
Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 22, 2010 10:50:53 PM

Algorithms and Data Structures
Princeton University

Spring 2010

Robert Sedgewick

COS 226

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 22, 2010 10:50:53 PM

Course Overview

‣ outline
‣ why study algorithms?
‣ usual suspects
‣ coursework
‣ resources

3

What is COS 226?

• Intermediate-level survey course.

• Programming and problem solving with applications.

• Algorithm: method for solving a problem.

• Data structure: method to store information.

topic data structures and algorithms

data types stack, queue, union-find, priority queue

sorting quicksort, mergesort, heapsort, radix sorts

searching hash table, BST, red-black tree

graphs BFS, DFS, Prim, Kruskal, Dijkstra

strings KMP, regular expressions, TST, Huffman, LZW

geometry Graham scan, k-d tree, Voronoi diagram

COS 226 course overview

4

Their impact is broad and far-reaching.

Internet. Web search, packet routing, distributed file sharing, ...

Biology. Human genome project, protein folding, ...

Computers. Circuit layout, file system, compilers, ...

Computer graphics. Movies, video games, virtual reality, ...

Security. Cell phones, e-commerce, voting machines, ...

Multimedia. CD player, DVD, MP3, JPG, DivX, HDTV, ...

Transportation. Airline crew scheduling, map routing, ...

Physics. N-body simulation, particle collision simulation, ...

…

Why study algorithms?

Old roots, new opportunities.

• Study of algorithms dates at least to Euclid.

• Some important algorithms were
discovered by undergraduates!

5

300 BCE

1920s

1940s
1950s
1960s
1970s
1980s
1990s
2000s

Why study algorithms?

6

To solve problems that could not otherwise be addressed.

Ex. Network connectivity. [stay tuned]

Why study algorithms?

7

For intellectual stimulation.

Why study algorithms?

“ For me, great algorithms are the poetry of computation. Just like
 verse, they can be terse, allusive, dense, and even mysterious. But
 once unlocked, they cast a brilliant new light on some aspect of
 computing. ” — Francis Sullivan

“ An algorithm must be seen to be believed. ” — D. E. Knuth

They may unlock the secrets of life and of the universe.

Computational models are replacing mathematical models in scientific inquiry.

8

20th century science
(formula based)

€

E = mc2

€

F = ma

€

F = Gm1m2

r2

€

−
h2

2m
∇2 + V (r)

⎡

⎣
⎢

⎤

⎦
⎥ Ψ(r) = E Ψ(r)

Why study algorithms?

“ Algorithms: a common language for nature, human, and computer. ” — Avi Wigderson

21st century science
(algorithm based)

for (double t = 0.0; true; t = t + dt)
 for (int i = 0; i < N; i++)
 {
 bodies[i].resetForce();
 for (int j = 0; j < N; j++)
 if (i != j)
 bodies[i].addForce(bodies[j]);
 }

For fun and profit.

9

Why study algorithms?

• Their impact is broad and far-reaching.

• Old roots, new opportunities.

• To solve problems that could not otherwise be addressed.

• For intellectual stimulation.

• They may unlock the secrets of life and of the universe.

• For fun and profit.

10

Why study algorithms?

Why study anything else?

11

8 programming assignments. 45%

• Electronic submission.

• Due 11pm, starting Wednesay 9/23.

Exercises. 15%

• Due in lecture, starting Tuesday 9/22.

Exams.

• Closed-book with cheatsheet.

• Midterm. 15%

• Final. 25%

Staff discretion. To adjust borderline cases.

Final

Midterm

Programs

Coursework and grading

everyone needs to meet me in office hours

Exercises

Course content.

• Course info.

• Exercises.

• Lecture slides.

• Programming assignments.

• Submit assignments.

Booksites.

• Brief summary of content.

• Download code from lecture.

12

Resources (web)

http://www.princeton.edu/~cos226

http://www.cs.princeton.edu/IntroProgramming
http://www.cs.princeton.edu/algs4

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 22, 2010 12:38:14 PM

‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications

1.5 Case Study

Steps to developing a usable algorithm.

• Model the problem.

• Find an algorithm to solve it.

• Fast enough? Fits in memory?

• If not, figure out why.

• Find a way to address the problem.

• Iterate until satisfied.

The scientific method.

Mathematical analysis.

2

Subtext of today’s lecture (and this course)

3

‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications

Given a set of objects

• Union: connect two objects.

• Find: is there a path connecting the two objects?

4

Dynamic connectivity

6 5 1

4

87

32

0

union(3, 4)

union(8, 0)

union(2, 3)

union(5, 6)

 find(0, 2) no

 find(2, 4) yes

union(5, 1)

union(7, 3)

union(1, 6)

 find(0, 2) yes

 find(2, 4) yes

union(4, 8)

more difficult problem: find the path

5

Network connectivity: larger example

p

q

Q. Is there a path from p to q?

A. Yes. but finding the path is more difficult: stay tuned (Chapter 4)

Dynamic connectivity applications involve manipulating objects of all types.

• Variable name aliases.

• Pixels in a digital photo.

• Computers in a network.

• Web pages on the Internet.

• Transistors in a computer chip.

• Metallic sites in a composite system.

When programming, convenient to name objects 0 to N-1.

• Use integers as array index.

• Suppress details not relevant to union-find.

6

Modeling the objects

can use symbol table to translate from
object names to integers (stay tuned)

Transitivity. If p is connected to q and q is connected to r,
then p is connected to r.

Connected components. Maximal set of objects that are mutually connected.

7

Modeling the connections

4

87

32

0

{ 1 5 6 } { 2 3 4 7 } { 0 8 }

connected components

6 5 1

Find query. Check if two objects are in the same set.

Union command. Replace sets containing two objects with their union.

8

Implementing the operations

6 5 1

4

87

32

0

{ 1 5 6 } { 2 3 4 7 } { 0 8 }

6 5 1

7

32

0

{ 1 5 6 } { 0 2 3 4 7 8 }

4

8

union(4, 8)

connected components

9

Goal. Design efficient data structure for union-find.

• Number of objects N can be huge.

• Number of operations M can be huge.

• Find queries and union commands may be intermixed.

Union-find data type (API)

 public class UnionFind public class UnionFind

UnionFind(int N) create union-find data structure with
N objects and no connections

boolean find(int p, int q) are p and q in the same set?

void unite(int p, int q)
replace sets containing p and q

with their union

10

‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications

11

Data structure.

• Integer array id[] of size N.

• Interpretation: p and q are connected if they have the same id.

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 9 9 6 6 7 8 9

5 and 6 are connected
2, 3, 4, and 9 are connected

Quick-find [eager approach]

0 1 2 3 4

5 6 7 8 9

12

Data structure.

• Integer array id[] of size N.

• Interpretation: p and q are connected if they have the same id.

Find. Check if p and q have the same id.

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 9 9 6 6 7 8 9

id[3] = 9; id[6] = 6
3 and 6 not connected

Quick-find [eager approach]

5 and 6 are connected
2, 3, 4, and 9 are connected

13

Data structure.

• Integer array id[] of size N.

• Interpretation: p and q are connected if they have the same id.

Find. Check if p and q have the same id.

Union. To merge sets containing p and q, change all entries with id[p] to id[q].

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 9 9 6 6 7 8 9

union of 3 and 6
2, 3, 4, 5, 6, and 9 are connected

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 6 6 6 6 6 7 8 6

problem: many values can change

Quick-find [eager approach]

5 and 6 are connected
2, 3, 4, and 9 are connected

id[3] = 9; id[6] = 6
3 and 6 not connected

14

3-4 0 1 2 4 4 5 6 7 8 9

4-9 0 1 2 9 9 5 6 7 8 9

8-0 0 1 2 9 9 5 6 7 0 9

2-3 0 1 9 9 9 5 6 7 0 9

5-6 0 1 9 9 9 6 6 7 0 9

5-9 0 1 9 9 9 9 9 7 0 9

7-3 0 1 9 9 9 9 9 9 0 9

4-8 0 1 0 0 0 0 0 0 0 0

6-1 1 1 1 1 1 1 1 1 1 1

Quick-find example

problem: many values can change

public class QuickFind
{
 private int[] id;

 public QuickFind(int N)
 {
 id = new int[N];
 for (int i = 0; i < N; i++)
 id[i] = i;
 }

 public boolean find(int p, int q)
 {
 return id[p] == id[q];
 }

 public void unite(int p, int q)
 {
 int pid = id[p];
 for (int i = 0; i < id.length; i++)
 if (id[i] == pid) id[i] = id[q];
 }
}

15

check if p and q have same id
(1 operation)

change all entries with id[p] to id[q]
(N operations)

set id of each object to itself
(N operations)

Quick-find: Java implementation

Quick-find defect.

• Union too expensive (N operations).

• Trees are flat, but too expensive to keep them flat.

Ex. Takes N2 operations to process sequence of N union commands
on N objects.

16

Quick-find is too slow

algorithm union find

quick-find N 1

Rough standard (for now).

• 109 operations per second.

• 109 words of main memory.

• Touch all words in approximately 1 second.

Ex. Huge problem for quick-find.

• 109 union commands on 109 objects.

• Quick-find takes more than 1018 operations.

• 30+ years of computer time!

Paradoxically, quadratic algorithms get worse with newer equipment.

• New computer may be 10x as fast.

• But, has 10x as much memory so problem may be 10x bigger.

• With quadratic algorithm, takes 10x as long!

17

a truism (roughly) since 1950 !

Quadratic algorithms do not scale

18

‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications

19

Data structure.

• Integer array id[] of size N.

• Interpretation: id[i] is parent of i.

• Root of i is id[id[id[...id[i]...]]].

Quick-union [lazy approach]

keep going until it doesn’t change

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 4 9 6 6 7 8 9

3

542

70 1 9 6 8

3's root is 9; 5's root is 6

p

q

Data structure.

• Integer array id[] of size N.

• Interpretation: id[i] is parent of i.

• Root of i is id[id[id[...id[i]...]]].

Find. Check if p and q have the same root.

20

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 4 9 6 6 7 8 9

Quick-union [lazy approach]

keep going until it doesn’t change

3

542

70 1 9 6 8

3's root is 9; 5's root is 6
3 and 5 are not connected

p

q

Data structure.

• Integer array id[] of size N.

• Interpretation: id[i] is parent of i.

• Root of i is id[id[id[...id[i]...]]].

Find. Check if p and q have the same root.

Union. To merge sets containing p and q,
set the id of p's root to the id of q's root.

3

5

4

70 1

9

6 8

2

3

542

70 1 9 6 8

21

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 4 9 6 6 7 8 9

3's root is 9; 5's root is 6
3 and 5 are not connected

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 4 9 6 6 7 8 6

only one value changes
p

q

Quick-union [lazy approach]

p

q

keep going until it doesn’t change

22

3-4 0 1 2 4 4 5 6 7 8 9

4-9 0 1 2 4 9 5 6 7 8 9

8-0 0 1 2 4 9 5 6 7 0 9

2-3 0 1 9 4 9 5 6 7 0 9

5-6 0 1 9 4 9 6 6 7 0 9

5-9 0 1 9 4 9 6 9 7 0 9

7-3 0 1 9 4 9 6 9 9 0 9

4-8 0 1 9 4 9 6 9 9 0 0

6-1 1 1 9 4 9 6 9 9 0 0

problem:
trees can get tall

Quick-union example

Quick-union: Java implementation

public class QuickUnion
{
 private int[] id;

 public QuickUnion(int N)
 {
 id = new int[N];
 for (int i = 0; i < N; i++) id[i] = i;
 }

 private int root(int i)
 {
 while (i != id[i]) i = id[i];
 return i;
 }

 public boolean find(int p, int q)
 {
 return root(p) == root(q);
 }

 public void unite(int p, int q)
 {
 int i = root(p), j = root(q);
 id[i] = j;
 }
}

set id of each object to itself
(N operations)

chase parent pointers until reach root
(depth of i operations)

check if p and q have same root
(depth of p and q operations)

change root of p to point to root of q
(depth of p and q operations)

23

24

Quick-find defect.

• Union too expensive (N operations).

• Trees are flat, but too expensive to keep them flat.

Quick-union defect.

• Trees can get tall.

• Find too expensive (could be N operations).

worst case

† includes cost of finding root

Quick-union is also too slow

algorithm union find

quick-find N 1

quick-union N † N

25

‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications

Weighted quick-union.

• Modify quick-union to avoid tall trees.

• Keep track of size of each set.

• Balance by linking small tree below large one.

Ex. Union of 3 and 5.

• Quick union: link 9 to 6.

• Weighted quick union: link 6 to 9.

1

3

542

70 1 6 8

26

q

p

21 1 1size

Improvement 1: weighting

4

9

27

3-4 0 1 2 3 3 5 6 7 8 9

4-9 0 1 2 3 3 5 6 7 8 3

8-0 8 1 2 3 3 5 6 7 8 3

2-3 8 1 3 3 3 5 6 7 8 3

5-6 8 1 3 3 3 5 5 7 8 3

5-9 8 1 3 3 3 3 5 7 8 3

7-3 8 1 3 3 3 3 5 3 8 3

4-8 8 1 3 3 3 3 5 3 3 3

6-1 8 3 3 3 3 3 5 3 3 3

no problem:
trees stay flat

Weighted quick-union example

28

Data structure. Same as quick-union, but maintain extra array sz[i]
to count number of objects in the tree rooted at i.

Find. Identical to quick-union.

Union. Modify quick-union to:

• Merge smaller tree into larger tree.

• Update the sz[] array.

 int i = root(p);
 int j = root(q);
 if (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; }
 else { id[j] = i; sz[i] += sz[j]; }

Weighted quick-union: Java implementation

return root(p) == root(q);

29

Analysis.

• Find: takes time proportional to depth of p and q.

• Union: takes constant time, given roots.

Proposition. Depth of any node x is at most lg N.

Weighted quick-union analysis

3

x

5

4

2

7

0

1

8

9

6

N = 10
depth(x) = 3 ≤ lg N

30

Analysis.

• Find: takes time proportional to depth of p and q.

• Union: takes constant time, given roots.

Proposition. Depth of any node x is at most lg N.
Pf. When does depth of x increase?
Increases by 1 when tree T1 containing x is merged into another tree T2.

• The size of the tree containing x at least doubles since |T2| ≥ |T1|.

• Size of tree containing x can double at most lg N times. Why?

Weighted quick-union analysis

 T2

T1

x

31

Analysis.

• Find: takes time proportional to depth of p and q.

• Union: takes constant time, given roots.

Proposition. Depth of any node x is at most lg N.

Q. Stop at guaranteed acceptable performance?
A. No, easy to improve further.

† includes cost of finding root

Weighted quick-union analysis

algorithm union find

quick-find N 1

quick-union N † N

weighted QU lg N † lg N

10

Quick union with path compression. Just after computing the root of p,
set the id of each examined node to root(p).

2

41211

0

9

78

136

5

2

54

7

8

1211

0

1

3

6

9

32

root(9)

Improvement 2: path compression

p

10

Standard implementation: add second loop to root() to set the id[]
of each examined node to the root.

Simpler one-pass variant: halve the path length by making every other
node in path point to its grandparent.

In practice. No reason not to! Keeps tree almost completely flat.

33

only one extra line of code !

public int root(int i)
{
 while (i != id[i])
 {
 id[i] = id[id[i]];
 i = id[i];
 }
 return i;
}

Path compression: Java implementation

34

3-4 0 1 2 3 3 5 6 7 8 9

4-9 0 1 2 3 3 5 6 7 8 3

8-0 8 1 2 3 3 5 6 7 8 3

2-3 8 1 3 3 3 5 6 7 8 3

5-6 8 1 3 3 3 5 5 7 8 3

5-9 8 1 3 3 3 3 5 7 8 3

7-3 8 1 3 3 3 3 5 3 8 3

4-8 8 1 3 3 3 3 5 3 3 3

6-1 8 3 3 3 3 3 3 3 3 3

no problem:
trees stay VERY flat

Weighted quick-union with path compression example

35

Proposition. [Tarjan 1975] Starting from an empty data structure,
any sequence of M union and find ops on N objects takes O(N + M lg* N) time.

• Proof is very difficult.

• But the algorithm is still simple!

Linear algorithm?

• Cost within constant factor of reading in the data.

• In theory, WQUPC is not quite linear.

• In practice, WQUPC is linear.

Amazing fact. No linear-time linking strategy exists.

because lg* N is a constant in this universe

actually O(N + M α(M, N))
see COS 423

N lg* N

1 0

2 1

4 2

16 3

65536 4

265536 5

WQUPC performance

lg* function
number of times needed to take

the lg of a number until reaching 1

Bottom line. WQUPC makes it possible to solve problems that
could not otherwise be addressed.

Ex. [109 unions and finds with 109 objects]

• WQUPC reduces time from 30 years to 6 seconds.

• Supercomputer won't help much; good algorithm enables solution.
36

M union-find operations on a set of N objects

algorithm worst-case time

quick-find M N

quick-union M N

weighted QU N + M log N

QU + path compression N + M log N

weighted QU + path compression N + M lg* N

Summary

37

‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications

38

• Percolation.

• Games (Go, Hex).
✓ Network connectivity.

• Least common ancestor.

• Equivalence of finite state automata.

• Hoshen-Kopelman algorithm in physics.

• Hinley-Milner polymorphic type inference.

• Kruskal's minimum spanning tree algorithm.

• Compiling equivalence statements in Fortran.

• Morphological attribute openings and closings.

• Matlab's bwlabel() function in image processing.

Union-find applications

A model for many physical systems:

• N-by-N grid of sites.

• Each site is open with probability p (or blocked with probability 1-p).

• System percolates if top and bottom are connected by open sites.

39

Percolation

Percolation examples

does not percolate

percolates

site connected to top

blocked
site

full
open
siteempty

open
site

no open site connected to top

Percolation examples

does not percolate

percolates

site connected to top

blocked
site

full
open
siteempty

open
site

no open site connected to topN = 8

A model for many physical systems:

• N-by-N grid of sites.

• Each site is open with probability p (or blocked with probability 1-p).

• System percolates if top and bottom are connected by open sites.

40

model system vacant site occupied site percolates

electricity material conductor insulated conducts

fluid flow material empty blocked porous

social interaction population person empty communicates

Percolation

Depends on site vacancy probability p.

41

Likelihood of percolation

p low
does not percolate

p high
percolates

p medium
percolates?

N = 20

When N is large, theory guarantees a sharp threshold p*.

• p > p*: almost certainly percolates.

• p < p*: almost certainly does not percolate.

Q. What is the value of p* ?

42

Percolation phase transition

0.5930
0

1

1

site vacancy probability p

percolation
probability

p*

N = 100

• Initialize N-by-N whole grid to be blocked.

• Declare random sites open until top connected to bottom.

• Vacancy percentage estimates p*.

43

empty open site
(not connected to top)

full open site
(connected to top)

Monte Carlo simulation

blocked site

44

How to check whether system percolates?

• Create an object for each site.

• Sites are in same set if connected by open sites.

• Percolates if any site in top row is in same set as any site in bottom row.

UF solution to find percolation threshold

0 0 2 3 4 5 6 7

8 9 10 10 12 13 6 15

16 17 18 19 20 21 22 23

24 25 25 25 28 29 29 31

32 33 25 35 36 37 38 39

40 41 25 43 36 45 46 47

48 49 25 51 36 53 47 47

56 57 58 59 60 61 62 47

empty open site
(not connected to top)

full open site
(connected to top)

blocked site

brute force algorithm needs to check N2 pairs

N = 8

Q. How to declare a new site open?

0 0 2 3 4 5 6 7

8 9 10 10 12 13 6 15

16 17 18 19 20 21 22 23

24 25 25 25 28 29 29 31

32 33 25 35 36 37 38 39

40 41 25 43 36 45 46 47

48 49 25 51 36 53 47 47

56 57 58 59 60 61 62 47

45

open this site

UF solution to find percolation threshold

empty open site
(not connected to top)

full open site
(connected to top)

blocked site

N = 8

Q. How to declare a new site open?
A. Take union of new site and all adjacent open sites.

0 0 2 3 4 5 6 7

8 9 10 10 12 13 6 15

16 17 18 19 20 21 22 23

24 25 25 25 25 25 25 31

32 33 25 35 25 37 38 39

40 41 25 43 25 45 46 47

48 49 25 51 25 53 47 47

56 57 58 59 60 61 62 47

46

open this site

UF solution to find percolation threshold

empty open site
(not connected to top)

full open site
(connected to top)

blocked site

N = 8

47

Q. How to avoid checking all pairs of top and bottom sites?

UF solution: a critical optimization

empty open site
(not connected to top)

full open site
(connected to top)

blocked site

N = 8

0 0 2 3 4 5 6 7

8 9 10 10 12 13 6 15

16 17 18 19 20 21 22 23

24 25 25 25 25 25 25 31

32 33 25 35 25 37 38 39

40 41 25 43 25 45 46 47

48 49 25 51 25 53 47 47

56 57 58 59 60 61 62 47

48

Q. How to avoid checking all pairs of top and bottom sites?
A. Create a virtual top and bottom objects;
 system percolates when virtual top and bottom objects are in same set.

UF solution: a critical optimization

virtual top row

virtual bottom row

00000000

0 0 2 3 4 5 0 7

8 9 10 10 12 13 0 15

16 17 18 19 20 21 22 23

24 25 25 25 25 25 25 31

32 33 25 35 25 37 38 39

40 41 25 43 25 45 46 47

48 49 25 51 25 53 47 47

47 57 58 59 60 61 62 47

4747474747474747

empty open site
(not connected to top)

full open site
(connected to top)

blocked site

N = 8

49

Q. What is percolation threshold p* ?
A. About 0.592746 for large square lattices.

percolation constant known
 only via simulation

Percolation threshold

p*

0.5930
0

1

1

site vacancy probability p

percolation
probability

Steps to developing a usable algorithm.

• Model the problem.

• Find an algorithm to solve it.

• Fast enough? Fits in memory?

• If not, figure out why.

• Find a way to address the problem.

• Iterate until satisfied.

The scientific method.

Mathematical analysis.

50

Subtext of today’s lecture (and this course)

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 22, 2010 10:11:28 AM

‣ estimating running time
‣ mathematical analysis
‣ order-of-growth hypotheses
‣ input models
‣ measuring space

1.4 Analysis of Algorithms

Reference: Intro to Programming in Java, Section 4.1

Cast of characters

2

Programmer needs to develop
a working solution.

Client wants problem
solved efficiently.

Theoretician wants
to understand.

Basic blocking and tackling
is sometimes necessary.
[this lecture]

Student might play any
or all of these roles
someday.

3

Running time

Charles Babbage (1864) Analytic Engine

how many times
do you have to
turn the crank?

“ As soon as an Analytic Engine exists, it will necessarily guide the future
 course of the science. Whenever any result is sought by its aid, the question
 will arise—By what course of calculation can these results be arrived at by
 the machine in the shortest time? ” — Charles Babbage

Predict performance.

Compare algorithms.

Provide guarantees.

Understand theoretical basis.

Primary practical reason: avoid performance bugs.

Reasons to analyze algorithms

4

this course (COS 226)

theory of algorithms (COS 423)

client gets poor performance because programmer
did not understand performance characteristics

5

Some algorithmic successes

Discrete Fourier transform.

• Break down waveform of N samples into periodic components.

• Applications: DVD, JPEG, MRI, astrophysics, ….

• Brute force: N2 steps.

• FFT algorithm: N log N steps, enables new technology.
Friedrich Gauss
1805

Linear, linearithmic, and quadratic

8T

16T

32T

64T

time

1K 2K 4K 8Ksize

quadratic

linearithmic

linear

6

Some algorithmic successes

N-body Simulation.

• Simulate gravitational interactions among N bodies.

• Brute force: N2 steps.

• Barnes-Hut: N log N steps, enables new research.
Andrew Appel
PU '81

Linear, linearithmic, and quadratic

8T

16T

32T

64T

time

1K 2K 4K 8Ksize

quadratic

linearithmic

linear

7

‣ estimating running time
‣ mathematical analysis
‣ order-of-growth hypotheses
‣ input models
‣ measuring space

8

Scientific analysis of algorithms

A framework for predicting performance and comparing algorithms.

Scientific method.

• Observe some feature of the universe.

• Hypothesize a model that is consistent with observation.

• Predict events using the hypothesis.

• Verify the predictions by making further observations.

• Validate by repeating until the hypothesis and observations agree.

Principles.

• Experiments must be reproducible.

• Hypotheses must be falsifiable.

Universe = computer itself.

Every time you run a program you are doing an experiment!

First step. Debug your program!
Second step. Choose input model for experiments.
Third step. Run and time the program for problems of increasing size.

Why is my program so slow ??

Experimental algorithmics

9

10

Example: 3-sum

3-sum. Given N integers, find all triples that sum to exactly zero.

Context. Deeply related to problems in computational geometry.

% more input8.txt
8
 30 -30 -20 -10 40 0 10 5

% java ThreeSum < input8.txt
 4
 30 -30 0
 30 -20 -10
-30 -10 40
-10 0 10

public class ThreeSum
{
 public static int count(int[] a)
 {
 int N = a.length;
 int cnt = 0;

 for (int i = 0; i < N; i++)
 for (int j = i+1; j < N; j++)
 for (int k = j+1; k < N; k++)
 if (a[i] + a[j] + a[k] == 0)
 cnt++;
 return cnt;
 }

 public static void main(String[] args)
 {
 long[] a = StdArrayIO.readInt1D();
 StdOut.println(count(a));
 }
}

11

3-sum: brute-force algorithm

check each triple

ignore overflow

Run the program for various input sizes and measure running time.

12

Empirical analysis

N time (seconds) †

1000 0.26

2000 2.16

4000 17.18

8000 137.76

† Running Linux on Sun-Fire-X4100

ThreeSum.java

Q. How to time a program?
A. Manual.

13

Measuring the running time

Q. How to time a program?
A. Automatic.

14

Measuring the running time

client code

implementation (part of stdlib.jar, see http://www.cs.princeton.edu/introcs/stdlib)

Stopwatch stopwatch = new Stopwatch();

ThreeSum.count(a);

double time = stopwatch.elapsedTime();
StdOut.println("Running time: " + time + " seconds");

public class Stopwatch
{
 private final long start = System.currentTimeMillis();

 public double elapsedTime()
 {
 long now = System.currentTimeMillis();
 return (now - start) / 1000.0;
 }
}

Plot running time as a function of input size N.

15

Data analysis

16

Log-log plot. Plot running time vs. input size N on log-log scale.

Regression. Fit straight line through data points: a N b.
Hypothesis. Running time grows with the cube of the input size: a N 3.

Data analysis

slope

power law

slope = 3

Doubling hypothesis. Quick way to estimate b in a power law hypothesis.

Run program, doubling the size of the input.

Hypothesis. Running time is about a N b with b = lg ratio.
Caveat. Can't identify logarithmic factors with doubling hypothesis.

17

Doubling hypothesis

N time (seconds) † ratio lg ratio

500 0.03 -

1,000 0.26 7.88 2.98

2,000 2.16 8.43 3.08

4,000 17.18 7.96 2.99

8,000 137.76 7.96 2.99

seems to converge to a constant b ≈ 3

18

Prediction and verification

Hypothesis. Running time is about a N 3 for input of size N.

Q. How to estimate a?
A. Run the program!

Refined hypothesis. Running time is about 2.7 × 10 –10 × N 3 seconds.

