tale.txt

whale
moby.txt

lamb
sawyer.txt aesop.txt

% ls *.java

% java FileIndex *.java
BlackList.java Concordance.java
DeDup.java FileIndex.java ST.java
SET.java WhiteList.java

import
FileIndex.java SET.java ST.java

Comparator
null

public class FileIndex
{
 public static void main(String[] args)
 {
 ST<String, SET<File>> st = new ST<String, SET<File>>();

 for (String filename : args) {
 File file = new File(filename);
 In in = new In(file);
 while !(in.isEmpty())
 {
 String word = in.readString();
 if (!st.contains(word))
 st.put(s, new SET<File>());
 SET<File> set = st.get(key);
 set.add(file);
 }
 }

 while (!StdIn.isEmpty())
 {
 String query = StdIn.readString();
 StdOut.println(st.get(query));
 }
 }
}

File indexing

16

for each word in file,
add file to
corresponding set

list of file names
from command line

process queries

symbol table

Book index

Goal. Index for an e-book.

17

Concordance

Goal. Preprocess a text corpus to support concordance queries: given a word,
find all occurrences with their immediate contexts.

18

% java Concordance tale.txt
cities
tongues of the two *cities* that were blended in

majesty
their turnkeys and the *majesty* of the law fired
me treason against the *majesty* of the people in
of his most gracious *majesty* king george the third

princeton
no matches

public class Concordance
{
 public static void main(String[] args)
 {
 In in = new In(args[0]);
 String[] words = StdIn.readAll().split("\\s+");
 ST<String, SET<Integer>> st = new ST<String, SET<Integer>>();
 for (int i = 0; i < words.length; i++)
 {
 String s = words[i];
 if (!st.contains(s))
 st.put(s, new SET<Integer>());
 SET<Integer> pages = st.get(s);
 set.put(i);
 }

 while (!StdIn.isEmpty())
 {
 String query = StdIn.readString();
 SET<Integer> set = st.get(query);
 for (int k : set)
 // print words[k-5] to words[k+5]
 }
 }
}

Concordance

19

read text and
build index

process queries
and print

concordances

20

‣ sets
‣ dictionary clients
‣ indexing clients
‣ sparse vectors

Matrix-vector multiplication (standard implementation)

21

 0 .90 0 0 0

 0 0 .36 .36 .18

 0 0 0 .90 0

.90 0 0 0 0

.47 0 .47 0 0

.05

.04

.36

.37

.19

a[][] x[] b[]

.036

.297

.333

.045

.1927

=

Matrix-vector multiplication

...
double[][] a = new double[N][N];
double[] x = new double[N];
double[] b = new double[N];
...
// initialize a[][] and x[]
...
for (int i = 0; i < N; i++)
{
 sum = 0.0;
 for (int j = 0; j < N; j++)
 sum += a[i][j]*x[j];
 b[i] = sum;
}

nested loops
N2 running time

Problem. Sparse matrix-vector multiplication.
Assumptions. Matrix dimension is 10,000; average nonzeros per row ~ 10.

Sparse matrix-vector multiplication

22

 A * x = b

1D array (standard) representation.

• Constant time access to elements.

• Space proportional to N.

Symbol table representation.

• key = index, value = entry

• Efficient iterator.

• Space proportional to number of nonzeros.

23

Vector representations

 0 .36 0 0 0 .36 0 0 0 0 0 0 0 0 .18 0 0 0 0 0

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

 1 .36 5 .36 14 .18

key value
st

24

Sparse vector data type

public class SparseVector
{
 private HashST<Integer, Double> v;

 public SparseVector()
 { v = new HashST<Integer, Double>(); }

 public void put(int i, double x)
 { v.put(i, x); }

 public double get(int i)
 {
 if (!v.contains(i)) return 0.0;
 else return v.get(i);
 }

 public Iterable<Integer> indices()
 { return v.keys(); }

 public double dot(double[] that)
 {
 double sum = 0.0;
 for (int i : indices())
 sum += that[i]*this.get(i);
 return sum;
 }
}

empty ST represents all 0s vector

a[i] = value

return a[i]

dot product is constant
time for sparse vectors

HashST because order not important

2D array (standard) representation: Each row of matrix is an array.

• Constant time access to elements.

• Space proportional to N2.

Sparse representation: Each row of matrix is a sparse vector.

• Efficient access to elements.

• Space proportional to number of nonzeros (plus N).