Prediction. 1,100 seconds for N = 16,000.
Observation.

validates hypothesis!

N time (seconds)

4,000 17.18

4,000 17.15

4,000 17.17

N time (seconds)

16384 1118.86

17.17 = a × 40003

⇒ a = 2.7 × 10 –10

19

Experimental algorithmics

Many obvious factors affect running time:

• Machine.

• Compiler.

• Algorithm.

• Input data.

More factors (not so obvious):

• Caching.

• Garbage collection.

• Just-in-time compilation.

• CPU use by other applications.

Bad news. It is often difficult to get precise measurements.
Good news. Easier than other sciences.

e.g., can run huge number of experiments

20

War story (from COS 126)

Q. How long does this program take as a function of N?

Jenny. ~ c1 N2 seconds.

Kenny. ~ c2 N seconds.

public class EditDistance
{
 String s = StdIn.readString();
 int N = s.length();
 ...

 for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 distance[i][j] = ...
 ...
}

N time

1,000 0.11

2,000 0.35

4,000 1.6

8,000 6.5

N time

250 0.5

500 1.1

1,000 1.9

2,000 3.9

Jenny Kenny

21

‣ estimating running time
‣ mathematical analysis
‣ order-of-growth hypotheses
‣ input models
‣ measuring space

22

Mathematical models for running time

Total running time: sum of cost × frequency for all operations.

• Need to analyze program to determine set of operations.

• Cost depends on machine, compiler.

• Frequency depends on algorithm, input data.

In principle, accurate mathematical models are available.

Donald Knuth
1974 Turing Award

Cost of basic operations

operation example nanoseconds †

integer add a + b 2.1

integer multiply a * b 2.4

integer divide a / b 5.4

floating point add a + b 4.6

floating point multiply a * b 4.2

floating point divide a / b 13.5

sine Math.sin(theta) 91.3

arctangent Math.atan2(y, x) 129.0

...

23

† Running OS X on Macbook Pro 2.2GHz with 2GB RAM

Novice mistake. Abusive string concatenation.

Cost of basic operations

24

operation example nanoseconds †

variable declaration int a c1

assignment statement a = b c2

integer compare a < b c3

array element access a[i] c4

array length a.length c5

1D array allocation new int[N] c6 N

2D array allocation new int[N][N] c7 N 2

string length s.length() c8

substring extraction s.substring(N/2, N) c9

string concatenation s + t c10 N

25

Example: 1-sum

Q. How many instructions as a function of N?

int count = 0;
for (int i = 0; i < N; i++)
 if (a[i] == 0) count++;

operation frequency

variable declaration 2

assignment statement 2

less than compare N + 1

equal to compare N

array access N

increment ≤ 2 N

between N (no zeros)
and 2N (all zeros)

26

Example: 2-sum

Q. How many instructions as a function of N?

int count = 0;
for (int i = 0; i < N; i++)
 for (int j = i+1; j < N; j++)
 if (a[i] + a[j] == 0) count++;

operation frequency

variable declaration N + 2

assignment statement N + 2

less than compare 1/2 (N + 1) (N + 2)

equal to compare 1/2 N (N − 1)

array access N (N − 1)

increment ≤ N 2

tedious to count exactly

0 + 1 + 2 + . . . + (N − 1) =
1
2

N (N − 1)

=
�

N

2

�

• Estimate running time (or memory) as a function of input size N.

• Ignore lower order terms.
- when N is large, terms are negligible

- when N is small, we don't care

Ex 1. 6 N 3 + 20 N + 16	
 	
 ~ 6 N 3

Ex 2. 6 N 3 + 100 N 4/3 + 56	
 ~ 6 N 3

Ex 3. 6 N 3 + 17 N 2 lg N + 7 N	
 ~ 6 N 3

27

Tilde notation

discard lower-order terms
(e.g., N = 1000: 6 billion vs. 169 million)

Technical definition. f(N) ~ g(N) means

€

lim
N→ ∞

 f (N)
g(N)

 = 1

28

Example: 2-sum

Q. How long will it take as a function of N?

int count = 0;
for (int i = 0; i < N; i++)
 for (int j = i+1; j < N; j++)
 if (a[i] + a[j] == 0) count++;

operation frequency time per op total time

variable declaration ~ N c1 ~ c1 N

assignment statement ~ N c2 ~ c2 N

less than comparison ~ 1/2 N 2
c3 ~ c3 N 2

equal to comparison ~ 1/2 N 2
c3 ~ c3 N 2

array access ~ N 2 c4 ~ c4 N 2

increment ≤ N 2 c5 ≤ c5 N 2

total ~ c N 2

"inner loop"

depends on input data

29

Example: 3-sum

Q. How many instructions as a function of N?

Remark. Focus on instructions in inner loop; ignore everything else!

�
N

3

�
=

N(N − 1)(N − 2)
3!

∼ 1
6
N3

int count = 0;

for (int i = 0; i < N; i++)

 for (int j = i+1; j < N; j++)

 for (int k = j+1; k < N; k++)

 if (a[i] + a[j] + a[k] == 0)

 count++;

"inner loop"

~ N 2 / 2

~ N

~ 1

 may be in inner loop, depends on input data

30

Bounding the sum by an integral trick

Q. How to estimate a discrete sum?
A1. Take COS 340.
A2. Replace the sum with an integral, and use calculus!

Ex 1. 1 + 2 + … + N.

Ex 2. 1 + 1/2 + 1/3 + … + 1/N.

Ex 3. 3-sum triple loop.

N�

i=1

1
i
∼

� N

x=1

1
x

dx = lnN

N�

i=1

i ∼
� N

x=1
x dx ∼ 1

2
N2

N�

i=1

N�

j=i

N�

k=j

1 ∼
� N

x=1

� N

y=x

� N

z=y
dz dy dx ∼ 1

6
N3

In principle, accurate mathematical models are available.

In practice,

• Formulas can be complicated.

• Advanced mathematics might be required.

• Exact models best left for experts.

Bottom line. We use approximate models in this course: TN ~ c N3.

TN = c1 A + c2 B + c3 C + c4 D + c5 E
A = variable declarations
B = assignment statements
C = compare
D = array access
E = increment

Mathematical models for running time

31

frequencies
 (depend on algorithm, input)

costs (depend on machine, compiler)Text

32

‣ estimating running time
‣ mathematical analysis
‣ order-of-growth hypotheses
‣ input models
‣ measuring space

Common order-of-growth hypotheses

To determine order-of-growth:

• Assume a power law TN ~ a N b.

• Estimate exponent b with doubling hypothesis.

• Validate with mathematical analysis.

Ex. ThreeSumDeluxe.java
Food for precept. How is it implemented?

33

N time (seconds)

1,000 0.43

2,000 0.53

4,000 1.01

8,000 2.87

16,000 11.00

32,000 44.64

64,000 177.48

N time (seconds)

1,000 0.26

2,000 2.16

4,000 17.18

8,000 137.76

ThreeSum.java

ThreeSumDeluxe.java

Common order-of-growth hypotheses

Good news. the small set of functions
 1, log N, N, N log N, N 2, N 3, and 2N

suffices to describe order-of-growth of typical algorithms.

34

482 Algorithms and Data Structures

Linearithmic. We use the term linearithmic to describe programs whose running
time for a problem of size N has order of growth N log N. Again, the base of the
logarithm is not relevant. For example, CouponCollector (PROGRAM 1.4.2) is lin-
earithmic. The prototypical example is mergesort (see PROGRAM 4.2.6). Several im-
portant problems have natural solutions that are quadratic but clever algorithms
that are linearithmic. Such algorithms (including mergesort) are critically impor-
tant in practice because they enable us to address problem sizes far larger than
could be addressed with quadratic solutions. In the next section, we consider a

general design technique for developing
linearithmic algorithms.

Quadratic. A typical program whose
running time has order of growth N 2
has two nested for loops, used for some
calculation involving all pairs of N ele-
ments. The force update double loop in
NBody (PROGRAM 3.4.2) is a prototype of
the programs in this classification, as is
the elementary sorting algorithm Inser-
tion (PROGRAM 4.2.4).

Cubic. Our example for this section,
ThreeSum, is cubic (its running time has
order of growth N 3) because it has three
nested for loops, to process all triples of
N elements. The running time of matrix
multiplication, as implemented in SEC-
TION 1.4 has order of growth M 3 to mul-

tiply two M-by-M matrices, so the basic matrix multiplication algorithm is often
considered to be cubic. However, the size of the input (the number of entries in the
matrices) is proportional to N = M 2, so the algorithm is best classified as N 3/2, not
cubic.

Exponential. As discussed in SECTION 2.3, both TowersOfHanoi (PROGRAM 2.3.2)
and GrayCode (PROGRAM 2.3.3) have running times proportional to 2N because they
process all subsets of N elements. Generally, we use the term “exponential” to refer

1K

T

2T

4T

8T

64T

512T

1024T

logarithmic

ex
po

ne
nt

ia
l

Orders of growth (log-log plot)

constant

size

lin
ea

rit
hmic

lin
ea

r

qu
ad

ra
tic

cu
bi

c

2K 4K 8K 1024K

time

introJava.indb 482 1/3/08 4:16:12 PM

Common order-of-growth hypotheses

35

growth
rate name typical code framework description example

 T(2N) / T
(N)

1 constant a = b + c; statement
add two
numbers

1

log N logarithmic while (N > 1)
{ N = N / 2; ... } divide in half binary search ~ 1

N linear
for (int i = 0; i < N; i++)

{ ... } loop find the
maximum

2

N log N linearithmic [see mergesort lecture] divide
and conquer

mergesort ~ 2

N2 quadratic
for (int i = 0; i < N; i++)

 for (int j = 0; j < N; j++)
 { ... }

double loop check all pairs 4

N3 cubic

for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)

 for (int k = 0; k < N; k++)
 { ... }

triple loop check all
triples

8

2N exponential [see combinatorial search lecture]
exhaustive

search
check all

possibilities
T(N)

Practical implications of order-of-growth

36

growth name description

effect on a program that
runs for a few seconds

effect on a program that
runs for a few secondsgrowth

rate
name description

time for 100x
more data

size for 100x
faster computer

1 constant independent of input size - -

log N logarithmic nearly independent of input size - -

N linear optimal for N inputs a few minutes 100x

N log N linearithmic nearly optimal for N inputs a few minutes 100x

N2 quadratic not practical for large problems several hours 10x

N3 cubic not practical for medium problems several weeks 4-5x

2N exponential useful only for tiny problems forever 1x

37

‣ estimating running time
‣ mathematical analysis
‣ order-of-growth hypotheses
‣ input models
‣ measuring space

Types of analyses

Best case. Lower bound on cost.

• Determined by “easiest” input.

• Provides a goal for all inputs.

Worst case. Upper bound on cost.

• Determined by “most difficult” input.

• Provides guarantee for all inputs.

Average case. “Expected” cost.

• Need a model for “random” input.

• Provides a way to predict performance.

38

Ex 2. Compares for insertion sort.

• Best (ascending order): ~ N.

• Average (random order): ~ ¼ N2

• Worst (descending order): ~ ½N2

(details in Lecture 4)

Ex 1. Array accesses for brute-force 3-sum.

• Best: ~ ½N3

• Average: ~ ½N3

• Worst: ~ ½N3

Common mistake. Interpreting big-Oh as an approximate model.

39

Commonly-used notations

notation provides example shorthand for used to

Tilde leading term ~ 10 N 2
10 N 2

10 N 2 + 22 N log N
10 N 2 + 2 N +37

provide
approximate model

Big Theta
asymptotic
growth rate

Θ(N 2)
N 2

9000 N 2

 5 N 2 + 22 N log N + 3N

classify
algorithms

Big Oh Θ(N 2) and smaller O(N 2)
N 2

100 N
 22 N log N + 3 N

develop
upper bounds

Big Omega Θ(N 2) and larger Ω(N 2)
9000 N 2

N 5

 N 3 + 22 N log N + 3 N

develop
lower bounds

Tilde notation vs. big-Oh notation

We use tilde notation whenever possible.

• Big-Oh notation suppresses leading constant.

• Big-Oh notation only provides upper bound (not lower bound).

40

time/memory

input size

f(N)
values represented

by O(f(N))

input size

c f(N)

values represented
by ~ c f(N)

time/memory

41

‣ estimating running time
‣ mathematical analysis
‣ order-of-growth hypotheses
‣ input models
‣ measuring space

42

Typical memory requirements for primitive types in Java

Bit. 0 or 1.
Byte. 8 bits.
Megabyte (MB). 1 million bytes.
Gigabyte (GB). 1 billion bytes.

type bytes

boolean 1

byte 1

char 2

int 4

float 4

long 8

double 8

43

Typical memory requirements for arrays in Java

Array overhead. 16 bytes.

Ex. An N-by-N array of doubles consumes ~ 8N2 bytes of memory.

type bytes

char[] 2N + 16

int[] 4N + 16

double[] 8N + 16

type bytes

char[][] 2N2 + 20N + 16

int[][] 4N2 + 20N + 16

double[][] 8N2 + 20N + 16

one-dimensional arrays two-dimensional arrays

44

Typical memory requirements for objects in Java

Object overhead. 8 bytes.
Reference. 4 bytes.

Ex 1. A Complex object consumes 24 bytes of memory.

8 bytes

public class Complex
{
 private double re;
 private double im;
 ...
}

8 bytes

8 bytes overhead for object

24 bytes

4914.1 Performance

object, typically 8 bytes. For example, a Charge (PROGRAM 3.2.1) object uses 32
bytes (8 bytes of overhead and 8 bytes for each of its three double instance vari-
ables). Similarly, a Complex object uses 24 bytes. Since many programs create mil-
lions of Color objects, typical Java implementations pack the information needed
for them into 32 bits (three bytes for RGB values and one for transparency). A refer-
ence to an object typically uses 4 bytes of memory. When a data type contains a
reference to an object, we have to account separately for the 4 bytes for the reference
and the 8 bytes overhead for each object plus the memory needed for the object’s
instance variables. In particular, a Document
(PROGRAM 3.3.4) object uses 16 bytes (8 bytes of
overhead and 4 bytes each for the references to
the String and Vector objects) plus the mem-
ory needed for the String and Vector objects
themselves (which we consider next).

String objects. We account for memory in a
String object in the same way as for any other
object. Java's implementation of a String ob-
ject consumes 24 bytes: a reference to a char-
acter array (4 bytes), three int values (4 bytes
each), and the object overhead (8 bytes). The
first int value is an offset into the character ar-
ray; the second is a count (the string length). In
terms of the instance variable names in the fig-
ure at right, the string that is represented con-
sists of the characters val[offset] through
val[offset + count - 1]. The third int value
in String objects is a hash code that saves re-
computation in certain circumstances that
need not concern us now. In addition to the 24
bytes for the String object, we must account
for the memory needed for the characters
themselves, which are in the array. We account
for this space next.

 rx

public class Charge
{
 private double rx;
 private double ry;
 private double q;
...
}

 ry
 q

Typical object memory requirements

object
overhead

 r g b a

public class Color
{
 private byte r;
 private byte g;
 private byte b;
 private byte a;
...
}

object
overhead

 re

public class Complex
{
 private double re;
 private double im;
...
}

 im

object
overhead

 id

public class Document
{
 private String id;
 private Vector profile;
...
}

 profile

object
overhead

32 bytesCharge object (Program 3.2.1)

 value

public class String
{
 private char[] val;
 private int offset;
 private int count;
 private int hash;
...
}

 offset
 count
 hash

object
overhead

24 bytes + char arrayString object (Java library)

Complex object (Program 3.2.6)

Color object (Java library)

Document object (Program 3.3.4)

24 bytes

12 bytes

16 bytes + string + vector

references

reference

double
values

double
values

int
values

byte
values

45

Typical memory requirements for objects in Java

Object overhead. 8 bytes.
Reference. 4 bytes.

Ex 2. A virgin String of length N consumes ~ 2N bytes of memory.

4 bytes

public class String
{
 private int offset;
 private int count;
 private int hash;
 private char[] value;
 ...
}

4 bytes

4 bytes

4 bytes for reference
(plus 2N + 16 bytes for array)

8 bytes overhead for object

2N + 40 bytes

4914.1 Performance

object, typically 8 bytes. For example, a Charge (PROGRAM 3.2.1) object uses 32
bytes (8 bytes of overhead and 8 bytes for each of its three double instance vari-
ables). Similarly, a Complex object uses 24 bytes. Since many programs create mil-
lions of Color objects, typical Java implementations pack the information needed
for them into 32 bits (three bytes for RGB values and one for transparency). A refer-
ence to an object typically uses 4 bytes of memory. When a data type contains a
reference to an object, we have to account separately for the 4 bytes for the reference
and the 8 bytes overhead for each object plus the memory needed for the object’s
instance variables. In particular, a Document
(PROGRAM 3.3.4) object uses 16 bytes (8 bytes of
overhead and 4 bytes each for the references to
the String and Vector objects) plus the mem-
ory needed for the String and Vector objects
themselves (which we consider next).

String objects. We account for memory in a
String object in the same way as for any other
object. Java's implementation of a String ob-
ject consumes 24 bytes: a reference to a char-
acter array (4 bytes), three int values (4 bytes
each), and the object overhead (8 bytes). The
first int value is an offset into the character ar-
ray; the second is a count (the string length). In
terms of the instance variable names in the fig-
ure at right, the string that is represented con-
sists of the characters val[offset] through
val[offset + count - 1]. The third int value
in String objects is a hash code that saves re-
computation in certain circumstances that
need not concern us now. In addition to the 24
bytes for the String object, we must account
for the memory needed for the characters
themselves, which are in the array. We account
for this space next.

 rx

public class Charge
{
 private double rx;
 private double ry;
 private double q;
...
}

 ry
 q

Typical object memory requirements

object
overhead

 r g b a

public class Color
{
 private byte r;
 private byte g;
 private byte b;
 private byte a;
...
}

object
overhead

 re

public class Complex
{
 private double re;
 private double im;
...
}

 im

object
overhead

 id

public class Document
{
 private String id;
 private Vector profile;
...
}

 profile

object
overhead

32 bytesCharge object (Program 3.2.1)

 value

public class String
{
 private char[] val;
 private int offset;
 private int count;
 private int hash;
...
}

 offset
 count
 hash

object
overhead

24 bytes + char arrayString object (Java library)

Complex object (Program 3.2.6)

Color object (Java library)

Document object (Program 3.3.4)

24 bytes

12 bytes

16 bytes + string + vector

references

reference

double
values

double
values

int
values

byte
values

46

Example 1

Q. How much memory does QuickUWPC use as a function of N ?
A.

public class QuickUWPC
{
 private int[] id;
 private int[] sz;

 public QuickUWPC(int N)
 {
 id = new int[N];
 sz = new int[N];
 for (int i = 0; i < N; i++) id[i] = i;
 for (int i = 0; i < N; i++) sz[i] = 1;
 }

 public boolean find(int p, int q)
 { ... }

 public void unite(int p, int q)
 { ... }
}

47

Example 2

Q. How much memory does this code fragment use as a function of N ?
A.

Remark. Java automatically reclaims memory when it is no longer in use.

...
int N = Integer.parseInt(args[0]);
for (int i = 0; i < N; i++) {

 int[] a = new int[N];
 ...
}

not always easy for Java to know

Turning the crank: summary

In principle, accurate mathematical models are available.
In practice, approximate mathematical models are easily achieved.

Timing may be flawed?

• Limits on experiments insignificant compared to
other sciences.

• Mathematics might be difficult?

• Only a few functions seem to turn up.

• Doubling hypothesis cancels complicated constants.

Actual data might not match input model?

• Need to understand input to effectively process it.

• Approach 1: design for the worst case.

• Approach 2: randomize, depend on probabilistic guarantee.

48

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 22, 2010 12:41:21 PM

1.3 Stacks and Queues

‣ stacks
‣ dynamic resizing
‣ queues
‣ generics
‣ iterators
‣ applications

2

Stacks and queues

Fundamental data types.

• Values: sets of objects

• Operations: insert, remove, test if empty.

• Intent is clear when we insert.

• Which item do we remove?

Stack. Remove the item most recently added.
Analogy. Cafeteria trays, Web surfing.

Queue. Remove the item least recently added.
Analogy. Registrar's line.

FIFO = "first in first out"

LIFO = "last in first out"

enqueue dequeue

pop

push

3

Client, implementation, interface

Separate interface and implementation.
Ex: stack, queue, priority queue, symbol table, union-find, .…

Benefits.

• Client can't know details of implementation ⇒
client has many implementation from which to choose.

• Implementation can't know details of client needs ⇒
many clients can re-use the same implementation.

• Design: creates modular, reusable libraries.

• Performance: use optimized implementation where it matters.

Client: program using operations defined in interface.
Implementation: actual code implementing operations.
Interface: description of data type, basic operations.

Text

4

‣ stacks
‣ dynamic resizing
‣ queues
‣ generics
‣ iterators
‣ applications

Stack operations.

• push() Insert a new item onto stack.
• pop() Remove and return the item most recently added.

• isEmpty() Is the stack empty?

5

Stacks

pop

push

public static void main(String[] args)
{
 StackOfStrings stack = new StackOfStrings();
 while (!StdIn.isEmpty())
 {
 String item = StdIn.readString();
 if (item.equals("-")) StdOut.print(stack.pop());
 else stack.push(item);
 }
}

% more tobe.txt
to be or not to - be - - that - - - is

% java StackOfStrings < tobe.txt
to be not that or be

6

Stack pop: linked-list implementation

best the was it

best was it first = first.next;

best the was it return item;

first

first

first

of String item = first.item;

the

"of"

"of"

7

Stack push: linked-list implementation

best the was it

oldfirst

best the was it

best the was it

first

of

Node oldfirst = first;

first.item = "of";
first.next = oldfirst;

best the was it

oldfirst

first = new Node();

first oldfirst

first

first

8

Stack: linked-list implementation

public class StackOfStrings
{
 private Node first = null;

 private class Node
 {
 String item;
 Node next;
 }

 public boolean isEmpty()
 { return first == null; }

 public void push(String item)
 {
 Node oldfirst = first;
 first = new Node();
 first.item = item;
 first.next = oldfirst;
 }

 public String pop()
 {
 if (isEmpty()) throw new RuntimeException();
 String item = first.item;
 first = first.next;
 return item;
 }
}

"inner class"

stack underflow

9

Stack: linked-list trace560 Algorithms and Data Structures

Trace of LinkedStackOfStrings test client

to

to

be

to

be
or

null

null

null

be

or
not

to

or

not
to

null

be

be

orto not

or

not
be

be

orbe not

to

benot

or

null

be

or
that

to

bethat or

null

toor be

be to

to

to

StdIn StdOut

be

or

not

to

-

be

-

-

that

-

-

-

is is

to
null

to
null

to
null

to
null

be
to

null

introJava.indb 560 1/4/08 10:43:11 AM

10

Stack: array implementation

Array implementation of a stack.

• Use array s[] to store N items on stack.
• push(): add new item at s[N].

• pop(): remove item from s[N-1].

s[]

N capacity = 10

it was the best of times null null null null

0 1 2 3 4 5 6 7 8 9

public class StackOfStrings
{
 private String[] s;
 private int N = 0;

 public StackOfStrings(int capacity)
 { s = new String[capacity]; }

 public boolean isEmpty()
 { return N == 0; }

 public void push(String item)
 { s[N++] = item; }

 public String pop()
 { return s[--N]; }
}

11

Stack: array implementation

this version avoids "loitering"

garbage collector only reclaims memory
if no outstanding references

public String pop()
{
 String item = s[--N];
 s[N] = null;
 return item;
}

decrement N;
then use to index into array

a cheat
(stay tuned)

12

‣ stacks
‣ dynamic resizing
‣ queues
‣ generics
‣ iterators
‣ applications

13

Stack: dynamic array implementation

Problem. Requiring client to provide capacity does not implement API!
Q. How to grow and shrink array?

First try.
• push(): increase size of s[] by 1.

• pop(): decrease size of s[] by 1.

Too expensive.

• Need to copy all item to a new array.

• Inserting first N items takes time proportional to 1 + 2 + … + N ~ N2/2.

Goal. Ensure that array resizing happens infrequently.

infeasible for large N

14

Q. How to grow array?
A. If array is full, create a new array of twice the size, and copy items.

Consequence. Inserting first N items takes time proportional to N (not N2).

Stack: dynamic array implementation

1 + 2 + 4 + … + N/2 + N ~ 2N

"repeated doubling"

 public StackOfStrings() { s = new String[2]; }

 public void push(String item)
 {
 if (N == s.length) resize(2 * s.length);
 s[N++] = item;
 }

 private void resize(int capacity)
 {
 String[] dup = new String[capacity];
 for (int i = 0; i < N; i++)
 dup[i] = s[i];
 s = dup;
 }

15

Q. How to shrink array?

First try.

• push(): double size of s[] when array is full.
• pop(): halve size of s[] when array is half full.

Too expensive

• Consider push-pop-push-pop-… sequence when array is full.

• Takes time proportional to N per operation.

Stack: dynamic array implementation

"thrashing"

it was the best of null null null

it was the best

it was the best of null null null

it was the best

N = 5

N = 4

N = 5

N = 4

16

Q. How to shrink array?

Efficient solution.

• push(): double size of s[] when array is full.
• pop(): halve size of s[] when array is one-quarter full.

Invariant. Array is always between 25% and 100% full.

Stack: dynamic array implementation

 public String pop()
 {
 String item = s[--N];
 s[N] = null;
 if (N > 0 && N == s.length/4) resize(s.length / 2);
 return item;
 }

17

Stack: dynamic array implementation trace
564 Algorithms and Data Structures

that the appropriate test is whether the stack size is less than one-fourth the array
size. Then, after the array is halved, it will be about half full and can accommodate
a substantial number of push() and pop() operations before having to change
the size of the array again. This characteristic is important: for example, if we were
to use to policy of halving the array when the stack size is one-half the array size,
then the resulting array would be full, which would mean it would be doubled for a
push(), leading to the possibility of an expensive cycle of doubling and halving.

Amortized analysis. This doubling and halving strategy is a judicious tradeoff
between wasting space (by setting the size of the array to be too big and leaving
empty slots) and wasting time (by reorganizing the array after each insertion).
The specific strategy in DoublingStackOfStrings guarantees that the stack never
overflows and never becomes less than one-quarter full (unless the stack is empty,
in which case the array size is 1). If you are mathematically inclined, you might en-
joy proving this fact with mathematical induction (see EXERCISE 4.3.20). More im-
portant, we can prove that the cost of doubling and halving is always absorbed (to
within a constant factor) in the cost of other stack operations. Again, we leave the
details to an exercise for the mathematically inclined, but the idea is simple: when

StdIn StdOut N a.length
a

0 1 2 3 4 5 6 7

0 1 null

to 1 1 to

be 2 2 to be

or 3 4 to be or null

not 4 4 to be or not

to 5 8 to be or not to null null null

- to 4 8 to be or not null null null null

be 5 8 to be or not be null null null

- be 4 8 to be or not null null null null

- not 3 8 to be or null null null null null

that 4 8 to be or that null null null null

- that 3 8 to be or null null null null null

- or 2 4 to be null null

- be 1 2 to null

is 2 2 to is

Trace of DoublingStackOfStrings test client

introJava.indb 564 1/4/08 10:43:12 AM

18

Amortized analysis. Average running time per operation over
a worst-case sequence of operations.

Proposition. Starting from empty data structure, any sequence of M push and
pop ops takes time proportional to M.

Remark. Recall, WQUPC used amortized bound.

Amortized analysis

worst best amortized

construct

push

pop

1 1 1

N 1 1

N 1 1

doubling or shrinking

running time for doubling stack with N items

19

Linked list implementation. ~ 16N bytes.

Doubling array. Between ~ 4N (100% full) and ~ 16N (25% full).

Remark. Our analysis doesn't include the memory for the items themselves.

Stack implementations: memory usage

4 bytes

private class Node
{
 String item;
 Node next;
}

4 bytes

8 bytes overhead for object

16 bytes per item

public class DoublingStackOfStrings
{
 private String[] s;
 private int N = 0;
 …
}

4 bytes × array size
4 bytes

20

Stack implementations: dynamic array vs. linked List

Tradeoffs. Can implement with either array or linked list;
client can use interchangeably. Which is better?

Linked list.

• Every operation takes constant time in worst-case.

• Uses extra time and space to deal with the links.

Array.

• Every operation takes constant amortized time.

• Less wasted space.

21

‣ stacks
‣ dynamic resizing
‣ queues
‣ generics
‣ iterators
‣ applications

Queue operations.

• enqueue() Insert a new item onto queue.
• dequeue() Delete and return the item least recently added.

• isEmpty() Is the queue empty?

22

Queues

public static void main(String[] args)
{
 QueueOfStrings q = new QueueOfStrings();
 while (!StdIn.isEmpty())
 {
 String item = StdIn.readString();
 if (item.equals("-")) StdOut.print(q.dequeue());
 else q.enqueue(item);
 }
}

% more tobe.txt
to be or not to - be - - that - - - is

% java QueueOfStrings < tobe.txt
to be or not to be

23

Queue dequeue: linked list implementation

was the best of

was the best of first = first.next;

was the best of return item;

first

first

first

it String item = first.item;

last

last

last

"it"

"it"

24

Queue enqueue: linked list implementation

last = new Node();
last.item = "of";
last.next = null;

oldlast.next = last;

Node oldlast = last;

first

it was the best

oldlast

last

first

it was the best

last

it was the best of

it was the best of

first last

first last

oldlast

oldlast

25

 Queue: linked list implementation

public class QueueOfStrings
{
 private Node first, last;

 private class Node
 { /* same as in StackOfStrings */ }

 public boolean isEmpty()
 { return first == null; }

 public void enqueue(String item)
 {
 Node oldlast = last;
 last = new Node();
 last.item = item;
 last.next = null;
 if (isEmpty()) first = last;
 else oldlast.next = last;
 }

 public String dequeue()
 {
 String item = first.item;
 first = first.next;
 if (isEmpty()) last = null;
 return item;
 }
}

26

Queue: dynamic array implementation

Array implementation of a queue.

• Use array q[] to store items in queue.
• enqueue(): add new item at q[tail].

• dequeue(): remove item from q[head].

• Update head and tail modulo the capacity.

• Add repeated doubling and shrinking.

q[]

head tail capacity = 10

null null the best of times null null null null

0 1 2 3 4 5 6 7 8 9

27

‣ stacks
‣ dynamic resizing
‣ queues
‣ generics
‣ iterators
‣ applications

28

Parameterized stack

We implemented: StackOfStrings.
We also want: StackOfURLs, StackOfCustomers, StackOfInts, etc?

Attempt 1. Implement a separate stack class for each type.

• Rewriting code is tedious and error-prone.

• Maintaining cut-and-pasted code is tedious and error-prone.

@#$*! most reasonable approach until Java 1.5.
[hence, used in Algorithms in Java, 3rd edition]

We implemented: StackOfStrings.
We also want: StackOfURLs, StackOfCustomers, StackOfInts, etc?

Attempt 2. Implement a stack with items of type Object.

• Casting is required in client.

• Casting is error-prone: run-time error if types mismatch.

 StackOfObjects s = new StackOfObjects();
 Apple a = new Apple();
 Orange b = new Orange();
 s.push(a);
 s.push(b);
 a = (Apple) (s.pop());

29

Parameterized stack

run-time error

30

Parameterized stack

We implemented: StackOfStrings.
We also want: StackOfURLs, StackOfCustomers, StackOfInts, etc?

Attempt 3. Java generics.

• Avoid casting in both client and implementation.

• Discover type mismatch errors at compile-time instead of run-time.

Guiding principles. Welcome compile-time errors; avoid run-time errors.

 Stack<Apple> s = new Stack<Apple>();
 Apple a = new Apple();
 Orange b = new Orange();
 s.push(a);
 s.push(b);
 a = s.pop();

compile-time error

type parameter

public class LinkedStackOfStrings
{
 private Node first = null;

 private class Node
 {
 String item;
 Node next;
 }

 public boolean isEmpty()
 { return first == null; }

 public void push(String item)
 {
 Node oldfirst = first;
 first = new Node();
 first.item = item;
 first.next = oldfirst;
 }

 public String pop()
 {
 String item = first.item;
 first = first.next;
 return item;
 }
}

public class Stack<Item>
{
 private Node first = null;

 private class Node
 {
 Item item;
 Node next;
 }

 public boolean isEmpty()
 { return first == null; }

 public void push(Item item)
 {
 Node oldfirst = first;
 first = new Node();
 first.item = item;
 first.next = oldfirst;
 }

 public Item pop()
 {
 Item item = first.item;
 first = first.next;
 return item;
 }
}

31

Generic stack: linked list implementation

generic type name

public class ArrayStackOfStrings
{
 private String[] s;
 private int N = 0;

 public StackOfStrings(int capacity)
 { s = new String[capacity]; }

 public boolean isEmpty()
 { return N == 0; }

 public void push(String item)
 { s[N++] = item; }

 public String pop()
 { return s[--N]; }
}

public class ArrayStack<Item>
{
 private Item[] s;
 private int N = 0;

 public Stack(int capacity)
 { s = new Item[capacity]; }

 public boolean isEmpty()
 { return N == 0; }

 public void push(Item item)
 { s[N++] = item; }

 public Item pop()
 { return s[--N]; }
}

32

Generic stack: array implementation

the way it should be

@#$*! generic array creation not allowed in Java

33

Generic stack: array implementation

public class ArrayStack<Item>
{
 private Item[] s;
 private int N = 0;

 public Stack(int capacity)
 { s = (Item[]) new Object[capacity]; }

 public boolean isEmpty()
 { return N == 0; }

 public void push(Item item)
 { s[N++] = item; }

 public Item pop()
 { return s[--N]; }
}

the ugly cast

the way it is

public class ArrayStackOfStrings
{
 private String[] s;
 private int N = 0;

 public StackOfStrings(int capacity)
 { s = new String[capacity]; }

 public boolean isEmpty()
 { return N == 0; }

 public void push(String item)
 { s[N++] = item; }

 public String pop()
 { return s[--N]; }
}

34

Generic data types: autoboxing

Q. What to do about primitive types?

Wrapper type.

• Each primitive type has a wrapper object type.

• Ex: Integer is wrapper type for int.

Autoboxing. Automatic cast between a primitive type and its wrapper.

Syntactic sugar. Behind-the-scenes casting.

Bottom line. Client code can use generic stack for any type of data.

Stack<Integer> s = new Stack<Integer>();
s.push(17); // s.push(new Integer(17));
int a = s.pop(); // int a = s.pop().intValue();

35

Autoboxing challenge

Q. What does the following program print?

Best practice. Avoid using wrapper types whenever possible.

public class Autoboxing {

 public static void cmp(Integer a, Integer b) {
 if (a < b) StdOut.printf("%d < %d\n", a, b);
 else if (a == b) StdOut.printf("%d == %d\n", a, b);
 else StdOut.printf("%d > %d\n", a, b);
 }

 public static void main(String[] args) {
 cmp(new Integer(42), new Integer(42));
 cmp(43, 43);
 cmp(142, 142);
 }
} % java Autoboxing

42 > 42
43 == 43
142 > 142

36

Generics

Caveat. Java generics can be mystifying at times.

This course. Restrict attention to "pure generics."

public class Collections
{
 ...
 public static<T> void copy(List<? super T> dest, List<? extends T> src)
 {
 for (int i = 0; i < src.size(); i++)
 dest.set(i, src.get(i));
 }
}

avoid mixing generics with inheritance

mixing generics with inheritance

37

‣ stacks
‣ dynamic resizing
‣ queues
‣ generics
‣ iterators
‣ applications

Design challenge. Support iteration over stack items by client,
without revealing the internal representation of the stack.

Java solution. Make stack implement the Iterable interface.

Iteration

38

s[]

N

it was the best of times null null null null

0 1 2 3 4 5 6 7 8 9

i

best the was it

first

of

current

null

public interface Iterator<Item>
{
 boolean hasNext();
 Item next();
 void remove();
}

Iterators

Q. What is an Iterable ?
A. Has a method that returns an Iterator.

Q. What is an Iterator ?
A. Has methods hasNext() and next().

Q. Why make data structures Iterable ?
A. Java supports elegant client code.

39

optional; use
at your own risk

“foreach” statement equivalent code

for (String s : stack)
 StdOut.println(s);

Iterator<String> i = stack.iterator();
while (i.hasNext())
{
 String s = i.next();
 StdOut.println(s);
}

public interface Iterable<Item>
{
 Iterator<Item> iterator();
}

Stack iterator: linked list implementation

40

import java.util.Iterator;

public class Stack<Item> implements Iterable<Item>
{
 ...

 public Iterator<Item> iterator() { return new ListIterator(); }

 private class ListIterator implements Iterator<Item>
 {
 private Node current = first;

 public boolean hasNext() { return current != null; }
 public void remove() { /* not supported */ }
 public Item next()
 {
 Item item = current.item;
 current = current.next;
 return item;
 }
 }
}

best the was it

first

of

current

null

Stack iterator: array implementation

41

import java.util.Iterator;

public class Stack<Item> implements Iterable<Item>
{
 …

 public Iterator<Item> iterator() { return new ArrayIterator(); }

 private class ArrayIterator implements Iterator<Item>
 {
 private int i = N;

 public boolean hasNext() { return i > 0; }
 public void remove() { /* not supported */ }
 public Item next() { return s[--i]; }
 }
}

s[]

N

it was the best of times null null null null

0 1 2 3 4 5 6 7 8 9

i

42

‣ stacks
‣ dynamic resizing
‣ queues
‣ generics
‣ iterators
‣ applications

43

Java collections library

java.util.List API.

• boolean isEmpty() Is the list empty?
• int size() Return number of items on the list.

• void add(Item item) Insert a new item to end of list.
• void add(int index, Item item) Insert item at specified index.

• Item get(int index) Return item at given index.

• Item remove(int index) Return and delete item at given index.
• Item set(int index Item item) Replace element at given index.

• boolean contains(Item item) Does the list contain the item?
• Iterator<Item> iterator() Return iterator.

• …

Implementations.

• java.util.ArrayList implements API using an array.
• java.util.LinkedList implements API using a (doubly) linked list.

44

Java collections library

java.util.Stack.

• Supports push(), pop(), size(), isEmpty(), and iteration.

• Also implements java.util.List interface from previous slide,
e.g., set(), get(), and contains().

• Bloated and poorly-designed API ⇒ don't use.

java.util.Queue.

• An interface, not an implementation of a queue.

Best practices. Use our implementations of Stack and Queue if you need a
stack or a queue.

45

War story (from COS 226)

Generate random open sites in an N-by-N percolation system.

• Jenny: pick (i, j) at random; if closed, repeat.
Takes ~ c1 N2 seconds.

• Kenny: maintain a java.util.ArrayList of open sites.
Pick an index at random and delete.
Takes ~ c1 N4 seconds.

Q. Why is Kenny's code so slow?

Lesson. Don't use a library until you understand its API!
COS 226. Can't use a library until we've implemented it in class.

46

Stack applications

Real world applications.

• Parsing in a compiler.

• Java virtual machine.

• Undo in a word processor.

• Back button in a Web browser.

• PostScript language for printers.

• Implementing function calls in a compiler.

47

Function calls

How a compiler implements a function.

• Function call: push local environment and return address.

• Return: pop return address and local environment.

Recursive function. Function that calls itself.
Note. Can always use an explicit stack to remove recursion.

 static int gcd(int p, int q) {
 if (q == 0) return p;
 else return gcd(q, p % q);
 }

gcd (216, 192)

 static int gcd(int p, int q) {
 if (q == 0) return p;
 else return gcd(q, p % q);
 }

gcd (192, 24)

 static int gcd(int p, int q) {
 if (q == 0) return p;
 else return gcd(q, p % q);
 }

gcd (24, 0)
p = 192, q = 24

p = 216, q = 192

p = 24, q = 0

Goal. Evaluate infix expressions.

Two-stack algorithm. [E. W. Dijkstra]

• Value: push onto the value stack.

• Operator: push onto the operator stack.

• Left parens: ignore.

• Right parens: pop operator and two values;
push the result of applying that operator
to those values onto the operand stack.

Context. An interpreter!

(1 + ((2 + 3) * (4 * 5)))

48

Arithmetic expression evaluation

5734.3 Stacks and Queues

it is easy to convince yourself that it computes the proper value: any time the algo-
rithm encounters a subexpression consisting of two operands separated by an op-
erator, all surrounded by parentheses, it leaves the result of performing that opera-
tion on those operands on the operand stack. The result is the same as if that value
had appeared in the input instead of the sub-
expression, so we can think of replacing the
subexpression by the value to get an expression
that would yield the same result. We can apply
this argument again and again until we get a
single value. For example, the algorithm com-
putes the same value of all of these expres-
sions:

(1 + ((2 + 3) * (4 * 5)))
(1 + (5 * (4 * 5)))
(1 + (5 * 20))
(1 + 100)
101

Evaluate (PROGRAM 4.3.5) is an implemen-
tation of this method. This code is a simple
example of an interpreter : a program that in-
terprets the computation specified by a given
string and performs the computation to ar-
rive at the result. A compiler is a program that
converts the string into code on a lower-level
machine that can do the job. This conversion
is a more complicated process than the step-
by-step conversion used by an interpreter, but
it is based on the same underlying mechanism.
Initially, Java was based on using an interpret-
er. Now, however, the Java system includes a
compiler that converts arithmetic expressions
(and, more generally, Java programs) into code
for the Java virtual machine, an imaginary ma-
chine that is easy to simulate on an actual com-
puter. Trace of expression evaluation (Program 4.3.5)

(1 + ((2 + 3) * (4 * 5)))

+ ((2 + 3) * (4 * 5)))

((2 + 3) * (4 * 5)))

+ 3) * (4 * 5)))

3) * (4 * 5)))

) * (4 * 5)))

* (4 * 5)))

(4 * 5)))

* 5)))

5)))

)))

))

)

 1

 1
 +

 1 2
 +

 1 2
 + +

 1 2 3
 + +

 1 5
 +

 1 5
 + *

 1 5 4
 + *

 1 5 4
 + * *

 1 5 4 5
 + * *

 1 5 20
 + *

 1 100
 +

 101

introJava.indb 573 1/3/08 4:16:56 PM

operand operator

value stack
operator stack

49

Arithmetic expression evaluation

public class Evaluate
{
 public static void main(String[] args)
 {
 Stack<String> ops = new Stack<String>();
 Stack<Double> vals = new Stack<Double>();
 while (!StdIn.isEmpty()) {
 String s = StdIn.readString();
 if (s.equals("(")) ;
 else if (s.equals("+")) ops.push(s);
 else if (s.equals("*")) ops.push(s);
 else if (s.equals(")"))
 {
 String op = ops.pop();
 if (op.equals("+")) vals.push(vals.pop() + vals.pop());
 else if (op.equals("*")) vals.push(vals.pop() * vals.pop());
 }
 else vals.push(Double.parseDouble(s));
 }
 StdOut.println(vals.pop());
 }
}

% java Evaluate
(1 + ((2 + 3) * (4 * 5)))
101.0

50

Correctness

Q. Why correct?
A. When algorithm encounters an operator surrounded by two values within
parentheses, it leaves the result on the value stack.

as if the original input were:

Repeating the argument:

Extensions. More ops, precedence order, associativity.

(1 + ((2 + 3) * (4 * 5)))

(1 + (5 * (4 * 5)))

(1 + (5 * 20))
(1 + 100)
101

51

Stack-based programming languages

Observation 1. The 2-stack algorithm computes the same value if the
operator occurs after the two values.

Observation 2. All of the parentheses are redundant!

Bottom line. Postfix or "reverse Polish" notation.
Applications. Postscript, Forth, calculators, Java virtual machine, …

Jan Lukasiewicz

1 2 3 + 4 5 * * +

(1 ((2 3 +) (4 5 *) *) +)

Page description language.

• Explicit stack.

• Full computational model

• Graphics engine.

Basics.

• %!: “I am a PostScript program.”

• Literal: “push me on the stack.”

• Function calls take arguments from stack.

• Turtle graphics built in.

PostScript

52

a PostScript program

%!
72 72 moveto
0 72 rlineto
72 0 rlineto
0 -72 rlineto
-72 0 rlineto
2 setlinewidth
stroke

its output

PostScript

Data types.

• Basic: integer, floating point, boolean, ...

• Graphics: font, path, curve,

• Full set of built-in operators.

Text and strings.

• Full font support.
• show (display a string, using current font).

• cvs (convert anything to a string).

53

System.out.print()

toString()

Square root of 2:
1.41421

%!
/Helvetica-Bold findfont 16 scalefont setfont
72 168 moveto
(Square root of 2:) show
72 144 moveto
2 sqrt 10 string cvs show

Variables (and functions).

• Identifiers start with /.
• def operator associates id with value.

• Braces.

• args on stack.

PostScript

54

function
definition

function calls

%!
/box
{
 /sz exch def
 0 sz rlineto
 sz 0 rlineto
 0 sz neg rlineto
 sz neg 0 rlineto
} def

72 144 moveto
72 box
288 288 moveto
144 box
2 setlinewidth
stroke

PostScript

For loop.

• “from, increment, to” on stack.

• Loop body in braces.

• for operator.

If-else conditional.

• Boolean on stack.

• Alternatives in braces.
• if operator.

... (hundreds of operators)

55

%!
\box
{
 ...
}

1 1 20
{ 19 mul dup 2 add moveto 72 box }
for
stroke

PostScript

Application 1. All figures in Algorithms in Java, 3rd edition: figures created
directly in PostScript.

Application 2. All figures in Algorithms, 4th edition: enhanced version of
StdDraw saves to PostScript for vector graphics.

56

See page 218

%!
72 72 translate

/kochR
 {
 2 copy ge { dup 0 rlineto }
 {
 3 div
 2 copy kochR 60 rotate
 2 copy kochR -120 rotate
 2 copy kochR 60 rotate
 2 copy kochR
 } ifelse
 pop pop
 } def

0 0 moveto 81 243 kochR
0 81 moveto 27 243 kochR
0 162 moveto 9 243 kochR
0 243 moveto 1 243 kochR
stroke

57

Queue applications

Familiar applications.

• iTunes playlist.

• Data buffers (iPod, TiVo).

• Asynchronous data transfer (file IO, pipes, sockets).

• Dispensing requests on a shared resource (printer, processor).

Simulations of the real world.

• Traffic analysis.

• Waiting times of customers at call center.

• Determining number of cashiers to have at a supermarket.

M/M/1 queue.

• Customers arrive according to Poisson process at rate of λ per minute.

• Customers are serviced with rate of µ per minute.

Q. What is average wait time W of a customer in system?
Q. What is average number of customers L in system?

58

M/M/1 queuing model

Arrival rate λ Departure rate µ

Infinite queue Server

interarrival time has exponential distribution Pr[X ≤ x] = 1 - e - λ x

service time has exponential distribution Pr[X ≤ x] = 1 - e - µ x

M/M/1 queuing model: example simulation

59

An M/D/1 queue

0

time (seconds)

10

20

30

0

0 1

0 1

1 2

2

2

1

4

3

3

3 4 5

5

4 5

3 4 5

arrival

0
2
7
17
19
21

departure

5
10
15
23
28
30

5
8
8
6
9
9

wait
0

1

2

3

4

5

An M/D/1 queue

0

time (seconds)

10

20

30

0

0 1

0 1

1 2

2

2

1

4

3

3

3 4 5

5

4 5

3 4 5

arrival

0
2
7
17
19
21

departure

5
10
15
23
28
30

5
8
8
6
9
9

wait
0

1

2

3

4

5

60

M/M/1 queuing model: event-based simulation

public class MM1Queue
{
 public static void main(String[] args) {
 double lambda = Double.parseDouble(args[0]); // arrival rate
 double mu = Double.parseDouble(args[1]); // service rate
 double nextArrival = StdRandom.exp(lambda);
 double nextService = nextArrival + StdRandom.exp(mu);

 Queue<Double> queue = new Queue<Double>();
 Histogram hist = new Histogram("M/M/1 Queue", 60);

 while (true)
 {
 while (nextArrival < nextService)
 {
 queue.enqueue(nextArrival);
 nextArrival += StdRandom.exp(lambda);
 }

 double arrival = queue.dequeue();
 double wait = nextService - arrival;
 hist.addDataPoint(Math.min(60, (int) (Math.round(wait))));
 if (queue.isEmpty()) nextService = nextArrival + StdRandom.exp(mu);
 else nextService = nextService + StdRandom.exp(mu);
 }
 }
}

next event is an arrival

next event is a service completion

Observation. If service rate µ is much larger than arrival rate λ,
customers gets good service.

M/M/1 queuing model: experiments

61

% java MM1Queue .2 .333

Observation. As service rate µ approaches arrival rate λ, services goes to h***.

M/M/1 queuing model: experiments

62

% java MM1Queue .2 .25

Observation. As service rate µ approaches arrival rate λ, services goes to h***.

M/M/1 queuing model: experiments

63

% java MM1Queue .2 .21

M/M/1 queue. Exact formulas known.

More complicated queueing models. Event-based simulation essential!
Queueing theory. See ORF 309.

M/M/1 queuing model: analysis

64

Little’s Law

wait time W and queue length L approach infinity
as service rate approaches arrival rate

W =
1

µ− λ
, L = λ W

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 22, 2010 1:20:14 PM

2.1 Elementary Sorts

‣ rules of the game
‣ selection sort
‣ insertion sort
‣ sorting challenges
‣ shellsort

Ex. Student record in a University.

Sort. Rearrange array of N objects into ascending order.

2

Sorting problem

Goal. Sort any type of data.
Ex 1. Sort random numbers in ascending order.

3

Sample sort client

% java Experiment 10
0.08614716385210452
0.09054270895414829
0.10708746304898642
0.21166190071646818
0.363292849257276
0.460954145685913
0.5340026311350087
0.7216129793703496
0.9003500354411443
0.9293994908845686

public class Experiment
{
 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 Double[] a = new Double[N];
 for (int i = 0; i < N; i++)
 a[i] = StdRandom.uniform();
 Insertion.sort(a);
 for (int i = 0; i < N; i++)
 StdOut.println(a[i]);
 }
}

Goal. Sort any type of data.
Ex 2. Sort strings from standard input in alphabetical order.

4

Sample sort client

% more words3.txt
bed bug dad yet zoo ... all bad yes

% java StringSorter < words.txt
all bad bed bug dad ... yes yet zoo

public class StringSorter
{
 public static void main(String[] args)
 {
 String[] a = StdIn.readAll().split("\\s+");
 Insertion.sort(a);
 for (int i = 0; i < a.length; i++)
 StdOut.println(a[i]);
 }
}

Goal. Sort any type of data.
Ex 3. Sort the files in a given directory by filename.

5

% java FileSorter .
Insertion.class
Insertion.java
InsertionX.class
InsertionX.java
Selection.class
Selection.java
Shell.class
Shell.java
ShellX.class
ShellX.java

Sample sort client

import java.io.File;
public class FileSorter
{
 public static void main(String[] args)
 {
 File directory = new File(args[0]);
 File[] files = directory.listFiles();
 Insertion.sort(files);
 for (int i = 0; i < files.length; i++)
 StdOut.println(files[i].getName());
 }
}

6

Callbacks

Goal. Sort any type of data.

Q. How can sort know to compare data of type String, Double, and File
without any information about the type of an item?

Callbacks.

• Client passes array of objects to sorting routine.

• Sorting routine calls back object's compare function as needed.

Implementing callbacks.

• Java: interfaces.

• C: function pointers.

• C++: class-type functors.

• ML: first-class functions and functors.

Callbacks: roadmap

7

sort implementation

client object implementation

import java.io.File;
public class FileSorter
{
 public static void main(String[] args)
 {
 File directory = new File(args[0]);
 File[] files = directory.listFiles();
 Insertion.sort(files);
 for (int i = 0; i < files.length; i++)
 StdOut.println(files[i].getName());
 }
}

key point: no reference to File

public static void sort(Comparable[] a)
{
 int N = a.length;
 for (int i = 0; i < N; i++)
 for (int j = i; j > 0; j--)
 if (a[j].compareTo(a[j-1]) < 0)
 exch(a, j, j-1);
 else break;
}

public class File
implements Comparable<File>
{
 ...
 public int compareTo(File b)
 {
 ...
 return -1;
 ...
 return +1;
 ...
 return 0;
 }
}

interface

public interface Comparable<Item>
{
 public int compareTo(Item that);
}

built in to Java

8

Comparable interface API

Comparable interface. Implement compareTo() so that v.compareTo(w):

• Returns a negative integer if v is less than w.

• Returns a positive integer if v is greater than w.

• Returns zero if v is equal to w.

• Throw an exception if incompatible types or either is null.

Required properties. Must ensure a total order.

• Reflexive: (v = v).

• Antisymmetric: if (v < w) then (w > v); if (v = w) then (w = v).

• Transitive: if (v ≤ w) and (w ≤ x) then (v ≤ x).

Built-in comparable types. String, Double, Integer, Date, File, ...
User-defined comparable types. Implement the Comparable interface.

public interface Comparable<Item>
{ public int compareTo(Item that); }

Date data type. Simplified version of java.util.Date.

public class Date implements Comparable<Date>
{
 private final int month, day, year;

 public Date(int m, int d, int y)
 {
 month = m;
 day = d;
 year = y;
 }

 public int compareTo(Date that)
 {
 if (this.year < that.year) return -1;
 if (this.year > that.year) return +1;
 if (this.month < that.month) return -1;
 if (this.month > that.month) return +1;
 if (this.day < that.day) return -1;
 if (this.day > that.day) return +1;
 return 0;
 }
}

9

Implementing the Comparable interface: example 1

only compare dates
to other dates

10

Implementing the Comparable interface: example 2

Domain names.

• Subdomain: bolle.cs.princeton.edu.

• Reverse subdomain: edu.princeton.cs.bolle.

• Sort by reverse subdomain to group by category.
subdomains

reverse-sorted subdomains

public class Domain implements Comparable<Domain>
{
 private final String[] fields;
 private final int N;

 public Domain(String name)
 {
 fields = name.split("\\.");
 N = fields.length;
 }

 public int compareTo(Domain that)
 {
 for (int i = 0; i < Math.min(this.N, that.N); i++)
 {
 String s = fields[this.N - i - 1];
 String t = fields[that.N - i - 1];
 int cmp = s.compareTo(t);
 if (cmp < 0) return -1;
 else if (cmp > 0) return +1;
 }
 return this.N - that.N;
 }
}

ee.princeton.edu
cs.princeton.edu
princeton.edu
cnn.com
google.com
apple.com
www.cs.princeton.edu
bolle.cs.princeton.edu

com.apple
com.cnn
com.google
edu.princeton
edu.princeton.cs
edu.princeton.cs.bolle
edu.princeton.cs.www
edu.princeton.ee

only use this trick
when no danger

of overflow

Helper functions. Refer to data through compares and exchanges.