25

Matrix representations

a

0

1

2

3

4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

a

0

1

2

3

4

array of double[]objects array of SparseVector objects

st

0.0 .90 0.0 0.0 0.0

0.0 0.0 .36 .36 .18

0.0 0.0 0.0 .90 0.0

.90 0.0 0.0 0.0 0.0

.45 0.0 .45 0.0 0.0
.452

.363 .184.362

st
.903

st
.900

st
.450

st
.901

independent
symbol-table

objects

key value

a[4][2]

Sparse matrix representations

a

0

1

2

3

4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

a

0

1

2

3

4

array of double[]objects array of SparseVector objects

st

0.0 .90 0.0 0.0 0.0

0.0 0.0 .36 .36 .18

0.0 0.0 0.0 .90 0.0

.90 0.0 0.0 0.0 0.0

.45 0.0 .45 0.0 0.0
.452

.363 .184.362

st
.903

st
.900

st
.450

st
.901

independent
symbol-table

objects

key value

a[4][2]

Sparse matrix representations

Sparse matrix-vector multiplication

26

 0 .90 0 0 0

 0 0 .36 .36 .18

 0 0 0 .90 0

.90 0 0 0 0

.47 0 .47 0 0

.05

.04

.36

.37

.19

a[][] x[] b[]

.036

.297

.333

.045

.1927

=

Matrix-vector multiplication

 ..
 SparseVector[] a;
 a = new SparseVector[N];
 double[] x = new double[N];
 double[] b = new double[N];
 ...
 // Initialize a[] and x[]
 ...
 for (int i = 0; i < N; i++)
 b[i] = a[i].dot(x);

one loop
linear running time
for sparse matrix

27

‣ sets
‣ dictionary clients
‣ indexing clients
‣ sparse vectors
‣ challenges

Searching challenge 2A:

Problem. IP lookups in a web monitoring device.
Assumption A. Billions of lookups, millions of distinct addresses.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

28

Searching challenge 2A

Problem. IP lookups in a web monitoring device.
Assumption A. Billions of lookups, millions of distinct addresses.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

29

total cost of insertions is c*10000002 =
c*1,000,000,000,000 (way too much)

✓

Searching challenge 2B

Problem. IP lookups in a web monitoring device.
Assumption B. Billions of lookups, thousands of distinct addresses.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

30

Searching challenge 2B

Problem. IP lookups in a web monitoring device.
Assumption B. Billions of lookups, thousands of distinct addresses.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

31

total cost of insertions is
c1*10002 = c1*1000000

and dominated by c2*1000000000
cost of lookups

✓

Searching challenge 4

Problem. Spell checking for a book.
Assumptions. Dictionary has 25,000 words; book has 100,000+ words.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

32

Searching challenge 4

Problem. Spell checking for a book.
Assumptions. Dictionary has 25,000 words; book has 100,000+ words.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

33

easy to presort dictionary total cost
of lookups is optimal c2*1,500,000✓

Searching challenge 1A

Problem. Maintain symbol table of song names for an iPod.
Assumption A. Hundreds of songs.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

34

Searching challenge 1A

Problem. Maintain symbol table of song names for an iPod.
Assumption A. Hundreds of songs.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

35

1002 = 10,000✓

Searching challenge 1B

Problem. Maintain symbol table of song names for an iPod.
Assumption B. Thousands of songs.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

36

Searching challenge 1B

Problem. Maintain symbol table of song names for an iPod.
Assumption B. Thousands of songs.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

37

maybe, but 10002 = 1,000,000 so user
might wait for complete rebuild of index

✓

Searching challenge 3

Problem. Frequency counts in “Tale of Two Cities.”
Assumptions. Book has 135,000+ words; about 10,000 distinct words.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

38

Searching challenge 3

Problem. Frequency counts in “Tale of Two Cities.”
Assumptions. Book has 135,000+ words; about 10,000 distinct words.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

39

total cost of searches:
c2*1,350,000,000

maybe, but total cost of
insertions is c1*100,000,000✓

Problem. Frequency counts in “Tale of Two Cities”
Assumptions. Book has 135,000+ words; about 10,000 distinct words.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.
5) BSTs.

Searching challenge 3 (revisited):

40

insertion cost < 10000 * 1.38 * lg 10000 < .2 million
lookup cost < 135000 * 1.38 * lg 10000 < 2.5 million

✓

Problem. Index for a PC or the web.
Assumptions. 1 billion++ words to index.

Which searching method to use?

• Hashing

• Red-black-trees

• Doesn’t matter much.

Searching challenge 5

41

Problem. Index for a PC or the web.
Assumptions. 1 billion++ words to index.

Which searching method to use?

• Hashing

• Red-black-trees

• Doesn’t matter much.

Solution. Symbol table with:

• Key = query string.

• Value = set of pointers to files.

Searching challenge 5

42

✓
too much space

sort the (relatively few) search hits

Searching challenge 6

Problem. Index for an e-book.
Assumptions. Book has 100,000+ words.

Which searching method to use?
1. Hashing
2. Red-black-tree
3. Doesn’t matter much.

43

Searching challenge 6

Problem. Index for an e-book.
Assumptions. Book has 100,000+ words.

Which searching method to use?
1. Hashing
2. Red-black-tree
3. Doesn’t matter much.

Solution. Symbol table with:

• Key = index term.

• Value = ordered set of pages on which term appears.

44

✓
need ordered

iteration

	01-00Intro
	01-15UnionFind
	02-14Analysis
	03-13StacksAndQueues
	04-21ElementarySorts
	05-22Mergesort
	06-23Quicksort
	07-24PriorityQueues
	08-31ElementarySymbolTables
	08-32BinarySearchTrees
	09-33BalancedTrees
	10-34HashTables
	10-35Applications