Less. Is object v less than w ?

Exchange. Swap object in array a[] at index i with the one at index j.

11

Two useful sorting abstractions

private static boolean less(Comparable v, Comparable w)
{ return v.compareTo(w) < 0; }

private static void exch(Comparable[] a, int i, int j)
{
 Comparable t = a[i];
 a[i] = a[j];
 a[j] = t;
}

Q. How to test if an array is sorted?

Q. If the sorting algorithm passes the test, did it correctly sort its input?
A. Yes, if data accessed only through exch() and less().

12

Testing

private static boolean isSorted(Comparable[] a)
{
 for (int i = 1; i < a.length; i++)
 if (less(a[i], a[i-1])) return false;
 return true;
}

‣ rules of the game
‣ selection sort
‣ insertion sort
‣ sorting challenges
‣ shellsort

13

14

Selection sort

Algorithm. ↑ scans from left to right.

Invariants.

• Elements to the left of ↑ (including ↑) fixed and in ascending order.

• No element to right of ↑ is smaller than any element to its left.

in final order
↑

15

Selection sort inner loop

To maintain algorithm invariants:

• Move the pointer to the right.

• Identify index of minimum item on right.

• Exchange into position.

i++;

↑

int min = i;
for (int j = i+1; j < N; j++)
 if (less(a[j], a[min]))
 min = j;

↑↑

exch(a, i, min);
↑↑

in final order

in final order

in final order

16

Selection sort: Java implementation

public class Selection {

 public static void sort(Comparable[] a)
 {
 int N = a.length;
 for (int i = 0; i < N; i++)
 {
 int min = i;
 for (int j = i+1; j < N; j++)
 if (less(a[j], a[min]))
 min = j;
 exch(a, i, min);
 }
 }

 private static boolean less(Comparable v, Comparable w)
 { /* as before */ }

 private static void exch(Comparable[] a, int i, int j)
 { /* as before */ }
}

Selection sort: mathematical analysis

Proposition A. Selection sort uses (N-1) + (N-2) + ... + 1 + 0 ~ N2/2
compares and N exchanges.

Running time insensitive to input. Quadratic time, even if array is presorted.
Data movement is minimal. Linear number of exchanges.

17

Trace of selection sort (array contents just after each exchange)

 a[]
 i min 0 1 2 3 4 5 6 7 8 9 10

 S O R T E X A M P L E

 0 6 S O R T E X A M P L E
 1 4 A O R T E X S M P L E
 2 10 A E R T O X S M P L E
 3 9 A E E T O X S M P L R
 4 7 A E E L O X S M P T R
 5 7 A E E L M X S O P T R
 6 8 A E E L M O S X P T R
 7 10 A E E L M O P X S T R
 8 8 A E E L M O P R S T X
 9 9 A E E L M O P R S T X
10 10 A E E L M O P R S T X

 A E E L M O P R S T X

entries in gray are
in final position

entries in black
are examined to find

the minimum

entries in red
are a[min]

Selection sort animations

18

in final order
not in final order

algorithm position

http://www.sorting-algorithms.com/selection-sort

20 random elements

Selection sort animations

19

in final order
not in final order

algorithm position

http://www.sorting-algorithms.com/selection-sort

20 partially-sorted elements

‣ rules of the game
‣ selection sort
‣ insertion sort
‣ sorting challenges
‣ shellsort

20

21

Insertion sort

Algorithm. ↑ scans from left to right.

Invariants.

• Elements to the left of ↑ (including ↑) are in ascending order.

• Elements to the right of ↑ have not yet been seen.

in order ↑ not yet seen

22

Insertion sort inner loop

To maintain algorithm invariants:

• Move the pointer to the right.

• Moving from right to left, exchange
a[i] with each larger element to its left.

for (int j = i; j > 0; j--)
 if (less(a[j], a[j-1]))
 exch(a, j, j-1);
 else break;

i++;

in order not yet seen

↑

in order not yet seen

↑↑↑↑

Insertion sort: Java implementation

23

public class Insertion {

 public static void sort(Comparable[] a)
 {
 int N = a.length;
 for (int i = 0; i < N; i++)
 for (int j = i; j > 0; j--)
 if (less(a[j], a[j-1]))
 exch(a, j, j-1);
 else break;
 }

 private static boolean less(Comparable v, Comparable w)
 { /* as before */ }

 private static void exch(Comparable[] a, int i, int j)
 { /* as before */ }
}

Proposition B. To sort a randomly-ordered array with distinct keys,
insertion sort uses ~ N2/4 compares and N2/4 exchanges on average.

Pf. For randomly-ordered data, we expect each element to move halfway back.

Insertion sort: mathematical analysis

24

Trace of insertion sort (array contents just after each insertion)

 a[]
 i j 0 1 2 3 4 5 6 7 8 9 10

 S O R T E X A M P L E

 1 0 O S R T E X A M P L E
 2 1 O R S T E X A M P L E
 3 3 O R S T E X A M P L E
 4 0 E O R S T X A M P L E
 5 5 E O R S T X A M P L E
 6 0 A E O R S T X M P L E
 7 2 A E M O R S T X P L E
 8 4 A E M O P R S T X L E
 9 2 A E L M O P R S T X E
10 2 A E E L M O P R S T X

 A E E L M O P R S T X

entries in black
moved one position
right for insertion

entries in gray
do not move

entry in red
is a[j]

Insertion sort: trace

25

Insertion sort animation

26

in order
not yet seen

algorithm position

http://www.sorting-algorithms.com/insertion-sort

40 random elements

Best case. If the input is in ascending order, insertion sort makes
N-1 compares and 0 exchanges.

Worst case. If the input is in descending order (and no duplicates),
insertion sort makes ~ N2/2 compares and ~ N2/2 exchanges.

Insertion sort: best and worst case

27

 X T S R P O M L E E A

 A E E L M O P R S T X

Insertion sort animation

28

http://www.sorting-algorithms.com/insertion-sort

40 reverse-sorted elements

in order
not yet seen

algorithm position

Def. An inversion is a pair of keys that are out of order.

Def. An array is partially sorted if the number of inversions is O(N).

• Ex 1. A small array appended to a large sorted array.

• Ex 2. An array with only a few elements out of place.

Proposition C. For partially-sorted arrays, insertion sort runs in linear time.
Pf. Number of exchanges equals the number of inversions.

Insertion sort: partially sorted inputs

29

 A E E L M O T R X P S

T-R T-P T-S R-P X-P X-S

(6 inversions)

number of compares = exchanges + (N-1)

Insertion sort animation

30

http://www.sorting-algorithms.com/insertion-sort

40 partially-sorted elements

in order
not yet seen

algorithm position

‣ rules of the game
‣ selection sort
‣ insertion sort
‣ sorting challenges
‣ shellsort

31

32

Sorting challenge 0

Input. Array of doubles.
Plot. Data proportional to length.

Name the sorting method.

• Insertion sort.

• Selection sort.

black entries
are involved
in compares

gray entries
are untouched

Visual traces of elementary sorting algorithms

insertion sort selection sort

33

Sorting challenge 1

Problem. Sort a file of huge records with tiny keys.
Ex. Reorganize your MP3 files.

Which sorting method to use?

• System sort.

• Insertion sort.

• Selection sort.

34

Sorting challenge 2

Problem. Sort a huge randomly-ordered file of small records.
Ex. Process transaction records for a phone company.

Which sorting method to use?

• System sort.

• Insertion sort.

• Selection sort.

35

Sorting challenge 3

Problem. Sort a huge number of tiny files (each file is independent).
Ex. Daily customer transaction records.

Which sorting method to use?

• System sort.

• Insertion sort.

• Selection sort.

36

Sorting challenge 4

Problem. Sort a huge file that is already almost in order.
Ex. Resort a huge database after a few changes.

Which sorting method to use?

• System sort.

• Insertion sort.

• Selection sort.

‣ rules of the game
‣ selection sort
‣ insertion sort
‣ animations
‣ shellsort

37

Idea. Move elements more than one position at a time by h-sorting the array.

Shellsort. h-sort the array for a decreasing sequence of values of h.

Shellsort overview

L E E A M H L E P S O L T S X R
L M P T
 E H S S
 E L O X
 A E L R

P H E L L S O R T E X A M S L E
P S
 H L
 E E
 L
 L

h = 4

h = 13

An h-sorted !le is h interleaved sorted !les

(8 additional files of size 1)

Shellsort trace (array contents after each pass)

P H E L L S O R T E X A M S L E

A E E E H L L L M O P R S S T X

L E E A M H L E P S O L T S X R

S H E L L S O R T E X A M P L Einput

13-sort

4-sort

1-sort

an h-sorted array is h interleaved sorted subsequences

38

How to h-sort an array? Insertion sort, with stride length h.

Why insertion sort?

• Big increments ⇒ small subarray.

• Small increments ⇒ nearly in order. [stay tuned]

h-sorting

M O L E E X A S P R T
E O L M E X A S P R T
E E L M O X A S P R T
E E L M O X A S P R T
A E L E O X M S P R T
A E L E O X M S P R T
A E L E O P M S X R T
A E L E O P M S X R T
A E L E O P M S X R T
A E L E O P M S X R T

3-sorting an array

39

Shellsort example: increments 7, 3, 1

S O R T E X A M P L E

input

S O R T E X A M P L E
M O R T E X A S P L E
M O R T E X A S P L E
M O L T E X A S P R E
M O L E E X A S P R T

7-sort

M O L E E X A S P R T
E O L M E X A S P R T
E E L M O X A S P R T
E E L M O X A S P R T
A E L E O X M S P R T
A E L E O X M S P R T
A E L E O P M S X R T
A E L E O P M S X R T
A E L E O P M S X R T

3-sort

A E L E O P M S X R T
A E L E O P M S X R T
A E L E O P M S X R T
A E E L O P M S X R T
A E E L O P M S X R T
A E E L O P M S X R T
A E E L M O P S X R T
A E E L M O P S X R T
A E E L M O P S X R T
A E E L M O P R S X T
A E E L M O P R S T X

1-sort

A E E L M O P R S T X

result

40

41

Shellsort: intuition

Proposition. A g-sorted array remains g-sorted after h-sorting it.
Pf. Harder than you'd think!

M O R T E X A S P L E
M O R T E X A S P L E
M O L T E X A S P R E
M O L E E X A S P R T
M O L E E X A S P R T

7-sort

M O L E E X A S P R T
E O L M E X A S P R T
E E L M O X A S P R T
E E L M O X A S P R T
A E L E O X M S P R T
A E L E O X M S P R T
A E L E O P M S X R T
A E L E O P M S X R T
A E L E O P M S X R T
A E L E O P M S X R T

3-sort

still 7-sorted

What increments to use?

1, 2, 4, 8, 16, 32 . . .
No.

1, 3, 7, 15, 31, 63, . . .
Maybe.

1, 4, 13, 40, 121, 364, . . .
OK, easy to compute 3x+1 sequence.

1, 5, 19, 41, 109, 209, 505, . . .
Tough to beat in empirical studies.

Interested in learning more?

• See Algs 3 section 6.8 or Knuth volume 3 for details.

• Consider doing a JP on the topic.
42

public class Shell
{
 public static void sort(Comparable[] a)
 {
 int N = a.length;

 int h = 1;
 while (h < N/3) h = 3*h + 1; // 1, 4, 13, 40, 121, 364, 1093, ...

 while (h >= 1)
 { // h-sort the array.
 for (int i = h; i < N; i++)
 {
 for (int j = i; j >= h && less(a[j], a[j-h]); j -= h)
 exch(a, j, j-h);
 }

 h = h/3;
 }
 }

 private static boolean less(Comparable v, Comparable w)
 { /* as before */ }
 private static boolean void(Comparable[] a, int i, int j)
 { /* as before */ }
}

Shellsort: Java implementation

43

insertion sort

magic increment
sequence

move to next
increment

Visual trace of shellsort

44Visual trace of shellsort

input

40-sorted

13-sorted

4-sorted

result

Shellsort animation

45

h-sorted
current subsequence

algorithm position

50 random elements

other elementshttp://www.sorting-algorithms.com/shell-sort

Shellsort animation

46

http://www.sorting-algorithms.com/shell-sort

50 partially-sorted elements

h-sorted
current subsequence

algorithm position

other elements

Proposition. The worst-case number of compares used by shellsort with the
3x+1 increments is O(N3/2).

Property. The number of compares used by shellsort with the 3x+1 increments
is at most by a small multiple of N times the # of increments used.

Remark. Accurate model has not yet been discovered (!)
47

Shellsort: analysis

measured in thousands

N compares N1.289 2.5 N lg N

5,000 93 58 106

10,000 209 143 230

20,000 467 349 495

40,000 1022 855 1059

80,000 2266 2089 2257

Why are we interested in shellsort?

Example of simple idea leading to substantial performance gains.

Useful in practice.

• Fast unless array size is huge.

• Tiny, fixed footprint for code (used in embedded systems).

• Hardware sort prototype.

Simple algorithm, nontrivial performance, interesting questions.

• Asymptotic growth rate?

• Best sequence of increments?

• Average case performance?

Lesson. Some good algorithms are still waiting discovery.

48

open problem: find a better increment sequence

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 22, 2010 2:31:50 PM

2.2 Mergesort

‣ mergesort
‣ bottom-up mergesort
‣ sorting complexity
‣ comparators

2

Two classic sorting algorithms

Critical components in the world’s computational infrastructure.

• Full scientific understanding of their properties has enabled us
to develop them into practical system sorts.

• Quicksort honored as one of top 10 algorithms of 20th century
in science and engineering.

Mergesort.

• Java sort for objects.

• Perl, Python stable sort.

Quicksort.

• Java sort for primitive types.

• C qsort, Unix, g++, Visual C++, Python.

today

next lecture

‣ mergesort
‣ bottom-up mergesort
‣ sorting complexity
‣ comparators

3

Basic plan.

• Divide array into two halves.

• Recursively sort each half.

• Merge two halves.

4

Mergesort

M E R G E S O R T E X A M P L E

E E G M O R R S T E X A M P L E

E E G M O R R S A E E L M P T X

A E E E E G L M M O P R R S T X

input

sort left half

sort right half

merge results

Mergesort overview

Q. How to combine two sorted subarrays into a sorted whole.
A. Use an auxiliary array.

5

Merging

 a[] aux[]

k 0 1 2 3 4 5 6 7 8 9 i j 0 1 2 3 4 5 6 7 8 9

 E E G M R A C E R T - - - - - - - - - -

 E E G M R A C E R T E E G M R A C E R T

 0 5

0 A 0 6 E E G M R A C E R T

1 A C 0 7 E E G M R C E R T

2 A C E 1 7 E E G M R E R T

3 A C E E 2 7 E G M R E R T

4 A C E E E 2 8 G M R E R T

5 A C E E E G 3 8 G M R R T

6 A C E E E G M 4 8 M R R T

7 A C E E E G M R 5 8 R R T

8 A C E E E G M R R 5 9 R T

9 A C E E E G M R R T 6 10 T

 A C E E E G M R R T

input

copy

Abstract in-place merge trace

merged result

6

Merging: Java implementation

A G L O R H I M S T

A G H I L M

i j

k

lo himid

aux[]

a[]

private static void merge(Comparable[] a, int lo, int mid, int hi)
{
 assert isSorted(a, lo, mid); // precondition: a[lo..mid] sorted
 assert isSorted(a, mid+1, hi); // precondition: a[mid+1..hi] sorted

 for (int k = lo; k <= hi; k++)
 aux[k] = a[k];

 int i = lo, j = mid+1;
 for (int k = lo; k <= hi; k++)
 {
 if (i > mid) a[k] = aux[j++];
 else if (j > hi) a[k] = aux[i++];
 else if (less(aux[j], aux[i])) a[k] = aux[j++];
 else a[k] = aux[i++];
 }

 assert isSorted(a, lo, hi); // postcondition: a[lo..hi] sorted
}

copy

merge

Assertion. Statement to test assumptions about your program.

• Helps detect logic bugs.

• Documents code.

Java assert statement. Throws an exception unless boolean condition is ture.

Can enable or disable at runtime. ⇒ No cost in production code.

Best practices. Use to check internal invariants. Assume assertions will be
disabled in production code (e.g., don't use for external argument-checking).

7

Assertions

assert isSorted(a, lo, hi);

java -ea MyProgram // enable assertions
java -da MyProgram // disable assertions (default)

8

Mergesort: Java implementation

lo mid hi

10 11 12 13 14 15 16 17 18 19

public class Merge
{
 private static Comparable[] aux;

 private static void merge(Comparable[] a, int lo, int mid, int hi)
 { /* as before */ }

 private static void sort(Comparable[] a, int lo, int hi)
 {
 if (hi <= lo) return;
 int mid = lo + (hi - lo) / 2;
 sort(a, lo, mid);
 sort(a, mid+1, hi);
 merge(a, lo, m, hi);
 }

 public static void sort(Comparable[] a)
 {
 aux = new Comparable[a.length];
 sort(a, 0, a.length - 1);
 }
}

9

Mergesort trace

result after recursive call

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Mergesort animation

10

http://www.sorting-algorithms.com/merge-sort

50 random elements

in order
current subarray

algorithm position

not in order

Mergesort animation

11

http://www.sorting-algorithms.com/merge-sort

50 reverse-sorted elements

in order
current subarray

algorithm position

not in order

12

Mergesort: empirical analysis

Running time estimates:

• Home pc executes 108 comparisons/second.

• Supercomputer executes 1012 comparisons/second.

Bottom line. Good algorithms are better than supercomputers.

insertion sort (Ninsertion sort (Ninsertion sort (N2) mergesort (N log N)mergesort (N log N)mergesort (N log N)

computer thousand million billion thousand million billion

home instant 2.8 hours 317 years instant 1 second 18 min

super instant 1 second 1 week instant instant instant

13

Mergesort: mathematical analysis

Proposition. Mergesort uses ~ 2 N lg N data moves to sort any array of size N.

Def. D(N) = number of data moves to mergesort an array of size N.
 = D(N / 2) + D(N / 2) + 2 N

Mergesort recurrence. D(N) = 2 D(N / 2) + 2 N for N > 1, with T(1) = 0.

• Not quite right for odd N.

• Similar recurrence holds for many divide-and-conquer algorithms.

Solution. D(N) ~ 2 N lg N.

• For simplicity, we'll prove when N is a power of 2.

• True for all N. [see COS 340]

left half right half merge

Mergesort recurrence. D(N) = 2 D(N / 2) + 2 N for N > 1, with D(1) = 0.

Proposition. If N is a power of 2, then D(N) = 2 N lg N.
Pf.

14

Mergesort recurrence: proof 1

D(N)

D(N/2)D(N/2)

D(N/4)D(N/4)D(N/4) D(N/4)

D(2) D(2) D(2) D(2) D(2) D(2) D(2)

2N

D(N / 2k)

2 (2N/2)

2k (2N/2k)

N/2 (4)

...

lg N

2N lg N

= 2N

= 2N

= 2N

= 2N

...

D(2)

4 (2N/4) = 2N

Mergesort recurrence. D(N) = 2 D(N / 2) + 2 N for N > 1, with D(1) = 0.

Proposition. If N is a power of 2, then D(N) = 2 N lg N.
Pf.

15

Mergesort recurrence: proof 2

 D(N) = 2 D(N/2) + 2N

D(N) / N = 2 D(N/2) / N + 2

 = D(N/2) / (N/2) + 2

 = D(N/4) / (N/4) + 2 + 2

 = D(N/8) / (N/8) + 2 + 2 + 2

 . . .

 = D(N/N) / (N/N) + 2 + 2 + ... + 2

 = 2 lg N

given

divide both sides by N

algebra

apply to first term

apply to first term again

stop applying, T(1) = 0

Mergesort recurrence. D(N) = 2 D(N / 2) + 2 N for N > 1, with D(1) = 0.

Proposition. If N is a power of 2, then D(N) = 2 N lg N.
Pf. [by induction on N]

• Base case: N = 1.

• Inductive hypothesis: D(N) = 2N lg N.

• Goal: show that D(2N) = 2(2N)lg (2N).

16

Mergesort recurrence: proof 3

D(2N) = 2 D(N) + 4N

 = 4 N lg N + 4 N

 = 4 N (lg (2N) - 1) + 4N

 = 4 N lg (2N)

given

inductive hypothesis

algebra

QED

Proposition. Mergesort uses between ½ N lg N and N lg N compares to sort
any array of size N.

Pf. The number of compares for the last merge is between ½ N lg N and N.

17

Mergesort: number of compares

18

Mergesort analysis: memory

Proposition G. Mergesort uses extra space proportional to N.
Pf. The array aux[] needs to be of size N for the last merge.

Def. A sorting algorithm is in-place if it uses O(log N) extra memory.
Ex. Insertion sort, selection sort, shellsort.

Challenge for the bored. In-place merge. [Kronrud, 1969]

 A C D G H I M N U V

 A B C D E F G H I J M N O P Q R S T U V

 B E F J O P Q R S T

two sorted subarrays

merged result

19

Mergesort: practical improvements

Use insertion sort for small subarrays.

• Mergesort has too much overhead for tiny subarrays.

• Cutoff to insertion sort for ≈ 7 elements.

Stop if already sorted.

• Is biggest element in first half ≤ smallest element in second half?

• Helps for partially-ordered arrays.

Eliminate the copy to the auxiliary array. Save time (but not space)
by switching the role of the input and auxiliary array in each recursive call.

Ex. See MergeX.java or Arrays.sort().

 A B C D E F G H I J

 A B C D E F G H I J M N O P Q R S T U V

 M N O P Q R S T U V

20

Mergesort visualization

Visual trace of top-down mergesort for with cuto! for small subarrays

"rst subarray

second subarray

"rst merge

"rst half sorted

second half sorted

result

2353.2 ! Mergesort

‣ mergesort
‣ bottom-up mergesort
‣ sorting complexity
‣ comparators

21

Basic plan.

• Pass through array, merging subarrays of size 1.

• Repeat for subarrays of size 2, 4, 8, 16,

Bottom line. No recursion needed!
22

Bottom-up mergesort

Bottom-up mergesort

public class MergeBU
{ // Bottom-up mergesort.
 private static Comparable[] aux; // auxiliary array for merges

 // See page 230 for merge() code.

 public static void sort(Comparable[] a)
 { // Do lg N passes of pairwise merges.
 int N = a.length;
 aux = new Comparable[N];
 for (int sz = 1; sz < N; sz = sz+sz) // sz: subarray size
 for (int lo = 0; lo < N-sz; lo += sz+sz) // lo: subarray index
 merge(a, lo, lo+sz-1, Math.min(lo+sz+sz-1, N-1));
 }
}

Bottom-up mergesort consists of a sequence of passes over the whole array, doing m-by-m merges,
starting with sz equal to 1 and doubling sz on each pass. The final subarray is of size m only when the
array size is an even multiple of sz (otherwise it is less than sz). When N is a power of two, as in our
example, the merges performed are the same as for top-down mergesort, in a different order.

Trace of merge results for bottom-up mergesort

 a[i]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, 4, 4, 5) E M G R E S O R T E X A M P L E
 merge(a, 6, 6, 7) E M G R E S O R T E X A M P L E
 merge(a, 8, 8, 9) E M G R E S O R E T X A M P L E
 merge(a, 10, 10, 11) E M G R E S O R E T A X M P L E
 merge(a, 12, 12, 13) E M G R E S O R E T A X M P L E
 merge(a, 14, 14, 15) E M G R E S O R E T A X M P E L

 merge(a, 0, 1, 3) E G M R E S O R E T A X M P E L
 merge(a, 4, 5, 7) E G M R E O R S E T A X M P E L
 merge(a, 8, 9, 11) E G M R E O R S A E T X M P E L
 merge(a, 12, 13, 15) E G M R E O R S A E T X E L M P

 merge(a, 0, 3, 7) E E G M O R R S A E T X E L M P
 merge(a, 8, 11, 15) E E G M O R R S A E E L M P T X

 merge(a, 0, 7, 15) A E E E E G L M M O P R R S T X

sz = 2

sz = 4

sz = 8

sz = 16

2373.2 ! Mergesort

Bottom line. Concise industrial-strength code, if you have the space.

23

Bottom-up mergesort: Java implementation

public class MergeBU
{
 private static Comparable[] aux;

 private static void merge(Comparable[] a, int lo, int mid, int hi)
 { /* as before */ }

 public static void sort(Comparable[] a)
 {
 int N = a.length;
 aux = new Comparable[N];
 for (int sz = 1; sz < N; sz = sz+sz)
 for (int lo = 0; lo < N-sz; lo += sz+sz)
 merge(a, lo, lo+sz-1, Math.min(lo+sz+sz-1, N-1));
 }
}

24

Bottom-up mergesort: visual trace

2

4

8

16

32

Visual trace of bottom-up mergesort

‣ mergesort
‣ bottom-up mergesort
‣ sorting complexity
‣ comparators

25

26

Computational complexity. Framework to study efficiency of algorithms for
solving a particular problem X.

Machine model. Focus on fundamental operations.
Upper bound. Cost guarantee provided by some algorithm for X.
Lower bound. Proven limit on cost guarantee of all algorithms for X.
Optimal algorithm. Algorithm with best cost guarantee for X.

Example: sorting.

• Machine model = # compares.

• Upper bound = ~ N lg N from mergesort.

• Lower bound = ~ N lg N ?

• Optimal algorithm = mergesort ?

lower bound ~ upper bound

access information only through compares

Complexity of sorting

27

Decision tree (for 3 distinct elements)

b < c

yes no

a < c

yes no

a < c

yes no

a c b c a b

b a ca b c b < c

yes no

b c a c b a

height of tree =
worst-case number

of compares

a < b

yes no

code between compares
(e.g., sequence of exchanges)

28

Compare-based lower bound for sorting

Proposition. Any compare-based sorting algorithm must use at least
lg N ! ~ N lg N compares in the worst-case.

Pf.

• Assume input consists of N distinct values a1 through aN.

• Worst case dictated by height h of decision tree.

• Binary tree of height h has at most 2 h leaves.

• N ! different orderings ⇒ at least N ! leaves.

at least N! leaves no more than 2h leaves

h

29

Compare-based lower bound for sorting

Proposition. Any compare-based sorting algorithm must use at least
lg N ! ~ N lg N compares in the worst-case.

Pf.

• Assume input consists of N distinct values a1 through aN.

• Worst case dictated by height h of decision tree.

• Binary tree of height h has at most 2 h leaves.

• N ! different orderings ⇒ at least N ! leaves.

2 h ≥ # leaves ≥ N !

⇒ h ≥ lg N ! ~ N lg N

Stirling's formula

30

Complexity of sorting

Machine model. Focus on fundamental operations.
Upper bound. Cost guarantee provided by some algorithm for X.
Lower bound. Proven limit on cost guarantee of all algorithms for X.
Optimal algorithm. Algorithm with best cost guarantee for X.

Example: sorting.

• Machine model = # compares.

• Upper bound = ~ N lg N from mergesort.

• Lower bound = ~ N lg N.

• Optimal algorithm = mergesort.

First goal of algorithm design: optimal algorithms.

31

Complexity results in context

Other operations? Mergesort optimality is only about number of compares.

Space?

• Mergesort is not optimal with respect to space usage.

• Insertion sort, selection sort, and shellsort are space-optimal.

Challenge. Find an algorithm that is both time- and space-optimal.

Lessons. Use theory as a guide.
Ex. Don't try to design sorting algorithm that uses ½ N lg N compares.

Lower bound may not hold if the algorithm has information about:

• The initial order of the input.

• The distribution of key values.

• The representation of the keys.

Partially-ordered arrays. Depending on the initial order of the input,
we may not need N lg N compares.

Duplicate keys. Depending on the input distribution of duplicates,
we may not need N lg N compares.

Digital properties of keys. We can use digit/character compares instead of
key compares for numbers and strings.

32

Complexity results in context (continued)

insertion sort requires only N-1
compares on an already sorted array

stay tuned for 3-way quicksort

stay tuned for radix sorts

‣ mergesort
‣ bottom-up mergesort
‣ sorting complexity
‣ comparators

33

34

Sort by artist name

35

Sort by song name

Comparable interface: sort uses type’s natural order.

36

Natural order

public class Date implements Comparable<Date>
{
 private final int month, day, year;

 public Date(int m, int d, int y)
 {
 month = m;
 day = d;
 year = y;
 }
 …
 public int compareTo(Date that)
 {
 if (this.year < that.year) return -1;
 if (this.year > that.year) return +1;
 if (this.month < that.month) return -1;
 if (this.month > that.month) return +1;
 if (this.day < that.day) return -1;
 if (this.day > that.day) return +1;
 return 0;
 }
}

natural order

37

Generalized compare

Comparable interface: sort uses type’s natural order.

Problem 1. May want to use a non-natural order.
Problem 2. Desired data type may not come with a “natural” order.

Ex. Sort strings by:

• Natural order. Now is the time

• Case insensitive. is Now the time

• Spanish. café cafetero cuarto churro nube ñoño

• British phone book. McKinley Mackintosh

String[] a;
...
Arrays.sort(a);
Arrays.sort(a, String.CASE_INSENSITIVE_ORDER);
Arrays.sort(a, Collator.getInstance(Locale.SPANISH));

pre-1994 order for digraphs
ch and ll and rr

import java.text.Collator;

38

Comparators

Solution. Use Java's Comparator interface.

Remark. The compare() method implements a total order like compareTo().

Advantages. Decouples the definition of the data type from the
definition of what it means to compare two objects of that type.

• Can add any number of new orders to a data type.

• Can add an order to a library data type with no natural order.

public interface Comparator<Key>
{
 public int compare(Key v, Key w);
}

39

Comparator example

Reverse order. Sort an array of strings in reverse order.

public class ReverseOrder implements Comparator<String>
{
 public int compare(String a, String b)
 {
 return b.compareTo(a);
 }
}

 ...
 Arrays.sort(a, new ReverseOrder());
 ...

comparator implementation

client

40

Sort implementation with comparators

To support comparators in our sort implementations:

• Pass Comparator to sort() and less().

• Use it in less().

Ex. Insertion sort.

public static void sort(Object[] a, Comparator comparator)
{
 int N = a.length;
 for (int i = 0; i < N; i++)
 for (int j = i; j > 0 && less(comparator, a[j], a[j-1]); j--)
 exch(a, j, j-1);
}

private static boolean less(Comparator c, Object v, Object w)
{ return c.compare(v, w) < 0; }

private static void exch(Object[] a, int i, int j)
{ Object swap = a[i]; a[i] = a[j]; a[j] = swap; }

41

Generalized compare

Comparators enable multiple sorts of a single array (by different keys).

Ex. Sort students by name or by section.

Andrews

Battle

Chen

Fox

Furia

Gazsi

Kanaga

Rohde

3

4

2

1

3

4

3

3

A

C

A

A

A

B

B

A

664-480-0023

874-088-1212

991-878-4944

884-232-5341

766-093-9873

665-303-0266

898-122-9643

232-343-5555

097 Little

121 Whitman

308 Blair

11 Dickinson

101 Brown

22 Brown

22 Brown

343 Forbes

Andrews

Battle

Chen

Fox

Furia

Gazsi

Kanaga

Rohde

3

4

2

1

3

4

3

3

A

C

A

A

A

B

B

A

664-480-0023

874-088-1212

991-878-4944

884-232-5341

766-093-9873

665-303-0266

898-122-9643

232-343-5555

097 Little

121 Whitman

308 Blair

11 Dickinson

101 Brown

22 Brown

22 Brown

343 Forbes

sort by name sort by section

Arrays.sort(students, Student.BY_NAME);
Arrays.sort(students, Student.BY_SECT);

Ex. Enable sorting students by name or by section.

public class Student
{
 public static final Comparator<Student> BY_NAME = new ByName();
 public static final Comparator<Student> BY_SECT = new BySect();

 private final String name;
 private final int section;
 ...
 private static class ByName implements Comparator<Student>
 {
 public int compare(Student a, Student b)
 { return a.name.compareTo(b.name); }
 }

 private static class BySect implements Comparator<Student>
 {
 public int compare(Student a, Student b)
 { return a.section - b.section; }
 }
}

42

Generalized compare

only use this trick if no danger of overflow

43

Generalized compare problem

A typical application. First, sort by name; then sort by section.

@#%&@!!. Students in section 3 no longer in order by name.

A stable sort preserves the relative order of records with equal keys.

Andrews

Battle

Chen

Fox

Furia

Gazsi

Kanaga

Rohde

3

4

2

1

3

4

3

3

A

C

A

A

A

B

B

A

664-480-0023

874-088-1212

991-878-4944

884-232-5341

766-093-9873

665-303-0266

898-122-9643

232-343-5555

097 Little

121 Whitman

308 Blair

11 Dickinson

101 Brown

22 Brown

22 Brown

343 Forbes

Andrews

Battle

Chen

Fox

Furia

Gazsi

Kanaga

Rohde

3

4

2

1

3

4

3

3

A

C

A

A

A

B

B

A

664-480-0023

874-088-1212

991-878-4944

884-232-5341

766-093-9873

665-303-0266

898-122-9643

232-343-5555

097 Little

121 Whitman

308 Blair

11 Dickinson

101 Brown

22 Brown

22 Brown

343 Forbes

Arrays.sort(students, Student.BY_NAME); Arrays.sort(students, Student.BY_SECT);

44

Sorting challenge 5

Q. Which sorts are stable?
Insertion sort? Selection sort? Shellsort? Mergesort?

Chicago 09:00:00
Phoenix 09:00:03
Houston 09:00:13
Chicago 09:00:59
Houston 09:01:10
Chicago 09:03:13
Seattle 09:10:11
Seattle 09:10:25
Phoenix 09:14:25
Chicago 09:19:32
Chicago 09:19:46
Chicago 09:21:05
Seattle 09:22:43
Seattle 09:22:54
Chicago 09:25:52
Chicago 09:35:21
Seattle 09:36:14
Phoenix 09:37:44

Chicago 09:00:00
Chicago 09:00:59
Chicago 09:03:13
Chicago 09:19:32
Chicago 09:19:46
Chicago 09:21:05
Chicago 09:25:52
Chicago 09:35:21
Houston 09:00:13
Houston 09:01:10
Phoenix 09:00:03
Phoenix 09:14:25
Phoenix 09:37:44
Seattle 09:10:11
Seattle 09:10:25
Seattle 09:22:43
Seattle 09:22:54
Seattle 09:36:14

Chicago 09:25:52
Chicago 09:03:13
Chicago 09:21:05
Chicago 09:19:46
Chicago 09:19:32
Chicago 09:00:00
Chicago 09:35:21
Chicago 09:00:59
Houston 09:01:10
Houston 09:00:13
Phoenix 09:37:44
Phoenix 09:00:03
Phoenix 09:14:25
Seattle 09:10:25
Seattle 09:36:14
Seattle 09:22:43
Seattle 09:10:11
Seattle 09:22:54

sorted by time sorted by location (not stable) sorted by location (stable)

no
longer
sorted

by time

still
sorted

by time

Stability when sorting on a second key

‣ mergesort
‣ bottom-up mergesort
‣ sorting complexity
‣ comparators
‣ sorting challenge

45

46

Sorting challenge 5A

Q. Is insertion sort stable?

A. Yes, equal elements never more past each other.

public class Insertion
{
 public static void sort(Comparable[] a)
 {
 int N = a.length;
 for (int i = 0; i < N; i++)
 for (int j = i; j > 0 && less(a[j], a[j-1]); j--)
 exch(a, j, j-1);
 }
}

i j 0 1 2 3 4

0 0 B1 A1 A2 A3 B2

1 0 A1 B1 A2 A3 B2

2 1 A1 A2 B1 A3 B2

3 2 A1 A2 A3 B1 B2

4 4 A1 A2 A3 B1 B2

A1 A2 A3 B1 B2

Q. Is selection sort stable ?

A. No, long-distance exchange might move left element to the right
of some equal element.

47

Sorting challenge 5B

public class Selection
{
 public static void sort(Comparable[] a)
 {
 int N = a.length;
 for (int i = 0; i < N; i++)
 {
 int min = i;
 for (int j = i+1; j < N; j++)
 if (less(a[j], a[min]))
 min = j;
 exch(a, i, min);
 }
 }
}

i min 0 1 2

0 2 B1 B2 A

1 1 A B2 B1

2 2 A B2 B1

A B2 B1

48

Sorting challenge 5C

Q. Is shellsort stable?

A. No. Long-distance exchanges.

public class Shell
{
 public static void sort(Comparable[] a)
 {
 int N = a.length;
 int h = 1;
 while (h < N/3) h = 3*h + 1;
 while (h >= 1)
 {
 for (int i = h; i < N; i++)
 {
 for (int j = i; j > h && less(a[j], a[j-h]); j -= h)
 exch(a, j, j-h);
 }
 h = h/3;
 }
 }
}

h 0 1 2 3 4

B1 B2 B3 B4 A1

4 A1 B2 B3 B4 B1

1 A1 B2 B3 B4 B1

A1 B2 B3 B4 B1

49

Sorting challenge 5D

Q. Is mergesort stable?

public class Merge
{
 private static Comparable[] aux;
 private static void merge(Comparable[] a, int lo, int mid, int hi)
 { /* as before */ }

 private static void sort(Comparable[] a, int lo, int hi)
 {
 if (hi <= lo) return;
 int mid = lo + (hi - lo) / 2;
 sort(a, lo, mid);
 sort(a, mid+1, hi);
 merge(a, lo, mid, hi);
 }

 public static void sort(Comparable[] a)
 {
 aux = new Comparable[a.length];
 sort(a, 0, a.length - 1);
 }
}

50

Sorting challenge 5D

Q. Is mergesort stable?

A. Yes, if merge is stable.

Trace of merge results for bottom-up mergesort

 a[i]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, 0, 7, 15) A E E E E G L M M O P R R S T X

lo m hi

51

Sorting challenge 5D (continued)

Q. Is merge stable?

A. Yes, if implemented carefully (take from left subarray if equal).

private static void merge(Comparable[] a, int lo, int mid, int hi)
{
 for (int k = lo; k <= hi; k++)
 aux[k] = a[k];

 int i = lo, j = mid+1;
 for (int k = lo; k <= hi; k++)
 {
 if (i > mid) a[k] = aux[j++];
 else if (j > hi) a[k] = aux[i++];
 else if (less(aux[j], aux[i])) a[k] = aux[j++];
 else a[k] = aux[i++];
 }
}

52

Sorting challenge 5 (summary)

Q. Which sorts are stable ?

Yes. Insertion sort, mergesort.
No. Selection sort, shellsort.

Note. Need to carefully check code (“less than” vs “less than or equal”).

Postscript: optimizing mergesort (a short history)

Goal. Remove instructions from the inner loop.

53

A G L O R H I M S T

A G H I L M

i j

k

lo himid

aux[]

a[]

private static void merge(Comparable[] a, int lo, int mid, int hi)
{

 for (int k = lo; k <= hi; k++)
 aux[k] = a[k];

 int i = lo, j = mid+1;
 for (int k = lo; k <= hi; k++)
 if (i > mid) a[k] = aux[j++];
 else if (j > hi) a[k] = aux[i++];
 else if (less(aux[j], aux[i])) a[k] = aux[j++];
 else a[k] = aux[i++];

}

Postscript: optimizing mergesort (a short history)

Idea 1 (1960s). Use sentinels.

Problem 1. Still need copy.
Problem 2. No good place to put sentinels.
Problem 3. Complicates data-type interface (what is infinity for your type?)

54

A G L O R

A G H I L M

i

k

0

a[]

aux[]

a[M] := maxint; b[N] := maxint;
for (int i = 0, j = 0, k = 0; k < M+1; k++)
 if (less(aux[j], aux[i])) aux[k] = a[i++];
 aux[k] = b[j++];

H I M S T

j

b[]

M N

∞ ∞

Postscript: Optimizing mergesort (a short history)

Idea 2 (1980s). Reverse copy.

Problem. Copy still in inner loop.
55

A G L O R T S M I H

A G H I L M

i j

k

lo himid

aux[]

a[]

private static void merge(Comparable[] a, int lo, int mid, int hi)
{
 for (int i = lo; i <= mid; i++)
 aux[i] = a[i];

 for (int j = mid+1; j <= hi; j++)
 aux[j] = a[hi-j+mid+1];

 int i = lo, j = hi;
 for (int k = lo; k <= hi; k++)
 if (less(aux[j], aux[i])) a[k] = aux[j--];
 else a[k] = aux[i++];
}

copy

reverse copy

merge

Postscript: Optimizing mergesort (a short history)

Idea 3 (1990s). Eliminate copy with recursive argument switch.

Problem. Complex interactions with reverse copy.
Solution. Go back to sentinels.

56

 int mid = (lo+hi)/2;
 mergesortABr(b, a, lo, mid);
 mergesortABr(b, a, mid+1, r);
 mergeAB(a, lo, b, lo, mid, b, mid+1, hi);

Arrays.sort()

57

Sorting challenge 6

Problem. Choose mergesort for Algs 4th edition.
Recursive argument switch is out (recommended only for pros).

Q. Why not use reverse array copy?

private static void merge(Comparable[] a, int lo, int mid, int hi)
{
 for (int i = lo; i <= mid; i++)
 aux[i] = a[i];

 for (int j = mid+1; j <= hi; j++)
 aux[j] = a[hi-j+mid+1];

 int i = lo, j = hi;
 for (int k = lo; k <= hi; k++)
 if (less(aux[j], aux[i])) a[k] = aux[j--];
 else a[k] = aux[i++];
}

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 22, 2010 4:05:04 PM

2.3 Quicksort

‣ quicksort
‣ selection
‣ duplicate keys
‣ system sorts

2

Two classic sorting algorithms

Critical components in the world’s computational infrastructure.

• Full scientific understanding of their properties has enabled us
to develop them into practical system sorts.

• Quicksort honored as one of top 10 algorithms of 20th century
in science and engineering.

Mergesort.

• Java sort for objects.

• Perl, Python stable sort.

Quicksort.

• Java sort for primitive types.

• C qsort, Unix, g++, Visual C++, Python.

last lecture

this lecture

‣ quicksort
‣ selection
‣ duplicate keys
‣ system sorts

3

4

Quicksort

Basic plan.

• Shuffle the array.

• Partition so that, for some j

- element a[j] is in place
- no larger element to the left of j

- no smaller element to the right of j

• Sort each piece recursively.
Sir Charles Antony Richard Hoare

1980 Turing Award

Q U I C K S O R T E X A M P L E

K R A T E L E P U I M Q C X O S

E C A I E K L P U T M Q R X O S

A C E E I K L P U T M Q R X O S

A C E E I K L M O P Q R S T U X

A C E E I K L M O P Q R S T U X

not greater not less

partitioning element

input

shu!e

partition

sort left

sort right

result

Quicksort overview

Quicksort partitioning

Basic plan.

• Scan i from left for an item that belongs on the right.

• Scan j from right for item item that belongs on the left.

• Exchange a[i] and a[j].

• Continue until pointers cross.

5

 a[i]
 i j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-1 15 K R A T E L E P U I M Q C X O S

 1 12 K R A T E L E P U I M Q C X O S

 1 12 K C A T E L E P U I M Q R X O S

 3 9 K C A T E L E P U I M Q R X O S

 3 9 K C A I E L E P U T M Q R X O S

 5 6 K C A I E L E P U T M Q R X O S

 5 6 K C A I E E L P U T M Q R X O S

 6 5 K C A I E E L P U T M Q R X O S

 0 5 E C A I E K L P U T M Q R X O S

 E C A I E K L P U T M Q R X O S

Partitioning trace (array contents before and after each exchange)

initial values

scan left, scan right

exchange

scan left, scan right

exchange

scan left, scan right

exchange

scan left, scan right

!nal exchange

result

v

6

Quicksort: Java code for partitioning

private static int partition(Comparable[] a, int lo, int hi)
{
 int i = lo, j = hi+1;
 while (true)
 {
 while (less(a[++i], a[lo]))
 if (i == hi) break;

 while (less(a[lo], a[--j]))
 if (j == lo) break;

 if (i >= j) break;
 exch(a, i, j);
 }

 exch(a, lo, j);
 return j;
}

swap with partitioning item

check if pointers cross

find item on right to swap

find item on left to swap

swap

return index of item now known to be in place

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

7

Quicksort: Java implementation

public class Quick
{
 private static int partition(Comparable[] a, int lo, int hi)
 { /* see previous slide */ }

 public static void sort(Comparable[] a)
 {
 StdRandom.shuffle(a);
 sort(a, 0, a.length - 1);
 }

 private static void sort(Comparable[] a, int lo, int hi)
 {
 if (hi <= lo) return;
 int j = partition(a, lo, hi);
 sort(a, lo, j-1);
 sort(a, j+1, hi);
 }
}

shuffle needed for
performance guarantee

Quicksort trace

8

 lo j hi 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 Q U I C K S O R T E X A M P L E
 K R A T E L E P U I M Q C X O S
 0 5 15 E C A I E K L P U T M Q R X O S
 0 3 4 E C A E I K L P U T M Q R X O S
 0 2 2 A C E E I K L P U T M Q R X O S
 0 0 1 A C E E I K L P U T M Q R X O S
 1 1 A C E E I K L P U T M Q R X O S
 4 4 A C E E I K L P U T M Q R X O S
 6 6 15 A C E E I K L P U T M Q R X O S
 7 9 15 A C E E I K L M O P T Q R X U S
 7 7 8 A C E E I K L M O P T Q R X U S
 8 8 A C E E I K L M O P T Q R X U S
 10 13 15 A C E E I K L M O P S Q R T U X
 10 12 12 A C E E I K L M O P R Q S T U X
 10 11 11 A C E E I K L M O P Q R S T U X
 10 10 A C E E I K L M O P Q R S T U X
 14 14 15 A C E E I K L M O P Q R S T U X
 15 15 A C E E I K L M O P Q R S T U X

 A C E E I K L M O P Q R S T U X

no partition
 for subarrays

 of size 1

initial values

random shu!e

result

Quicksort trace (array contents after each partition)

Quicksort animation

9

http://www.sorting-algorithms.com/quick-sort

50 random elements

in order
current subarray

algorithm position

not in order

10

Quicksort: implementation details

Partitioning in-place. Using a spare array makes partitioning easier
(and stable), but is not worth the cost.

Terminating the loop. Testing whether the pointers cross is a bit trickier
than it might seem.

Staying in bounds. The (j == lo) test is redundant (why?),
but the (i == hi) test is not.

Preserving randomness. Shuffling is needed for performance guarantee.

Equal keys. When duplicates are present, it is (counter-intuitively) best
to stop on elements equal to the partitioning element.

11

Quicksort: empirical analysis

Running time estimates:

• Home pc executes 108 compares/second.

• Supercomputer executes 1012 compares/second.

Lesson 1. Good algorithms are better than supercomputers.
Lesson 2. Great algorithms are better than good ones.

insertion sort (Ninsertion sort (Ninsertion sort (N2) mergesort (N log N)mergesort (N log N)mergesort (N log N) quicksort (N log N)quicksort (N log N)quicksort (N log N)

computer thousand million billion thousand million billion thousand million billion

home instant 2.8 hours 317 years instant 1 second 18 min instant 0.3 sec 6 min

super instant 1 second 1 week instant instant instant instant instant instant

12

Quicksort: best case analysis

Best case. Number of compares is ~ N lg N.

Worst case. Number of compares is ~ N2 / 2.

13

Quicksort: worst case analysis

Proposition I. The average number of compares CN to quicksort an array of N

elements is ~ 2N ln N (and the number of exchanges is ~ ⅓ N ln N).

Pf. CN satisfies the recurrence C0 = C1 = 0 and for N ≥ 2:

• Multiply both sides by N and collect terms:

• Subtract this from the same equation for N-1:

• Rearrange terms and divide by N(N+1):

14

Quicksort: average-case analysis

partitioning right partitioning probabilityleft

CN

N + 1
=

CN−1

N
+

2
N + 1

NCN = N(N + 1) + 2(C0 + C1 + . . . + CN−1)

CN = (N + 1) +
C0 + C1 + . . . + CN−1

N
+

CN−1 + CN−2 + . . . + C0

N

NCN − (N − 1)CN−1 = 2N + 2CN−1

CN

N + 1
=

CN−1

N
+

2
N + 1

=
CN−2

N − 1
+

2
N

+
2

N + 1

=
CN−3

N − 2
+

2
N − 1

+
2
N

+
2

N + 1

=
2
1

+
2
2

+
2
3

+ . . . +
2

N + 1

• Repeatedly apply above equation:

• Approximate sum by an integral:

• Finally, the desired result:

15

Quicksort: average-case analysis

CN ∼ 2(N + 1)
�

1 +
1
2

+
1
3

+ . . .
1
N

�

∼ 2(N + 1)
� N

1

1
x

dx

CN ∼ 2(N + 1) lnN ≈ 1.39N lg N

previous equation

16

Quicksort: summary of performance characteristics

Worst case. Number of compares is quadratic.

• N + (N-1) + (N-2) + … + 1 ~ N2 / 2.

• More likely that your computer is struck by lightning.

Average case. Number of compares is ~ 1.39 N lg N.

• 39% more compares than mergesort.

• But faster than mergesort in practice because of less data movement.

Random shuffle.

• Probabilistic guarantee against worst case.

• Basis for math model that can be validated with experiments.

Caveat emptor. Many textbook implementations go quadratic if input:

• Is sorted or reverse sorted.

• Has many duplicates (even if randomized!) [stay tuned]

17

Quicksort: practical improvements

Median of sample.

• Best choice of pivot element = median.

• Estimate true median by taking median of sample.

Insertion sort small subarrays.

• Even quicksort has too much overhead for tiny subarrays.

• Can delay insertion sort until end.

Optimize parameters.

• Median-of-3 random elements.

• Cutoff to insertion sort for ≈ 10 elements.

Non-recursive version.

• Use explicit stack.

• Always sort smaller half first.

guarantees O(log N) stack size

~ 12/7 N ln N compares
~ 12/35 N ln N exchanges

Quicksort with cutoff to insertion sort: visualization

18

partitioning element

Quicksort with median-of-3 partitioning and cuto! for small subarrays

input

result

result of
"rst partition

left subarray
partially sorted

both subarrays
partially sorted

‣ quicksort
‣ selection
‣ duplicate keys
‣ system sorts

19

20

Selection

Goal. Find the kth largest element.
Ex. Min (k = 0), max (k = N-1), median (k = N/2).

Applications.

• Order statistics.

• Find the “top k.”

Use theory as a guide.

• Easy O(N log N) upper bound.

• Easy O(N) upper bound for k = 1, 2, 3.

• Easy Ω(N) lower bound.

Which is true?

• Ω(N log N) lower bound?

• O(N) upper bound?
is selection as hard as sorting?

is there a linear-time algorithm for all k?

Partition array so that:

• Element a[j] is in place.

• No larger element to the left of j.

• No smaller element to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.

21

Quick-select

public static Comparable select(Comparable[] a, int k)
{
 StdRandom.shuffle(a);
 int lo = 0, hi = a.length - 1;
 while (hi > lo)
 {
 int j = partition(a, lo, hi);
 if (j < k) lo = j + 1;
 else if (j > k) hi = j - 1;
 else return a[k];
 }
 return a[k];
}

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

if a[k] is here
set hi to j-1

if a[k] is here
set lo to j+1

22

Quick-select: mathematical analysis

Proposition. Quick-select takes linear time on average.
Pf sketch.

• Intuitively, each partitioning step roughly splits array in half:
N + N/2 + N/4 + … + 1 ~ 2N compares.

• Formal analysis similar to quicksort analysis yields:

Ex. (2 + 2 ln 2) N compares to find the median.

Remark. Quick-select uses ~ N2/2 compares in worst case,
but as with quicksort, the random shuffle provides a probabilistic guarantee.

CN = 2 N + k ln (N / k) + (N - k) ln (N / (N - k))

23

Theoretical context for selection

Challenge. Design algorithm whose worst-case running time is linear.

Proposition. [Blum, Floyd, Pratt, Rivest, Tarjan, 1973] There exists a
compare-based selection algorithm whose worst-case running time is linear.

Remark. But, algorithm is too complicated to be useful in practice.

Use theory as a guide.

• Still worthwhile to seek practical linear-time (worst-case) algorithm.

• Until one is discovered, use quick-select if you don’t need a full sort.

24

Generic methods

In our select() implementation, client needs a cast.

The compiler also complains.

Q. How to fix?

 % javac Quick.java
 Note: Quick.java uses unchecked or unsafe operations.
 Note: Recompile with -Xlint:unchecked for details.

 Double[] a = new Double[N];
 for (int i = 0; i < N; i++)
 a[i] = StdRandom.uniform();
 Double median = (Double) Quick.select(a, N/2);

unsafe cast
required

25

Generic methods

Pedantic (safe) version. Compiles cleanly, no cast needed in client.

Remark. Obnoxious code needed in system sort; not in this course (for brevity).

public class QuickPedantic
{
 public static <Key extends Comparable<Key>> Key select(Key[] a, int k)
 { /* as before */ }

 public static <Key extends Comparable<Key>> void sort(Key[] a)
 { /* as before */ }

 private static <Key extends Comparable<Key>> int partition(Key[] a, int lo, int hi)
 { /* as before */ }

 private static <Key extends Comparable<Key>> boolean less(Key v, Key w)
 { /* as before */ }

 private static <Key extends Comparable<Key>> void exch(Key[] a, int i, int j)
 { Key swap = a[i]; a[i] = a[j]; a[j] = swap; }

}

generic type variable
(value inferred from argument a[])

return type matches array type

can declare variables of generic type

http://www.cs.princeton.edu/algs4/35applications/QuickPedantic.java.html

‣ quicksort
‣ selection
‣ duplicate keys
‣ system sorts

26

27

Duplicate keys

Often, purpose of sort is to bring records with duplicate keys together.

• Sort population by age.

• Find collinear points.

• Remove duplicates from mailing list.

• Sort job applicants by college attended.

 Typical characteristics of such applications.

• Huge array.

• Small number of key values.

see Assignment 3

Chicago 09:00:00
Phoenix 09:00:03
Houston 09:00:13
Chicago 09:00:59
Houston 09:01:10
Chicago 09:03:13
Seattle 09:10:11
Seattle 09:10:25
Phoenix 09:14:25
Chicago 09:19:32
Chicago 09:19:46
Chicago 09:21:05
Seattle 09:22:43
Seattle 09:22:54
Chicago 09:25:52
Chicago 09:35:21
Seattle 09:36:14
Phoenix 09:37:44

Chicago 09:00:00
Chicago 09:00:59
Chicago 09:03:13
Chicago 09:19:32
Chicago 09:19:46
Chicago 09:21:05
Chicago 09:25:52
Chicago 09:35:21
Houston 09:00:13
Houston 09:01:10
Phoenix 09:00:03
Phoenix 09:14:25
Phoenix 09:37:44
Seattle 09:10:11
Seattle 09:10:25
Seattle 09:22:43
Seattle 09:22:54
Seattle 09:36:14

Chicago 09:25:52
Chicago 09:03:13
Chicago 09:21:05
Chicago 09:19:46
Chicago 09:19:32
Chicago 09:00:00
Chicago 09:35:21
Chicago 09:00:59
Houston 09:01:10
Houston 09:00:13
Phoenix 09:37:44
Phoenix 09:00:03
Phoenix 09:14:25
Seattle 09:10:25
Seattle 09:36:14
Seattle 09:22:43
Seattle 09:10:11
Seattle 09:22:54

Stability when sorting on a second key

sorted

sorted by time sorted by city (unstable) sorted by city (stable)

NOT
sorted

key

28

Duplicate keys

Mergesort with duplicate keys. Always ~ N lg N compares.

Quicksort with duplicate keys.

• Algorithm goes quadratic unless partitioning stops on equal keys!

• 1990s C user found this defect in qsort().

several textbook and system implementations
also have this defect

S T O P O N E Q U A L K E Y S

swap if we don't stop
on equal keys

if we stop on
equal keys

Duplicate keys: the problem

Mistake. Put all keys equal to the partitioning element on one side.
Consequence. ~ N2 / 2 compares when all keys equal.

Recommended. Stop scans on keys equal to the partitioning element.
Consequence. ~ N lg N compares when all keys equal.

Desirable. Put all keys equal to the partitioning element in place.

29

B A A B A B B B C C C A A A A A A A A A A A

B A A B A B C C B C B A A A A A A A A A A A

A A A B B B B B C C C A A A A A A A A A A A

Goal. Partition array into 3 parts so that:

• Elements between lt and gt equal to partition element v.

• No larger elements to left of lt.

• No smaller elements to right of gt.

Dutch national flag problem. [Edsger Dijkstra]

• Conventional wisdom until mid 1990s: not worth doing.

• New approach discovered when fixing mistake in C library qsort().

• Now incorporated into qsort() and Java system sort.
30

3-way partitioning

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

31

3-way partitioning: Dijkstra's solution

3-way partitioning.

• Let v be partitioning element a[lo].

• Scan i from left to right.
- a[i] less than v: exchange a[lt] with a[i] and increment both lt and i
- a[i] greater than v: exchange a[gt] with a[i] and decrement gt
- a[i] equal to v: increment i

All the right properties.

• In-place.

• Not much code.

• Small overhead if no equal keys.

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

32

3-way partitioning: trace

 a[]
lt i gt 0 1 2 3 4 5 6 7 8 9 10 11
 0 0 11 R B W W R W B R R W B R
 0 1 11 R B W W R W B R R W B R
 1 2 11 B R W W R W B R R W B R
 1 2 10 B R R W R W B R R W B W
 1 3 10 B R R W R W B R R W B W
 1 3 9 B R R B R W B R R W W W
 2 4 9 B B R R R W B R R W W W
 2 5 9 B B R R R W B R R W W W
 2 5 8 B B R R R W B R R W W W
 2 5 7 B B R R R R B R W W W W
 2 6 7 B B R R R R B R W W W W
 3 7 7 B B B R R R R R W W W W
 3 8 7 B B B R R R R R W W W W

v

3-way partitioning trace (array contents after each loop iteration)

private static void sort(Comparable[] a, int lo, int hi)
{
 if (hi <= lo) return;
 int lt = lo, gt = hi;
 Comparable v = a[lo];
 int i = lo;
 while (i <= gt)
 {
 int cmp = a[i].compareTo(v);
 if (cmp < 0) exch(a, lt++, i++);
 else if (cmp > 0) exch(a, i, gt--);
 else i++;
 }

 sort(a, lo, lt - 1);
 sort(a, gt + 1, hi);
}

33

3-way quicksort: Java implementation

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

34

3-way quicksort: visual trace

equal to partitioning element

Visual trace of quicksort with 3-way partitioning

35

Duplicate keys: lower bound

Sorting lower bound. If there are n distinct keys and the ith one occurs
xi times, any compare-based sorting algorithm must use at least

compares in the worst case.

Proposition. [Sedgewick-Bentley, 1997]
Quicksort with 3-way partitioning is entropy-optimal.
Pf. [beyond scope of course]

Bottom line. Randomized quicksort with 3-way partitioning reduces running
time from linearithmic to linear in broad class of applications.

N lg N when all distinct;
linear when only a constant number of distinct keys

proportional to lower bound

lg
�

N !
x1! x2! · · · xn!

�
∼ −

n�

i=1

xi lg
xi

N

‣ selection
‣ duplicate keys
‣ comparators
‣ system sorts

36

Sorting algorithms are essential in a broad variety of applications:
• Sort a list of names.

• Organize an MP3 library.

• Display Google PageRank results.

• List RSS news items in reverse chronological order.

• Find the median.

• Find the closest pair.

• Binary search in a database.

• Identify statistical outliers.

• Find duplicates in a mailing list.

• Data compression.

• Computer graphics.

• Computational biology.

• Supply chain management.

• Load balancing on a parallel computer.
. . .

Every system needs (and has) a system sort!
37

obvious applications

problems become easy once items
are in sorted order

non-obvious applications

Sorting applications

38

Java system sorts

Java uses both mergesort and quicksort.

• Arrays.sort() sorts array of Comparable or any primitive type.

• Uses quicksort for primitive types; mergesort for objects.

Q. Why use different algorithms, depending on type?

 import java.util.Arrays;

 public class StringSort
 {
 public static void main(String[] args)
 {
 String[] a = StdIn.readAll().split("\\s+");
 Arrays.sort(a);
 for (int i = 0; i < N; i++)
 StdOut.println(a[i]);
 }
 }

39

Java system sort for primitive types

Engineering a sort function. [Bentley-McIlroy, 1993]

• Original motivation: improve qsort().

• Basic algorithm = 3-way quicksort with cutoff to insertion sort.

• Partition on Tukey's ninther: median of the medians of 3 samples,
each of 3 elements.

Why use Tukey's ninther?

• Better partitioning than random shuffle.

• Less costly than random shuffle.

approximate median-of-9

LR A P M C AG X JK R BZ E

A MR X KG J EB

K EM

Kninther

medians

groups of 3

nine evenly
spaced elements

R J

40

Achilles heel in Bentley-McIlroy implementation (Java system sort)

Based on all this research, Java’s system sort is solid, right?

A killer input.

• Blows function call stack in Java and crashes program.

• Would take quadratic time if it didn’t crash first.

more disastrous consequences in C

% more 250000.txt
0
218750
222662
11
166672
247070
83339
...

% java IntegerSort < 250000.txt
Exception in thread "main"
java.lang.StackOverflowError
 at java.util.Arrays.sort1(Arrays.java:562)
 at java.util.Arrays.sort1(Arrays.java:606)
 at java.util.Arrays.sort1(Arrays.java:608)
 at java.util.Arrays.sort1(Arrays.java:608)
 at java.util.Arrays.sort1(Arrays.java:608)
 ...

Java's sorting library crashes, even if
you give it as much stack space as Windows allows

250,000 integers
between 0 and 250,000

41

Achilles heel in Bentley-McIlroy implementation (Java system sort)

McIlroy's devious idea. [A Killer Adversary for Quicksort]

• Construct malicious input while running system quicksort,
in response to elements compared.

• If v is partitioning element, commit to (v < a[i]) and (v < a[j]), but don't
commit to (a[i] < a[j]) or (a[j] > a[i]) until a[i] and a[j] are compared.

Consequences.

• Confirms theoretical possibility.

• Algorithmic complexity attack: you enter linear amount of data;
server performs quadratic amount of work.

Remark. Attack is not effective if array is shuffled before sort.

Q. Why do you think system sort is deterministic?

42

System sort: Which algorithm to use?

Many sorting algorithms to choose from:

Internal sorts.

• Insertion sort, selection sort, bubblesort, shaker sort.

• Quicksort, mergesort, heapsort, samplesort, shellsort.

• Solitaire sort, red-black sort, splaysort, Dobosiewicz sort, psort, ...

External sorts. Poly-phase mergesort, cascade-merge, oscillating sort.

Radix sorts. Distribution, MSD, LSD, 3-way radix quicksort.

Parallel sorts.

• Bitonic sort, Batcher even-odd sort.

• Smooth sort, cube sort, column sort.

• GPUsort.

43

System sort: Which algorithm to use?

Applications have diverse attributes.

• Stable?

• Parallel?

• Deterministic?

• Keys all distinct?

• Multiple key types?

• Linked list or arrays?

• Large or small records?

• Is your array randomly ordered?

• Need guaranteed performance?

Elementary sort may be method of choice for some combination.
Cannot cover all combinations of attributes.

Q. Is the system sort good enough?
A. Usually.

many more combinations of
attributes than algorithms

44

Sorting summary

inplace? stable? worst average best remarks

selection

insertion

shell

quick

3-way quick

merge

???

x N 2 / 2 N 2 / 2 N 2 / 2 N exchanges

x x N 2 / 2 N 2 / 4 N use for small N or partially ordered

x ? ? N tight code, subquadratic

x N 2 / 2 2 N ln N N lg N N log N probabilistic guarantee
fastest in practice

x N 2 / 2 2 N ln N N improves quicksort in presence of
duplicate keys

x N lg N N lg N N lg N N log N guarantee, stable

x x N lg N N lg N N lg N holy sorting grail

45

Which sorting algorithm?

original sorted? ? ? ? ? ?

lifo
fifo
data
type
hash
heap
sort
link
list
push
find
root
leaf
tree
null
path
node
left
less
exch
sink
swim
next
swap

find
fifo
data
exch
hash
heap
less
left
leaf
lifo
push
root
list
tree
null
path
node
link
sort
type
sink
swim
next
swap

data
fifo
find
hash
heap
lifo
link
list
push
root
sort
type
leaf
left
node
null
path
tree
exch
less
next
sink
swap
swim

data
fifo
find
hash
heap
lifo
link
list
push
root
sort
type
leaf
tree
null
path
node
left
less
exch
sink
swim
next
swap

data
exch
fifo
find
hash
heap
leaf
left
less
lifo
link
list
sort
tree
null
path
node
type
root
push
sink
swim
next
swap

data
fifo
lifo
type
hash
heap
link
sort
find
list
push
root
leaf
null
path
tree
exch
left
less
node
next
sink
swap
swim

hash
fifo
data
link
leaf
heap
exch
node
lifo
left
find
path
list
next
less
root
sink
swim
null
sort
type
tree
push
swap

data
exch
fifo
find
hash
heap
leaf
left
less
lifo
link
list
next
node
null
path
push
root
sink
sort
swap
swim
tree
type

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 22, 2010 4:15:59 PM

2.4 Priority Queues

‣ API
‣ elementary implementations
‣ binary heaps
‣ heapsort
‣ event-based simulation

2

Priority queue API

public class MaxPQ<Key extends Comparable<Key>>

MaxPQ() create a priority queue

MaxPQ(maxN) create a priority queue of initial capacity maxN

void insert(Key v) insert a key into the priority queue

Key max() return the largest key

Key delMax() return and remove the largest key

boolean isEmpty() is the priority queue empty?

int size() number of entries in the priority queue

API for a generic priority queue

P 1 P P
Q 2 P Q P Q
E 3 P Q E E P Q
 Q 2 P E E P
X 3 P E X E P X
A 4 P E X A A E P X
M 5 P E X A M A E M P X
 X 4 P E M A A E M P
P 5 P E M A P A E M P P
L 6 P E M A P L A E L M P P
E 7 P E M A P L E A E E L M P P
 P 6 E M A P L E A E E L M P

insert
insert
insert

remove max
insert
insert
insert

remove max
insert
insert
insert

remove max

operation argument
return
value

contents
(unordered)

contents
(ordered)size

A sequence of operations on a priority queue

data type delete

stack last in, first out

queue first in, first out

priority queue largest value out

3

Priority queue applications

• Event-driven simulation. [customers in a line, colliding particles]

• Numerical computation. [reducing roundoff error]

• Data compression. [Huffman codes]

• Graph searching. [Dijkstra's algorithm, Prim's algorithm]

• Computational number theory. [sum of powers]

• Artificial intelligence. [A* search]

• Statistics. [maintain largest M values in a sequence]

• Operating systems. [load balancing, interrupt handling]

• Discrete optimization. [bin packing, scheduling]

• Spam filtering. [Bayesian spam filter]

Generalizes: stack, queue, randomized queue.

Problem. Find the largest M in a stream of N elements.

• Fraud detection: isolate $$ transactions.

• File maintenance: find biggest files or directories.

Constraint. Not enough memory to store N elements.
Solution. Use a min-oriented priority queue.

4

Priority queue client example

implementation time space

sort N log N N

elementary PQ M N M

binary heap N log M M

best in theory N M

cost of finding the largest M
in a stream of N items

MinPQ<String> pq = new MinPQ<String>();

while(!StdIn.isEmpty())
{
 String s = StdIn.readString();
 pq.insert(s);
 if (pq.size() > M)
 pq.delMin();
}

while (!pq.isEmpty())
 System.out.println(pq.delMin());

‣ API
‣ elementary implementations
‣ binary heaps
‣ heapsort
‣ event-based simulation

5 6

Priority queue: unordered and ordered array implementation

P 1 P P
Q 2 P Q P Q
E 3 P Q E E P Q
 Q 2 P E E P
X 3 P E X E P X
A 4 P E X A A E P X
M 5 P E X A M A E M P X
 X 4 P E M A A E M P
P 5 P E M A P A E M P P
L 6 P E M A P L A E L M P P
E 7 P E M A P L E A E E L M P P
 P 6 E M A P L E A E E L M P

insert
insert
insert

remove max
insert
insert
insert

remove max
insert
insert
insert

remove max

operation argument
return
value

contents
(unordered)

contents
(ordered)size

A sequence of operations on a priority queue

7

Priority queue: unordered array implementation

public class UnorderedMaxPQ<Key extends Comparable<Key>>
{
 private Key[] pq; // pq[i] = ith element on pq
 private int N; // number of elements on pq

 public UnorderedMaxPQ(int capacity)
 { pq = (Key[]) new Comparable[capacity]; }

 public boolean isEmpty()
 { return N == 0; }

 public void insert(Key x)
 { pq[N++] = x; }

 public Key delMax()
 {
 int max = 0;
 for (int i = 1; i < N; i++)
 if (less(max, i)) max = i;
 exch(max, N-1);
 return pq[--N];
 }
}

no generic
array creation

less() and exch()
as for sorting

8

Priority queue elementary implementations

Challenge. Implement all operations efficiently.

order-of-growth running time for PQ with N items

implementation insert del max max

unordered array 1 N N

ordered array N 1 1

goal log N log N log N

‣ API
‣ elementary implementations
‣ binary heaps
‣ heapsort
‣ event-based simulation

9

Binary tree. Empty or node with links to left and right binary trees.

Complete tree. Perfectly balanced, except for bottom level.

Property. Height of complete tree with N nodes is 1 + !lg N".
Pf. Height only increases when N is exactly a power of 2.

10

Binary tree

complete tree of height 5
 N = 16

!lg N" = 4
height = 5

11

A complete binary tree in nature

 i 0 1 2 3 4 5 6 7 8 9 10 11
a[i] - T S R P N O A E I H G

 E I H G

P N O A

S R
T

1

2

4 5 6 7

10 118 9

3

E

P

I

S

H

N

G

T

O

R

A

Heap representations
12

Binary heap

Binary heap. Array representation of a heap-ordered complete binary tree.

Heap-ordered binary tree.

• Keys in nodes.

• No smaller than children’s keys.

Array representation.

• Take nodes in level order.

• No explicit links needed!

13

Binary heap properties

Property A. Largest key is a[1], which is root of binary tree.

Property B. Can use array indices to move through tree.

• Parent of node at k is at k/2.

• Children of node at k are at 2k and 2k+1.

indices start at 1

 i 0 1 2 3 4 5 6 7 8 9 10 11
a[i] - T S R P N O A E I H G

 E I H G

P N O A

S R
T

1

2

4 5 6 7

10 118 9

3

E

P

I

S

H

N

G

T

O

R

A

Heap representations

Scenario. Node's key becomes larger key than its parent's key.

To eliminate the violation:

• Exchange key in node with key in parent.

• Repeat until heap order restored.

Peter principle. Node promoted to level of incompetence.

private void swim(int k)
{
 while (k > 1 && less(k/2, k))
 {
 exch(k, k/2);
 k = k/2;
 }
}

14

Promotion in a heap

parent of node at k is at k/2

5

E

G

I

P

H

T

G

S

O

R

A

violates heap order
(larger key than parent)

E

G

I

S

H

P

G

T

O

R

A5

2

1

Bottom-up heapify (swim)

15

Insertion in a heap

Insert. Add node at end, then swim it up.
Running time. At most ~ lg N compares.

public void insert(Key x)
{
 pq[++N] = x;
 swim(N);
}

Heap operations

E

P

I

N

G

H

S

T

O

R

A

key to insert

E

P

I

N

G

H

S

T

O

R

A

add key to heap
violates heap order

E

P

I

S

G

N

H

T

O

R

A

swim up

E

P

I

S

G

N

H

T

O

R

A

key to remove

violates
heap order

exchange keys
with root

E

P

I

S

G

N

T

H

O

R

A

remove node
from heap

E

H

I

P

G

N

S

O

R

A

sink down

insert remove the maximum

Scenario. Node's key becomes smaller than one (or both) of its children's keys.

To eliminate the violation:

• Exchange key in node with key in larger child.

• Repeat until heap order restored.

Power struggle. Better subordinate promoted.

private void sink(int k)
{
 while (2*k <= N)
 {
 int j = 2*k;
 if (j < N && less(j, j+1)) j++;
 if (!less(k, j)) break;
 exch(k, j);
 k = j;
 }
}

16

Demotion in a heap

children of node
at k are 2k and 2k+1

5

E

P

I

H

N

S

G

T

O

R

A

violates heap order
(smaller than a child)

E

P

I

S

H

N

G

T

O

R

A5

10

2

2

Top-down reheapify (sink)

Delete max. Exchange root with node at end, then sink it down.
Running time. At most ~ 2 lg N compares.

17

Delete the maximum in a heap

public Key delMax()
{
 Key max = pq[1];
 exch(1, N--);
 sink(1);
 pq[N+1] = null;
 return max;
}

prevent loitering

Heap operations

E

P

I

N

G

H

S

T

O

R

A

key to insert

E

P

I

N

G

H

S

T

O

R

A

add key to heap
violates heap order

E

P

I

S

G

N

H

T

O

R

A

swim up

E

P

I

S

G

N

H

T

O

R

A

key to remove

violates
heap order

exchange keys
with root

E

P

I

S

G

N

T

H

O

R

A

remove node
from heap

E

H

I

P

G

N

S

O

R

A

sink down

insert remove the maximum

18

Heap operations

P

Q

P

Q

E

E

P

E

X

P

A

M

E

X

P

A

M

P

E

A

P

M

P

E

A

P

M

P

E

L

A

P

M

P

E

L

E

A

M

E

P

L

L

P

E

X

P

A

Priority queue operations
in a heap

insert P

insert Q

insert E

remove max (Q)

insert X

insert A

insert M

remove max (X)

insert P

insert L

insert E

remove max (P)

P

Q

P

Q

E

E

P

E

X

P

A

M

E

X

P

A

M

P

E

A

P

M

P

E

A

P

M

P

E

L

A

P

M

P

E

L

E

A

M

E

P

L

L

P

E

X

P

A

Priority queue operations
in a heap

insert P

insert Q

insert E

remove max (Q)

insert X

insert A

insert M

remove max (X)

insert P

insert L

insert E

remove max (P)

19

Binary heap: Java implementation

public class MaxPQ<Key extends Comparable<Key>>
{
 private Key[] pq;
 private int N;

 public MaxPQ(int capacity)
 { pq = (Key[]) new Comparable[capacity+1]; }

 public boolean isEmpty()
 { return N == 0; }
 public void insert(Key key)
 { /* see previous code */ }
 public Key delMax()
 { /* see previous code */ }

 private void swim(int k)
 { /* see previous code */ }
 private void sink(int k)
 { /* see previous code */ }

 private boolean less(int i, int j)
 { return pq[i].compareTo(pq[j] < 0; }
 private void exch(int i, int j)
 { Key t = pq[i]; pq[i] = pq[j]; pq[j] = t; }
}

array helper functions

heap helper functions

PQ ops

20

Priority queues implementation cost summary

Hopeless challenge. Make all operations constant time.
Q. Why hopeless?

order-of-growth running time for PQ with N items

implementation insert del max max

unordered array 1 N N

ordered array N 1 1

binary heap log N log N 1

21

Binary heap considerations

Minimum-oriented priority queue.

• Replace less() with greater().

• Implement greater().

Dynamic array resizing.

• Add no-arg constructor.

• Apply repeated doubling and shrinking.

Immutability of keys.

• Assumption: client does not change keys while they're on the PQ.

• Best practice: use immutable keys.

Other operations.

• Remove an arbitrary item.

• Change the priority of an item.

leads to O(log N) amortized time per op

easy to implement with sink() and swim() [stay tuned]

‣ API
‣ elementary implementations
‣ binary heaps
‣ heapsort
‣ event-based simulation

22

23

Heapsort

Basic plan for in-place sort.

• Create max-heap with all N keys.

• Repeatedly remove the maximum key.

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap

M

T

P

O

L

E

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

R

X

A

M

P

O

T

E

L

E

S

R

X

A

M

P

O

T

E

L

E

X

R

S

A

R

A

S

L

T

E

X

M

O

E

P

R

A

S

E

T

M

X

L

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

E

T

M

X

A

O

E

P

R

L

S

E

T

M

X

A

O

E

P

M

P

O

T

E

L

E

X

R

S

A

M

O

E

P

E

L

X

T

R

S

A

M

O

E

P

T

L

X

S

E

R

A

M

O

S

P

T

L

X

R

E

E

A

R

M

S

O

T

L

X

P

E

E

A

R

A

S

M

T

L

X

O

E

E

P

1

2

4 5 6 7

8 9 10 11

3

1

2

4 5 6 7

8 9 10 11

3

heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap

M

T

P

O

L

E

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

R

X

A

M

P

O

T

E

L

E

S

R

X

A

M

P

O

T

E

L

E

X

R

S

A

R

A

S

L

T

E

X

M

O

E

P

R

A

S

E

T

M

X

L

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

E

T

M

X

A

O

E

P

R

L

S

E

T

M

X

A

O

E

P

M

P

O

T

E

L

E

X

R

S

A

M

O

E

P

E

L

X

T

R

S

A

M

O

E

P

T

L

X

S

E

R

A

M

O

S

P

T

L

X

R

E

E

A

R

M

S

O

T

L

X

P

E

E

A

R

A

S

M

T

L

X

O

E

E

P

1

2

4 5 6 7

8 9 10 11

3

1

2

4 5 6 7

8 9 10 11

3

heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap

M

T

P

O

L

E

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

R

X

A

M

P

O

T

E

L

E

S

R

X

A

M

P

O

T

E

L

E

X

R

S

A

R

A

S

L

T

E

X

M

O

E

P

R

A

S

E

T

M

X

L

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

E

T

M

X

A

O

E

P

R

L

S

E

T

M

X

A

O

E

P

M

P

O

T

E

L

E

X

R

S

A

M

O

E

P

E

L

X

T

R

S

A

M

O

E

P

T

L

X

S

E

R

A

M

O

S

P

T

L

X

R

E

E

A

R

M

S

O

T

L

X

P

E

E

A

R

A

S

M

T

L

X

O

E

E

P

1

2

4 5 6 7

8 9 10 11

3

1

2

4 5 6 7

8 9 10 11

3

heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)

start with array of keys
in arbitrary order

build a max-heap
(in place)

sorted result
(in place)

24

Heapsort: heap construction

First pass. Build heap using bottom-up method.

for (int k = N/2; k >= 1; k--)
 sink(a, k, N);

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap

M

T

P

O

L

E

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

R

X

A

M

P

O

T

E

L

E

S

R

X

A

M

P

O

T

E

L

E

X

R

S

A

R

A

S

L

T

E

X

M

O

E

P

R

A

S

E

T

M

X

L

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

E

T

M

X

A

O

E

P

R

L

S

E

T

M

X

A

O

E

P

M

P

O

T

E

L

E

X

R

S

A

M

O

E

P

E

L

X

T

R

S

A

M

O

E

P

T

L

X

S

E

R

A

M

O

S

P

T

L

X

R

E

E

A

R

M

S

O

T

L

X

P

E

E

A

R

A

S

M

T

L

X

O

E

E

P

1

2

4 5 6 7

8 9 10 11

3

1

2

4 5 6 7

8 9 10 11

3

heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap

M

T

P

O

L

E

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

R

X

A

M

P

O

T

E

L

E

S

R

X

A

M

P

O

T

E

L

E

X

R

S

A

R

A

S

L

T

E

X

M

O

E

P

R

A

S

E

T

M

X

L

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

E

T

M

X

A

O

E

P

R

L

S

E

T

M

X

A

O

E

P

M

P

O

T

E

L

E

X

R

S

A

M

O

E

P

E

L

X

T

R

S

A

M

O

E

P

T

L

X

S

E

R

A

M

O

S

P

T

L

X

R

E

E

A

R

M

S

O

T

L

X

P

E

E

A

R

A

S

M

T

L

X

O

E

E

P

1

2

4 5 6 7

8 9 10 11

3

1

2

4 5 6 7

8 9 10 11

3

heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)

25

Heapsort: sortdown

Second pass.

• Remove the maximum, one at a time.

• Leave in array, instead of nulling out.

while (N > 1)
{
 exch(a, 1, N--);
 sink(a, 1, N);
}

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap

M

T

P

O

L

E

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

R

X

A

M

P

O

T

E

L

E

S

R

X

A

M

P

O

T

E

L

E

X

R

S

A

R

A

S

L

T

E

X

M

O

E

P

R

A

S

E

T

M

X

L

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

E

T

M

X

A

O

E

P

R

L

S

E

T

M

X

A

O

E

P

M

P

O

T

E

L

E

X

R

S

A

M

O

E

P

E

L

X

T

R

S

A

M

O

E

P

T

L

X

S

E

R

A

M

O

S

P

T

L

X

R

E

E

A

R

M

S

O

T

L

X

P

E

E

A

R

A

S

M

T

L

X

O

E

E

P

1

2

4 5 6 7

8 9 10 11

3

1

2

4 5 6 7

8 9 10 11

3

heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)

26

Heapsort: Java implementation

public class Heap
{
 public static void sort(Comparable[] pq)
 {
 int N = pq.length;
 for (int k = N/2; k >= 1; k--)
 sink(pq, k, N);
 while (N > 1)
 {
 exch(pq, 1, N);
 sink(pq, 1, --N);
 }
 }

 private static void sink(Comparable[] pq, int k, int N)
 { /* as before */ }

 private static boolean less(Comparable[] pq, int i, int j)
 { /* as before */ }

 private static void exch(Comparable[] pq, int i, int j)
 { /* as before */ }

}

but use 1-based indexing

27

Heapsort: trace

 a[i]
 N k 0 1 2 3 4 5 6 7 8 9 10 11
 S O R T E X A M P L E
 11 5 S O R T L X A M P E E
 11 4 S O R T L X A M P E E
 11 3 S O X T L R A M P E E
 11 2 S T X P L R A M O E E
 11 1 X T S P L R A M O E E
 X T S P L R A M O E E
 10 1 T P S O L R A M E E X
 9 1 S P R O L E A M E T X
 8 1 R P E O L E A M S T X
 7 1 P O E M L E A R S T X
 6 1 O M E A L E P R S T X
 5 1 M L E A E O P R S T X
 4 1 L E E A M O P R S T X
 3 1 E A E L M O P R S T X
 2 1 E A E L M O P R S T X
 1 1 A E E L M O P R S T X
 A E E L M O P R S T X

initial values

heap-ordered

sorted result

Heapsort trace (array contents just after each sink)

Proposition Q. At most 2 N lg N compares and exchanges.

Significance. Sort in N log N worst-case without using extra memory.

• Mergesort: no, linear extra space.

• Quicksort: no, quadratic time in worst case.

• Heapsort: yes!

Bottom line. Heapsort is optimal for both time and space, but:

• Inner loop longer than quicksort’s.

• Makes poor use of cache memory.

• Not stable.

28

Heapsort: mathematical analysis

in-place merge possible, not practical

N log N worst-case quicksort possible,
not practical

Heapsort animation

29

http://www.sorting-algorithms.com/heap-sort

50 random elements

in order
algorithm position

not in order

30

Sorting algorithms: summary

key comparisons to sort N distinct randomly-ordered keys

inplace? stable? worst average best remarks

selection

insertion

shell

quick

3-way quick

merge

heap

???

x N 2 / 2 N 2 / 2 N 2 / 2 N exchanges

x x N 2 / 2 N 2 / 4 N use for small N or partially ordered

x ? ? N tight code, subquadratic

x N 2 / 2 2 N ln N N lg N N log N probabilistic guarantee
fastest in practice

x N 2 / 2 2 N ln N N improves quicksort in presence
of duplicate keys

x N lg N N lg N N lg N N log N guarantee, stable

x 2 N lg N 2 N lg N N lg N N log N guarantee, in-place

x x N lg N N lg N N lg N holy sorting grail

‣ API
‣ elementary implementations
‣ binary heaps
‣ heapsort
‣ event-based simulation

31 32

Molecular dynamics simulation of hard discs

Goal. Simulate the motion of N moving particles that behave
according to the laws of elastic collision.

33

Molecular dynamics simulation of hard discs

Goal. Simulate the motion of N moving particles that behave
according to the laws of elastic collision.

Hard disc model.

• Moving particles interact via elastic collisions with each other and walls.

• Each particle is a disc with known position, velocity, mass, and radius.

• No other forces.

Significance. Relates macroscopic observables to microscopic dynamics.

• Maxwell-Boltzmann: distribution of speeds as a function of temperature.

• Einstein: explain Brownian motion of pollen grains.

motion of individual
atoms and molecules

temperature, pressure,
diffusion constant

Time-driven simulation. N bouncing balls in the unit square.

Warmup: bouncing balls

34

public class BouncingBalls
{
 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 Ball balls[] = new Ball[N];
 for (int i = 0; i < N; i++)
 balls[i] = new Ball();
 while(true)
 {
 StdDraw.clear();
 for (int i = 0; i < N; i++)
 {
 balls[i].move(0.5);
 balls[i].draw();
 }
 StdDraw.show(50);
 }
 }
}

% java BouncingBalls 100

main simulation loop

Missing. Check for balls colliding with each other.

• Physics problems: when? what effect?

• CS problems: which object does the check? too many checks?

Warmup: bouncing balls

35

public class Ball
{
 private double rx, ry; // position
 private double vx, vy; // velocity
 private final double radius; // radius
 public Ball()
 { /* initialize position and velocity */ }

 public void move(double dt)
 {
 if ((rx + vx*dt < radius) || (rx + vx*dt > 1.0 - radius)) { vx = -vx; }
 if ((ry + vy*dt < radius) || (ry + vy*dt > 1.0 - radius)) { vy = -vy; }
 rx = rx + vx*dt;
 ry = ry + vy*dt;
 }
 public void draw()
 { StdDraw.filledCircle(rx, ry, radius); }
}

check for collision with walls

36

Time-driven simulation

• Discretize time in quanta of size dt.

• Update the position of each particle after every dt units of time,
and check for overlaps.

• If overlap, roll back the clock to the time of the collision, update the
velocities of the colliding particles, and continue the simulation.

t t + dt t + 2 dt
(collision detected)

t + !t
(roll back clock)

Main drawbacks.

• ~ N2/2 overlap checks per time quantum.

• Simulation is too slow if dt is very small.

• May miss collisions if dt is too large.
(if colliding particles fail to overlap when we are looking)

37

Time-driven simulation

dt too small: excessive computation

dt too large: may miss collisions

Fundamental challenge for
time-driven simulation

dt too small: excessive computation

dt too large: may miss collisions

Fundamental challenge for
time-driven simulation

Change state only when something happens.

• Between collisions, particles move in straight-line trajectories.

• Focus only on times when collisions occur.

• Maintain PQ of collision events, prioritized by time.

• Remove the min = get next collision.

Collision prediction. Given position, velocity, and radius of a particle,
when will it collide next with a wall or another particle?

Collision resolution. If collision occurs, update colliding particle(s) according
to laws of elastic collisions.

38

Event-driven simulation

prediction (at time t)
 particles hit unless one passes
 intersection point before the other
 arrives (see Exercise 3.6.X)

resolution (at time t + dt)
 velocities of both particles
 change after collision (see Exercise 3.6.X)

Predicting and resolving a particle-particle collision

39

Particle-wall collision

Collision prediction and resolution.

• Particle of radius s at position (rx, ry).

• Particle moving in unit box with velocity (vx, vy).

• Will it collide with a vertical wall? If so, when?

Predicting and resolving a particle-wall collision

prediction (at time t)
 dt ! time to hit wall
 = distance/velocity

resolution (at time t + dt)
 velocity after collision = (− vx , vy)
 position after collision = (1 − s , ry + vydt)

 = (1 − s − rx)/vx

1 − s − rx

(rx , ry
)

s

wall at
x = 1

vx

vy

40

Particle-particle collision prediction

Collision prediction.

• Particle i: radius si, position (rxi, ryi), velocity (vxi, vyi).

• Particle j: radius sj, position (rxj, ryj), velocity (vxj, vyj).

• Will particles i and j collide? If so, when?

sj

si

(rxi , ryi)

time = t

(vxi , vyi)

m i

i

j

(rxi', ryi')

time = t + !t

(vxj', vyj')

(vxi', vyi')

(vxj , vyj)

Collision prediction.

• Particle i: radius si, position (rxi, ryi), velocity (vxi, vyi).

• Particle j: radius sj, position (rxj, ryj), velocity (vxj, vyj).

• Will particles i and j collide? If so, when?

Particle-particle collision prediction

41

!

"v = ("vx, "vy) = (vxi # vx j , vyi # vyj)

!

"r = ("rx, "ry) = (rxi # rx j , ryi # ryj)

!

"v # "v = ("vx)2 + ("vy)2

!

"r # "r = ("rx)2 + ("ry)2

!

"v # "r = ("vx)("rx)+ ("vy)("ry)

!

"t =
 # if "v $"r % 0
 # if d < 0
 - "v $"r + d

"v $"v
 otherwise

&

'
((

)
(
(

!

d = ("v #"r)2 $ ("v #"v) ("r #"r $ %2)

!

" = " i +" j

Important note: This is high-school physics, so we won’t be testing you on it!

Collision resolution. When two particles collide, how does velocity change?

42

Particle-particle collision resolution

!

vxi" = vxi + Jx / mi

vyi" = vyi + Jy / mi

vx j" = vx j # Jx / mj

vyj" = vx j # Jy / mj

!

Jx = J "rx
#

, Jy = J "ry
#

, J =
2mi mj ("v $"r)
#(mi +mj)

impulse due to normal force
(conservation of energy, conservation of momentum)

Newton's second law
(momentum form)

Important note: This is high-school physics, so we won’t be testing you on it!

!

vxi" = vxi + Jx / mi

vyi" = vyi + Jy / mi

vx j" = vx j # Jx / mj

vyj" = vx j # Jy / mj

Particle data type skeleton

43

public class Particle
{
 private double rx, ry; // position
 private double vx, vy; // velocity
 private final double radius; // radius
 private final double mass; // mass
 private int count; // number of collisions

 public Particle(...) { }

 public void move(double dt) { }
 public void draw() { }

 public double timeToHit(Particle that) { }
 public double timeToHitVerticalWall() { }
 public double timeToHitHorizontalWall() { }

 public void bounceOff(Particle that) { }
 public void bounceOffVerticalWall() { }
 public void bounceOffHorizontalWall() { }

}

predict collision with
particle or wall

resolve collision with
particle or wall

Particle-particle collision and resolution implementation

44

 public double timeToHit(Particle that)
 {
 if (this == that) return INFINITY;
 double dx = that.rx - this.rx, dy = that.ry - this.ry;
 double dvx = that.vx - this.vx; dvy = that.vy - this.vy;
 double dvdr = dx*dvx + dy*dvy;
 if(dvdr > 0) return INFINITY;
 double dvdv = dvx*dvx + dvy*dvy;
 double drdr = dx*dx + dy*dy;
 double sigma = this.radius + that.radius;
 double d = (dvdr*dvdr) - dvdv * (drdr - sigma*sigma);
 if (d < 0) return INFINITY;
 return -(dvdr + Math.sqrt(d)) / dvdv;
 }

 public void bounceOff(Particle that)
 {
 double dx = that.rx - this.rx, dy = that.ry - this.ry;
 double dvx = that.vx - this.vx, dvy = that.vy - this.vy;
 double dvdr = dx*dvx + dy*dvy;
 double dist = this.radius + that.radius;
 double J = 2 * this.mass * that.mass * dvdr / ((this.mass + that.mass) * dist);
 double Jx = J * dx / dist;
 double Jy = J * dy / dist;
 this.vx += Jx / this.mass;
 this.vy += Jy / this.mass;
 that.vx -= Jx / that.mass;
 that.vy -= Jy / that.mass;
 this.count++;
 that.count++;
 }

no collision

Important note: This is high-school physics, so we won’t be testing you on it!

45

Collision system: event-driven simulation main loop

Initialization.

• Fill PQ with all potential particle-wall collisions.

• Fill PQ with all potential particle-particle collisions.

Main loop.

• Delete the impending event from PQ (min priority = t).

• If the event has been invalidated, ignore it.

• Advance all particles to time t, on a straight-line trajectory.

• Update the velocities of the colliding particle(s).

• Predict future particle-wall and particle-particle collisions involving the
colliding particle(s) and insert events onto PQ.

“potential” since collision may not happen if
some other collision intervenes

An invalidated event

two particles on a collision course

third particle interferes: no collision

Conventions.

• Neither particle null # particle-particle collision.

• One particle null # particle-wall collision.

• Both particles null # redraw event.

Event data type

46

private class Event implements Comparable<Event>
{
 private double time; // time of event
 private Particle a, b; // particles involved in event
 private int countA, countB; // collision counts for a and b

 public Event(double t, Particle a, Particle b) { }

 public int compareTo(Event that)
 { return this.time - that.time; }

 public boolean isValid()
 { }
}

ordered by time

invalid if intervening
collision

create event

public class CollisionSystem
{
 private MinPQ<Event> pq; // the priority queue
 private double t = 0.0; // simulation clock time
 private Particle[] particles; // the array of particles

 public CollisionSystem(Particle[] particles) { }

 private void predict(Particle a)
 {
 if (a == null) return;
 for (int i = 0; i < N; i++)
 {
 double dt = a.timeToHit(particles[i]);
 pq.insert(new Event(t + dt, a, particles[i]));
 }
 pq.insert(new Event(t + a.timeToHitVerticalWall() , a, null));
 pq.insert(new Event(t + a.timeToHitHorizontalWall(), null, a));
 }

 private void redraw() { }

 public void simulate() { /* see next slide */ }
}

Collision system implementation: skeleton

47

add to PQ all particle-wall and particle-
particle collisions involving this particle

public void simulate()
{
 pq = new MinPQ<Event>();
 for(int i = 0; i < N; i++) predict(particles[i]);
 pq.insert(new Event(0, null, null));

 while(!pq.isEmpty())
 {
 Event event = pq.delMin();
 if(!event.isValid()) continue;
 Particle a = event.a;
 Particle b = event.b;

 for(int i = 0; i < N; i++)
 particles[i].move(event.time - t);
 t = event.time;

 if (a != null && b != null) a.bounceOff(b);
 else if (a != null && b == null) a.bounceOffVerticalWall()
 else if (a == null && b != null) b.bounceOffHorizontalWall();
 else if (a == null && b == null) redraw();

 predict(a);
 predict(b);
 }
}

Collision system implementation: main event-driven simulation loop

48

initialize PQ with
collision events and
redraw event

get next event

update positions
and time

process event

predict new events
based on changes

49

Simulation example 1

% java CollisionSystem 100

50

Simulation example 2

% java CollisionSystem < billiards.txt

51

Simulation example 3

% java CollisionSystem < brownian.txt

52

Simulation example 4

% java CollisionSystem < diffusion.txt

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 22, 2010 10:24:40 PM

3.1 Symbol Tables

‣ API
‣ sequential search
‣ binary search
‣ ordered operations

2

Symbol tables

Key-value pair abstraction.

• Insert a value with specified key.

• Given a key, search for the corresponding value.

Ex. DNS lookup.

• Insert URL with specified IP address.

• Given URL, find corresponding IP address.

key

URL IP address

www.cs.princeton.edu 128.112.136.11

www.princeton.edu 128.112.128.15

www.yale.edu 130.132.143.21

www.harvard.edu 128.103.060.55

www.simpsons.com 209.052.165.60

value

3

Symbol table applications

application purpose of search key value

dictionary find definition word definition

book index find relevant pages term list of page numbers

file share find song to download name of song computer ID

financial account process transactions account number transaction details

web search find relevant web pages keyword list of page names

compiler find properties of variables variable name type and value

routing table route Internet packets destination best route

DNS find IP address given URL URL IP address

reverse DNS find URL given IP address IP address URL

genomics find markers DNA string known positions

file system find file on disk filename location on disk

API The symbol table is an abstract data type (see Chapter 2): It represents a well-
defined set values and operations on those values, enabling us to develop application-
programs (clients) and implementations separately. As usual, we precisely define the
operations by specifying an application programming interface (API) that provides the
contract between client and implementation:

public class ST<Key, Value>

ST() create a symbol table

void put(Key key, Value val)
put key-value pair into the table
(remove key from table if value is null)

Value get(Key key)
value paired with key
(null if key is absent)

void delete(Key key) remove key (and its value) from table
boolean contains(Key key) is there a value paired with key?
boolean isEmpty() is the table empty?

int size() number of key-value pairs in the table
Iterable<Key> keys() all the keys in the table

API for a generic basic symbol table

As we did with sorting, we will consider the methods without specifying the types of
the items being processed, using generics. For symbol tables, we emphasize the separate
roles played by keys and values in search by specifying the key and value types sepa-
rately instead of combining them in a single data type. After we have considered some
of the characteristics of this basic API, we will consider an extension for the typical case
when keys are Comparable, which enables numerous additional methods. We will then
consider implementations of each.

Before examining client code, we consider several design choices for our implemen-
tations to make our code consistent, compact, and useful. These are not difficult con-
ceptually, but worth examining because they anticipate the answers to questions that
would otherwise arise later.

Duplicate keys. We adopt the following conventions in all of our implementations:
!" Only one value is associated with each key (no duplicate keys in a table).
!" When a client puts a key-value pair into a table already containing that key (and

an associated value), the new value replaces the old one.

3294.1 ! Fundamentals

4

Symbol table API

Associative array abstraction. Associate one value with each key.

a[key] = val;

a[key]

5

Conventions

• Values are not null.

• Method get() returns null if key not present.

• Method put() overwrites old value with new value.

Intended consequences.

• Easy to implement contains().

• Can implement lazy version of delete().

 public boolean contains(Key key)
 { return get(key) != null; }

 public void delete(Key key)
 { put(key, null); }

6

Keys and values

Value type. Any generic type.

Key type: several natural assumptions.

• Assume keys are Comparable, use compareTo().

• Assume keys are any generic type, use equals() to test equality.

• Assume keys are any generic type, use equals() to test equality
and hashCode() to scramble key.

Best practices. Use immutable types for symbol table keys.

• Immutable in Java: String, Integer, Double, File, …

• Mutable in Java: Date, StringBuilder, Url, ...

ST test client for traces

Build ST by associating value i with ith string from standard input.

7

public static void main(String[] args)
{
 ST<String, Integer> st = new ST<String, Integer>();
 String[] a = StdIn.readAll().split("\\s+");
 for (int i = 0; i < a.length; i++)
 st.put(a[i], i);
 for (String s : st.keys())
 StdOut.println(s + " " + st.get(s));
}

Keys, values, and output for test client

STunordered output
(one possibility) ST output

keys

values

S E A R C H E X A M P L E

0 1 2 3 4 5 6 7 8 9 10 11 12

L 11
P 10
M 9
X 7
H 5
C 4
R 3
A 8
E 12
S 0

A 8
C 4
E 12
H 5
L 9
M 11
P 10
R 3
S 0
X 7

Keys, values, and output for test client

STunordered output
(one possibility) ST output

keys

values

S E A R C H E X A M P L E

0 1 2 3 4 5 6 7 8 9 10 11 12

L 11
P 10
M 9
X 7
H 5
C 4
R 3
A 8
E 12
S 0

A 8
C 4
E 12
H 5
L 9
M 11
P 10
R 3
S 0
X 7

keys

values

output

ST test client for analysis

Frequency counter. Read a sequence of strings from standard input
and print out one that occurs with highest frequency.

8

% more tinyTale.txt
it was the best of times
it was the worst of times
it was the age of wisdom
it was the age of foolishness
it was the epoch of belief
it was the epoch of incredulity
it was the season of light
it was the season of darkness
it was the spring of hope
it was the winter of despair

% java FrequencyCounter 1 < tinyTale.txt
it 10

% java FrequencyCounter 8 < tale.txt
business 122

% java FrequencyCounter 10 < leipzig1M.txt
government 24763

tiny example (60 words, 20 distinct)

real example (135,635 words, 10,769 distinct)

real example (21,191,455 words, 534,580 distinct)

public class FrequencyCounter
{
 public static void main(String[] args)
 {
 int minlen = Integer.parseInt(args[0]);
 ST<String, Integer> st = new ST<String, Integer>();
 while (!StdIn.isEmpty())
 {
 String word = StdIn.readString();
 if (word.length() < minlen) continue;
 if (!st.contains(word)) st.put(word, 1);
 else st.put(word, st.get(word) + 1);
 }
 String max = "";
 st.put(max, 0);
 for (String word : st.keys())
 if (st.get(word) > st.get(max))
 max = word;
 StdOut.println(max + " " + st.get(max));
 }
}

9

Frequency counter implementation

read string and
update frequency

print a string
with max freq

create ST

ignore short strings

10

‣ API
‣ sequential search
‣ binary search
‣ ordered operations

Data structure. Maintain an (unordered) linked list of key-value pairs.

Search. Scan through all keys until find a match.
Insert. Scan through all keys until find a match; if no match add to front.

11

Sequential search in a linked list

Trace of linked-list ST implementation for standard indexing client

red nodes
are new

black nodes
are accessed

in search

first

S 0

S 0E 1

S 0E 1A 2

S 0E 1A 2R 3

S 0E 1A 2R 3C 4

S 0E 1A 2R 3C 4H 5

S 0E 6A 2R 3C 4H 5

S 0E 6A 2R 3C 4H 5

S 0E 6A 8R 3C 4H 5

X 7

X 7

M 9

P 10

L 11

L 11

circled entries are
changed values

gray nodes
are untouched

S 0E 6A 8R 3C 4H 5X 7

M 9 S 0E 6A 8R 3C 4H 5X 7

P 10 M 9 S 0E 6A 8R 3C 4H 5X 7

P 10 M 9 S 0E 12A 8R 3C 4H 5X 7

key value

S 0

E 1

A 2

R 3

C 4

H 5

E 6

X 7

A 8

M 9

P 10

L 11

E 12

Challenge. Efficient implementations of both search and insert.
12

Elementary ST implementations: summary

ST implementation
worst caseworst case average caseaverage case ordered

iteration?
operations

on keysST implementation
search insert search hit insert

ordered
iteration?

operations
on keys

sequential search
(unordered list)

N N N / 2 N no equals()

Costs for java FrequencyCounter 8 < tale.txt using LinkedListST

5000

2246

0

13

‣ API
‣ sequential search
‣ binary search
‣ ordered symbol table ops

14

Binary search

Data structure. Maintain an ordered array of key-value pairs.

Rank helper function. How many keys < k?

loop exits with lo > hi: return 7

entries in black
are a[lo..hi]

entry in red is a[m]

successful search for P

loop exits with keys[m] = P: return 6

lo hi m

unsuccessful search for Q

lo hi m

 keys[]
 0 1 2 3 4 5 6 7 8 9

0 9 4 A C E H L M P R S X
5 9 7 A C E H L M P R S X
5 6 5 A C E H L M P R S X
6 6 6 A C E H L M P R S X

0 9 4 A C E H L M P R S X
5 9 7 A C E H L M P R S X
5 6 5 A C E H L M P R S X
7 6 6 A C E H L M P R S X

Trace of binary search for rank in an ordered array

15

Binary search: Java implementation

 public Value get(Key key)
 {
 if (isEmpty()) return null;
 int i = rank(key);
 if (i < N && keys[i].compareTo(key) == 0) return vals[i];
 else return null;
 }

 private int rank(Key key)
 {
 int lo = 0, hi = N-1;
 while (lo <= hi)
 {
 int mid = lo + (hi - lo) / 2;
 int cmp = key.compareTo(keys[mid]);
 if (cmp < 0) hi = mid - 1;
 else if (cmp > 0) lo = mid + 1;
 else if (cmp == 0) return mid;
 }
 return lo;
 }

number of keys < key

16

Binary search: mathematical analysis

Proposition. Binary search uses ~ lg N compares to search any array of size N.

Def. T(N) ≡ number of compares to binary search in a sorted array of size N.
 ≤ T(N / 2) + 1

Binary search recurrence. T(N) ≤ T(N / 2) + 1 for N > 1, with T(1) = 1.

• Not quite right for odd N.

• Same recurrence holds for many algorithms.

Solution. T(N) ~ lg N.

• For simplicity, we'll prove when N is a power of 2.

• True for all N. [see COS 340]

left or right half

Binary search recurrence. T(N) ≤ T(N / 2) + 1 for N > 1, with T(1) = 1.

Proposition. If N is a power of 2, then T(N) ≤ lg N + 1.
Pf.

17

Binary search recurrence

 T(N) ≤ T(N / 2) + 1

 ≤ T(N / 4) + 1 + 1

 ≤ T(N / 8) + 1 + 1 + 1

 . . .

 ≤ T(N / N) + 1 + 1 + … + 1

 = lg N + 1

given

apply recurrence to first term

apply recurrence to first term

stop applying, T(1) = 1

Problem. To insert, need to shift all greater keys over.

18

Binary search: trace of standard indexing client

Trace of ordered-array ST implementation for standard indexing client

 keys[] vals[]
 0 1 2 3 4 5 6 7 8 9 N 0 1 2 3 4 5 6 7 8 9

 S 0 S 1 0
 E 1 E S 2 1 0
 A 2 A E S 3 2 1 0
 R 3 A E R S 4 2 1 3 0
 C 4 A C E R S 5 2 4 1 3 0
 H 5 A C E H R S 6 2 4 1 5 3 0
 E 6 A C E H R S 6 2 4 6 5 3 0
 X 7 A C E H R S X 7 2 4 6 5 3 0 7
 A 8 A C E H R S X 7 8 4 6 5 3 0 7
 M 9 A C E H M R S X 8 8 4 6 5 9 3 0 7
 P 10 A C E H M P R S X 9 8 4 6 5 9 10 3 0 7
 L 11 A C E H L M P R S X 10 8 4 6 5 11 9 10 3 0 7
 E 12 A C E H L M P R S X 10 8 4 12 5 11 9 10 3 0 7

 A C E H L M P R S X 8 4 12 5 11 9 10 3 0 7

entries in gray
did not move circled entries are

changed values

entries in black
moved to the rightentries in red

were inserted

key value

19

Elementary ST implementations: summary

Challenge. Efficient implementations of both search and insert.

ST implementation
worst caseworst case average caseaverage case ordered operationsST implementation

search insert search hit insert
ordered

iteration?
operations

on keys

sequential search
(unordered list)

N N N / 2 N no equals()

binary search
(ordered array)

 log N N log N N / 2 yes compareTo()

Costs for java FrequencyCounter 8 < tale.txt using OrderedArrayST

5000

484
0

20

‣ API
‣ sequential search
‣ binary search
‣ ordered operations

21

Ordered symbol table API

Your signal that one of our programs is implementing this API is the presence of the
Key extends Comparable<Key> generic type variable in the class declaration, which
specifies that the code depends on keys being Comparable and implements the richer
set of operations available for symbol tables based on such keys. Together, these opera-
tions define for client programs an ordered symbol table.

Minimum and maximum. Perhaps the most natural queries for a set of ordered keys
are to ask for the smallest and largest keys. We have already encountered the need for
these operations (in our discussion of priority queues in Section 3.4).

Floor and ceiling. Given a key, it is often use-
ful to be able to perform the floor operation
(find the largest key that is less than or equal to
the given key) and the ceiling operation (find
the smallest key that is greater than or equal to
the given key). The nomenclature comes from
functions defined on real numbers (the floor
of a real number x is the largest integer that is
smaller than or equal to x and the ceiling of
a real number x is the smallest integer that is
greater than or equal to x).

Rank and selection. The basic operations for
determining where a new key fits in the order
are the rank operation (find the number of
keys less than a given key) and the select opera-
tion (find the key with a given rank). To test
your understanding of their meaning, confirm
for yourself that both i = rank(select(i))
for all i between 0 and size()-1 and all keys
in the table satisfy key = select(rank(key)).
We also have already encountered the need for these operations, in our discussion of
sort applications in Section 3.5. For symbol tables, the challenge is to be able to per-
form these operations quickly, intermixed with insertions and deletions.

Range queries. How many keys fall within a given range? Which keys fall in a given
range? The two-argument size() and keys() methods that answer these questions
are useful in many applications, particularly in large databases. The capability to han-
dle such queries is one prime reason that ordered symbol tables are so widely used in
practice.

09:00:00 Chicago
09:00:03 Phoenix
09:00:13 Houston
09:00:59 Chicago
09:01:10 Houston
09:03:13 Chicago
09:10:11 Seattle
09:10:25 Seattle
09:14:25 Phoenix
09:19:32 Chicago
09:19:46 Chicago
09:21:05 Chicago
09:22:43 Seattle
09:22:54 Seattle
09:25:52 Chicago
09:35:21 Chicago
09:36:14 Seattle
09:37:44 Phoenix

keys values

get(09:00:13)

ceiling(09:30:00)

keys(09:15:00, 09:25:00)

size(09:15:00, 09:25:00) is 5
rank(09:10:25) is 7

floor(09:05:00)

min()

select(7)

max()

Examples of ordered symbol-table operations

3334.1 ! Fundamentals

22

Ordered symbol table API

Ordered symbol tables In typical applications, keys are Comparable objects, so
the option exists of using the code a.compareTo(b) to compare two keys a and b. Sev-
eral symbol-table implementations take advantage of order among the keys that is im-
plied by Comparable to provide efficient implementations of the put() and get() op-
erations. More important, in such implementations, we can think of the symbol table as
keeping the keys in order and consider a significantly expanded API that defines numer-
ous natural and useful operations involving relative key order. For example, suppose
that your keys are times. You might be interested in knowing the earliest or the latest
time, the set of keys that fall between two given times, and so forth. In most cases, such
operations are not difficult to implement with the same data structures and methods
underlying the put() and get() implementations. Specifically, for applications where
keys are Comparable, we implement in this chapter the following API:

public class ST<Key extends Comparable<Key>, Value>

ST() create an ordered symbol table

void put(Key key, Value val) put key-value pair into the table
(remove key from table if value is null)

Value get(Key key) value paired with key
(null if key is absent)

void delete(Key key) remove key (and its value) from table
boolean contains(Key key) is there a value paired with key?
boolean isEmpty() is the table empty?

int size() number of key-value pairs
Key min() smallest key
Key max() largest key
Key floor(Key key) largest key less than or equal to key
Key ceiling(Key key) smallest key greater than or equal to key
int rank(Key key) number of keys less than key
Key select(int k) key of rank k
void deleteMin() delete smallest key
void deleteMax() delete largest key
int size(Key lo, Key hi) number of keys in [lo..hi]

Iterable<Key> keys(Key lo, Key hi) keys in [lo..hi], in sorted order
Iterable<Key> keys() all keys in the table, in sorted order

API for a generic ordered symbol table

332 CHAPTER FOUR ! Searching

23

Binary search: ordered symbol table operations summary

sequential
search

binary
search

search

insert

min / max

floor / ceiling

rank

select

ordered iteration

N lg N

1 N

N 1

N lg N

N lg N

N 1

N log N N

worst-case running time of ordered symbol table operations

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 22, 2010 10:21:42 PM

3.2 Binary Search Trees

‣ BSTs
‣ ordered operations
‣ deletion

Definition. A BST is a binary tree in symmetric order.

A binary tree is either:

• Empty.

• Two disjoint binary trees (left and right).

Symmetric order.
Each node has a key, and every node’s key is:

• Larger than all keys in its left subtree.

• Smaller than all keys in its right subtree.

2

Binary search trees

right child
of root

a left link

a subtree

root

null links

Anatomy of a binary tree

value
associated

with R

parent of A and R

left link
of E

keys smaller than E keys larger than E

key

A
C

E

H
R

S
X

9

Anatomy of a binary search tree

Java definition. A BST is a reference to a root Node.

A Node is comprised of four fields:

• A Key and a Value.

• A reference to the left and right subtree.

3

BST representation in Java

smaller keys larger keys

private class Node
{
 private Key key;
 private Value val;
 private Node left, right;
 public Node(Key key, Value val)
 {
 this.key = key;
 this.val = val;
 }
}

Key and Value are generic types; Key is Comparable

Binary search tree

BST with smaller keys BST with larger keys

key

left right

val

BST

Node

public class BST<Key extends Comparable<Key>, Value>
{
 private Node root;

 private class Node
 { /* see previous slide */ }

 public void put(Key key, Value val)
 { /* see next slides */ }

 public Value get(Key key)
 { /* see next slides */ }

 public void delete(Key key)
 { /* see next slides */ }

 public Iterable<Key> iterator()
 { /* see next slides */ }

}

4

BST implementation (skeleton)

root of BST

Get. Return value corresponding to given key, or null if no such key.

5

BST search

R is less than S
so look to the left

black nodes could
match the search key

gray nodes cannot
match the search key

found R
(search hit)

so return value

R is greater than E
so look to the right

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

T is less than X
so look to the left

link is null
so T is not in tree

(search miss)

T is greater than S
so look to the right

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

Successful (left) and unsuccessful (right) search in a BST

successful search for R unsuccessful search for T

Get. Return value corresponding to given key, or null if no such key.

Running time. Proportional to depth of node.

6

BST search: Java implementation

 public Value get(Key key)
 {
 Node x = root;
 while (x != null)
 {
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x = x.left;
 else if (cmp > 0) x = x.right;
 else if (cmp == 0) return x.val;
 }
 return null;
 }

Put. Associate value with key.

Search for key, then two cases:

• Key in tree ⇒ reset value.

• Key not in tree ⇒ add new node.

7

BST insert

search for L ends
at this null link

reset links
on the way up

create new node

A
C

E

H
M

P

R

S
X

A
C

E

H

L

M
P

R

S
X

A
C

E

H

L
M

P

R

S
X

Insertion into a BST

inserting L

Put. Associate value with key.

Running time. Proportional to depth of node.
8

BST insert: Java implementation

 public void put(Key key, Value val)
 { root = put(root, key, val); }

 private Node put(Node x, Key key, Value val)
 {
 if (x == null) return new Node(key, val);
 int cmp = key.compareTo(x.key);
 if (cmp < 0)
 x.left = put(x.left, key, val);
 else if (cmp > 0)
 x.right = put(x.right, key, val);
 else if (cmp == 0)
 x.val = val;
 return x;
 }

concise, but tricky,
recursive code;
read carefully!

9

BST trace: standard indexing client

S

A
C

E

H
R

S
X

A
C

E

H
R

S

A
C

E

H
R

S

A
C

E
R

S

A
E

R

A
E

S

S

E
S

S

6

S 0

E 1

A 2

R 3

C 4

H 5

E 6

X 7

red nodes
are new

black nodes
are accessed

in search

changed
value

changed
value

changed
value

gray nodes
are untouched

A
C

E

H
M

P

R

S
X

A
C

E

H
M

R

S
X

A
C

E

H
R

S
X

A
C

E

H

L
M

P

R

S
X

A
C

E

H

L
M

P

R

S
X12

8

A 8

M 9

P 10

L 11

E 12

BST trace for standard indexing client

key value key value

• Many BSTs correspond to same set of keys.

• Cost of search/insert is proportional to depth of node.

Remark. Tree shape depends on order of insertion.

10

Tree shape

A

H

S
R

X

C
E

X
S

R
C

E

H

A

A
C

E

H
R

S
X

BST possibilities

best case

typical case

worst case

A

H

S
R

X

C
E

X
S

R
C

E

H

A

A
C

E

H
R

S
X

BST possibilities

best case

typical case

worst case

A

H

S
R

X

C
E

X
S

R
C

E

H

A

A
C

E

H
R

S
X

BST possibilities

best case

typical case

worst case

Observation. If keys inserted in random order, tree stays relatively flat.

11

BST insertion: random order

12

BST insertion: random order visualization

Ex. Insert keys in random order.

13

Correspondence between BSTs and quicksort partitioning

Remark. Correspondence is 1-1 if no duplicate keys.

A

C

E

I

K

L

M

O

P

Q

R

S

T

U

UE

14

BSTs: mathematical analysis

Proposition. If keys are inserted in random order, the expected number of
compares for a search/insert is ~ 2 ln N.

Pf. 1-1 correspondence with quicksort partitioning.

Proposition. [Reed, 2003] If keys are inserted in random order,
expected height of tree is ~ 4.311 ln N.

But… Worst-case for search/insert/height is N.
(exponentially small chance when keys are inserted in random order)

15

ST implementations: summary

implementation
guaranteeguarantee average caseaverage case ordered

ops?
operations

on keys
implementation

search insert search hit insert

ordered
ops?

operations
on keys

sequential search
(unordered list) N N N/2 N no equals()

binary search
(ordered array) lg N N lg N N/2 yes compareTo()

BST N N 1.39 lg N 1.39 lg N ? compareTo()

Costs for java FrequencyCounter 8 < tale.txt using BST

20

13

0

16

‣ BSTs
‣ ordered operations
‣ deletion

Minimum. Smallest key in table.
Maximum. Largest key in table.

Q. How to find the min / max.

Minimum and maximum

17

Examples of BST order queries

A
C

E

H
M

R

S
X

min()
max()max

min

Floor. Largest key ≤ to a given key.
Ceiling. Smallest key ≥ to a given key.

Q. How to find the floor /ceiling.

Floor and ceiling

18

Examples of BST order queries

A
C

E

H
M

R

S
X

min()
max()

floor(D)

ceiling(Q)

floor(G)

Case 1. [k equals the key at root]
The floor of k is k.

Case 2. [k is less than the key at root]
The floor of k is in the left subtree.

Case 3. [k is greater than the key at root]
The floor of k is in the right subtree
(if there is any key ≤ k in right subtree);
otherwise it is the key in the root.

Computing the floor

19

floor(G)in left
subtree is null

result

!nding floor(G)

G is greater than E so
floor(G) could be

on the right

G is less than S so
floor(G) must be

on the left

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

Computing the "oor function

Computing the floor

20

floor(G)in left
subtree is null

result

!nding floor(G)

G is greater than E so
floor(G) could be

on the right

G is less than S so
floor(G) must be

on the left

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

Computing the "oor function

public Key floor(Key key)
{
 Node x = floor(root, key);
 if (x == null) return null;
 return x.key;
}
private Node floor(Node x, Key key)
{
 if (x == null) return null;
 int cmp = key.compareTo(x.key);

 if (cmp == 0) return x;

 if (cmp < 0) return floor(x.left, key);

 Node t = floor(x.right, key);
 if (t != null) return t;
 else return x;

}

In each node, we store the number of nodes in the subtree rooted at that node.
To implement size(), return the count at the root.

Remark. This facilitates efficient implementation of rank() and select().
21

Subtree counts

A

A C E H M R S X

C

E

H
M

R

S
X

A

A C E H M R S X

C
E

H
M

R

S
X

2

6

5

8

8

1

1

1

1

1 1

3

2

22

2

node count N

Two BSTs that represent
the same set of keys

A

A C E H M R S X

C

E

H
M

R

S
X

A

A C E H M R S X

C
E

H
M

R

S
X

2

6

5

8

8

1

1

1

1

1 1

3

2

22

2

node count N

Two BSTs that represent
the same set of keys

 public int size()
 { return size(root); }

 private int size(Node x)
 {
 if (x == null) return 0;
 return x.N;
 }

22

BST implementation: subtree counts

private class Node
{
 private Key key;
 private Value val;
 private Node left;
 private Node right;
 private int N;
}

 private Node put(Node x, Key key, Value val)
 {
 if (x == null) return new Node(key, val);
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x.left = put(x.left, key, val);
 else if (cmp > 0) x.right = put(x.right, key, val);
 else if (cmp == 0) x.val = val;
 x.N = 1 + size(x.left) + size(x.right);
 return x;
 }

nodes in subtree

23

Rank

Rank. How many keys < k?

Easy recursive algorithm (4 cases!)

public int rank(Key key)
{ return rank(key, root); }

private int rank(Key key, Node x)
{
 if (x == null) return 0;
 int cmp = key.compareTo(x.key);
 if (cmp < 0) return rank(key, x.left);
 else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
 else return size(x.left);
}

A

A C E H M R S X

C

E

H
M

R

S
X

A

A C E H M R S X

C
E

H
M

R

S
X

2

6

5

8

8

1

1

1

1

1 1

3

2

22

2

node count N

Two BSTs that represent
the same set of keys

• Traverse left subtree.

• Enqueue key.

• Traverse right subtree.

Property. Inorder traversal of a BST yields keys in ascending order.

key

key

val

BST with smaller keys

smaller keys, in order larger keys, in order

all keys, in order

BST with larger keys

left right

BST

Inorder traversal

24

public Iterable<Key> keys()
{
 Queue<Key> q = new Queue<Key>();
 inorder(root, queue);
 return q;
}

private void inorder(Node x, Queue<Key> q)
{
 if (x == null) return;
 inorder(x.left, q);
 q.enqueue(x.key);
 inorder(x.right, q);
}

• Traverse left subtree.

• Enqueue key.

• Traverse right subtree.

Inorder traversal

25

function call stack

inorder(S)
 inorder(E)
 inorder(A)
 enqueue A
 inorder(C)
 enqueue C
 enqueue E
 inorder(R)
 inorder(H)
 enqueue H
 inorder(M)
 enqueue M
 print R
 enqueue S
 inorder(X)
 enqueue X

 A

 C
 E

 H

 M
 R
 S

 X

S
S E
S E A

S E A C

S E R
S E R H

S E R H M

S X

queuerecursive calls

A

A C E H M R S X

C

E

H
M

R

S
X

26

BST: ordered symbol table operations summary

sequential
search

binary
search

BST

search

insert

min / max

floor / ceiling

rank

select

ordered iteration

N lg N h

1 N h

N 1 h

N lg N h

N lg N h

N 1 h

N log N N N

h = height of BST
(proportional to log N

if keys inserted in random order)

worst-case running time of ordered symbol table operations

27

‣ BSTs
‣ ordered operations
‣ deletion

28

ST implementations: summary

Next. Deletion in BSTs.

implementation

guaranteeguarantee average caseaverage caseaverage case
ordered

iteration?
operations

on keysimplementation

search insert delete search
hit

insert delete

ordered
iteration?

operations
on keys

sequential search
(linked list)

N N N N/2 N N/2 no equals()

binary search
(ordered array)

lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.39 lg N 1.39 lg N ??? yes compareTo()

29

BST deletion: lazy approach

To remove a node with a given key:

• Set its value to null.

• Leave key in tree to guide searches (but don't consider it equal to search key).

Cost. O(log N') per insert, search, and delete (if keys in random order),
where N' is the number of key-value pairs ever inserted in the BST.

Unsatisfactory solution. Tombstone overload.

delete I

S

E

C

A

N

RH

I

S

E

C

A

N

RH

☠ tombstone

To delete the minimum key:

• Go left until finding a node with a null left link.

• Replace that node by its right link.

• Update subtree counts.

30

Deleting the minimum

 public void deleteMin()
 { root = deleteMin(root); }

 private Node deleteMin(Node x)
 {
 if (x.left == null) return x.right;
 x.left = deleteMin(x.left);
 x.N = 1 + size(x.left) + size(x.right);
 return x;
 }

go left until
reaching null

left link

return that
node’s right link

available for
garbage collection

5

7

update links and counts
after recursive calls

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

C
E

H
M

R

S
X

Deleting the minimum in a BST

node to delete

replace with
null link

available for
garbage

collection

update counts after
recursive calls

5

1

7

A
C

E

H
M

C

R

S
X

A
E

H
M

R

S
X

A
E

H
M

R

S
X

deleting C

To delete a node with key k: search for node t containing key k.

Case 0. [0 children] Delete t by setting parent link to null.

31

Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 1. [1 child] Delete t by replacing parent link.

32

Hibbard deletion

node to delete
replace with

child link available for
garbage

collection

A
C C C

E

H
M

R

R

S
X

A
E

H
M

S
X

A
E

H
M

S
X

deleting R
update counts after

recursive calls

5

7

To delete a node with key k: search for node t containing key k.

Case 2. [2 children]

• Find successor x of t.

• Delete the minimum in t's right subtree.

• Put x in t's spot.

33

Hibbard deletion

x has no left child

but don't garbage collect x

still a BST

search for key E

node to delete

deleteMin(t.right)

t

5

7

x

successor
 min(t.right)

t.left

x

update links and
node counts after

recursive calls

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

H

A
C

H

M
R

M
R

S
X

E
S

X

deleting E

Deletion in a BST

go right, then
go left until

reaching null
left link

search for key E

node to delete

deleteMin(t.right)

t

5

7

x

successor
 min(t.right)

t.left

x

update links and
node counts after

recursive calls

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

H

A
C

H

M
R

M
R

S
X

E
S

X

deleting E

Deletion in a BST

go right, then
go left until

reaching null
left link

34

Hibbard deletion: Java implementation

 public void delete(Key key)
 { root = delete(root, key); }

 private Node delete(Node x, Key key) {
 if (x == null) return null;
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x.left = delete(x.left, key);
 else if (cmp > 0) x.right = delete(x.right, key);
 else {
 if (x.right == null) return x.left;

 Node t = x;
 x = min(t.right);
 x.right = deleteMin(t.right);
 x.left = t.left;
 }
 x.N = size(x.left) + size(x.right) + 1;
 return x;
 }

no right child

replace with
successor

search for key

update subtree
counts

35

Hibbard deletion: analysis

Unsatisfactory solution. Not symmetric.

Surprising consequence. Trees not random (!) ⇒ sqrt(N) per op.
Longstanding open problem. Simple and efficient delete for BSTs.

Next lecture. Guarantee logarithmic performance for all operations.
36

ST implementations: summary

implementation

guaranteeguarantee average caseaverage caseaverage case
ordered

iteration?
operations

on keysimplementation

search insert delete
search

hit insert delete

ordered
iteration?

operations
on keys

sequential search
(linked list)

N N N N/2 N N/2 no equals()

binary search
(ordered array)

lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.39 lg N 1.39 lg N √N yes compareTo()

other operations also become √N
if deletions allowed

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 22, 2010 10:30:33 PM

3.3 Balanced Trees

‣ 2-3 trees
‣ red-black trees
‣ B-trees

2

Symbol table review

Challenge. Guarantee performance.
This lecture. 2-3 trees, left-leaning red-black trees, B-trees.

introduced to the world in
COS 226, Fall 2007

implementation

guaranteeguarantee average caseaverage case
ordered operationsimplementation

search insert delete search hit insert delete

ordered
iteration?

operations
on keys

sequential search
(linked list)

N N N N/2 N N/2 no equals()

binary search
(ordered array)

lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.39 lg N 1.39 lg N ? yes compareTo()

Goal log N log N log N log N log N log N yes compareTo()

3

‣ 2-3 trees
‣ red-black trees
‣ B-trees

Allow 1 or 2 keys per node.

• 2-node: one key, two children.

• 3-node: two keys, three children.

Symmetric order. Inorder traversal yields keys in ascending order.
Perfect balance. Every path from root to null link has same length.

2-3 tree

4

between E and J

larger than Jsmaller than E E J

H L

2-node3-node

null link

M

R

P S XA C

Anatomy of a 2-3 search tree

• Compare search key against keys in node.

• Find interval containing search key.

• Follow associated link (recursively).

5

Search in a 2-3 tree

found H so return value (search hit)

H is less than M so
look to the left

H is between E and L so
look in the middle

B is between A and C so look in the middle

B is less than M so
look to the left

B is less than E
so look to the left

link is null so B is not in the tree (search miss)

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

successful search for H unsuccessful search for B

Successful (left) and unsuccessful (right) search in a 2-3 tree

6

Insertion in a 2-3 tree

Case 1. Insert into a 2-node at bottom.

• Search for key, as usual.

• Replace 2-node with 3-node.

search for K ends here

replace 2-node with
new 3-node containing K

E J

H L

M

R

P S XA C

E J

H

M

R

P S XK LA C

inserting K

Insert into a 2-node

7

Insertion in a 2-3 tree

Case 2. Insert into a 3-node at bottom.

• Add new key to 3-node to create temporary 4-node.

• Move middle key in 4-node into parent.

why middle key?

split 4-node into two 2-nodes
pass middle key to parent

replace 3-node with
temporary 4-node

containing Z

replace 2-node
with new 3-node

containing
middle key

S X Z

S Z

E J

H L

L

M

R

PA C

search for Z ends
at this 3-nodeE J

H L

M

R

P S XA C

E J

H

M

P

R X

A C

inserting Z

Insert into a 3-node whose parent is a 2-node

8

Insertion in a 2-3 tree

Case 2. Insert into a 3-node at bottom.

• Add new key to 3-node to create temporary 4-node.

• Move middle key in 4-node into parent.

• Repeat up the tree, as necessary.

split 4-node into two 2-nodes
pass middle key to parent

split 4-node into two 2-nodes
pass middle key to parent

add middle key E to 2-node
to make new 3-node

add middle key C to 3-node
to make temporary 4-node

add new key D to 3-node
to make temporary 4-node

A C D

A D

search for D ends
at this 3-node E J

H L

M

R

P S XA C

E J

H L

M

R

P S X

C E J

H L

M

R

P S X

A D H L

C J R

P S X

E M

inserting D

Insert into a 3-node whose parent is a 3-node

split 4-node into two 2-nodes
pass middle key to parent

split 4-node into two 2-nodes
pass middle key to parent

add middle key E to 2-node
to make new 3-node

add middle key C to 3-node
to make temporary 4-node

add new key D to 3-node
to make temporary 4-node

A C D

A D

search for D ends
at this 3-node E J

H L

M

R

P S XA C

E J

H L

M

R

P S X

C E J

H L

M

R

P S X

A D H L

C J R

P S X

E M

inserting D

Insert into a 3-node whose parent is a 3-node

Case 2. Insert into a 3-node at bottom.

• Add new key to 3-node to create temporary 4-node.

• Move middle key in 4-node into parent.

• Repeat up the tree, as necessary.

• If you reach the root and it's a 4-node, split it into three 2-nodes.

Remark. Splitting the root increases height by 1.
9

Insertion in a 2-3 tree

split 4-node into two 2-nodes
pass middle key to parent

split 4-node into
three 2-nodes
increasing tree

height by 1

add middle key C to 3-node
to make temporary 4-node

A C D

A D

search for D ends
at this 3-node E J

H LA C

E J

H L

C E J

H L

A D H L

C J

E

add new key D to 3-node
to make temporary 4-node

inserting D

Splitting the root

split 4-node into two 2-nodes
pass middle key to parent

split 4-node into
three 2-nodes
increasing tree

height by 1

add middle key C to 3-node
to make temporary 4-node

A C D

A D

search for D ends
at this 3-node E J

H LA C

E J

H L

C E J

H L

A D H L

C J

E

add new key D to 3-node
to make temporary 4-node

inserting D

Splitting the root

Standard indexing client.

10

2-3 tree construction trace

S

S

S

PA

E

A

E S

R S

E

A S

C

A E

M

E R

H P

H

E

R S

S X

A C

E R

A C

H

E R

A C

A

L

C

A

A C

E H

S X

E R

A C H M

S XA C

H

C M

E L

A

H

C M

E L

M

E R

P S XA C H L

A E L M

P R

P S X

C H

A E

C H

M R

H

C

LA E

P

M R

H

C

LA E

 standard indexing client same keys in increasing order

E

A

R

C

H

X

M

P

L

C

E

H

L

M

P

R

S

X

insert S insert A

2-3 construction traces

S

S

S

PA

E

A

E S

R S

E

A S

C

A E

M

E R

H P

H

E

R S

S X

A C

E R

A C

H

E R

A C

A

L

C

A

A C

E H

S X

E R

A C H M

S XA C

H

C M

E L

A

H

C M

E L

M

E R

P S XA C H L

A E L M

P R

P S X

C H

A E

C H

M R

H

C

LA E

P

M R

H

C

LA E

 standard indexing client same keys in increasing order

E

A

R

C

H

X

M

P

L

C

E

H

L

M

P

R

S

X

insert S insert A

2-3 construction traces

The same keys inserted in ascending order.

11

2-3 tree construction trace

S

S

S

PA

E

A

E S

R S

E

A S

C

A E

M

E R

H P

H

E

R S

S X

A C

E R

A C

H

E R

A C

A

L

C

A

A C

E H

S X

E R

A C H M

S XA C

H

C M

E L

A

H

C M

E L

M

E R

P S XA C H L

A E L M

P R

P S X

C H

A E

C H

M R

H

C

LA E

P

M R

H

C

LA E

 standard indexing client same keys in increasing order

E

A

R

C

H

X

M

P

L

C

E

H

L

M

P

R

S

X

insert S insert A

2-3 construction traces

S

S

S

PA

E

A

E S

R S

E

A S

C

A E

M

E R

H P

H

E

R S

S X

A C

E R

A C

H

E R

A C

A

L

C

A

A C

E H

S X

E R

A C H M

S XA C

H

C M

E L

A

H

C M

E L

M

E R

P S XA C H L

A E L M

P R

P S X

C H

A E

C H

M R

H

C

LA E

P

M R

H

C

LA E

 standard indexing client same keys in increasing order

E

A

R

C

H

X

M

P

L

C

E

H

L

M

P

R

S

X

insert S insert A

2-3 construction traces

12

Local transformations in a 2-3 tree

Splitting a 4-node is a local transformation: constant number of operations.

b c d

a e

between
a and b

less
than a

between
b and c

between
d and e

greater
than e

between
c and d

between
a and b

less
than a

between
b and c

between
d and e

greater
than e

between
c and d

b d

a c e

Splitting a 4-node is a local transformation that preserves balance

Invariant. Symmetric order.
Invariant. Perfect balance.

Pf. Each transformation maintains order and balance.

d

right

middle

left

right

left

b db c d

a ca

a b c

d

ca

b d

a b c
ca

root

parent is a 2-node

parent is a 3-node

Splitting a temporary 4-node in a 2-3 tree (summary)

c e

b d

c d e

a b

b c d

a e

a b d

a c e

a b c

d e

ca

b d e

13

Global properties in a 2-3 tree

14

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.

• Worst case:

• Best case:

Typical 2-3 tree built from random keys

15

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.

• Worst case: lg N. [all 2-nodes]

• Best case: log3 N ≈ .631 lg N. [all 3-nodes]

• Between 12 and 20 for a million nodes.

• Between 18 and 30 for a billion nodes.

Guaranteed logarithmic performance for search and insert.

Typical 2-3 tree built from random keys

ST implementations: summary

16

constants depend upon
implementation

implementation

guaranteeguarantee average caseaverage case
ordered operations

implementation

search insert delete search hit insert delete
iteration? on keys

sequential search
(linked list)

N N N N/2 N N/2 no equals()

binary search
(ordered array)

lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.39 lg N 1.39 lg N ? yes compareTo()

2-3 tree c lg N c lg N c lg N c lg N c lg N c lg N yes compareTo()

17

2-3 tree: implementation?

Direct implementation is complicated, because:

• Maintaining multiple node types is cumbersome.

• Need multiple compares to move down tree.

• Need to move back up the tree to split 4-nodes.

• Large number of cases for splitting.

Bottom line. Could do it, but there's a better way.

18

‣ 2-3-4 trees
‣ red-black trees
‣ B-trees

1. Represent 2–3 tree as a BST.
2. Use "internal" left-leaning links as "glue" for 3–nodes.

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

19

Left-leaning red-black trees (Guibas-Sedgewick 1979 and Sedgewick 2007)

larger key is root

Encoding a 3-node with two 2-nodes
 connected by a left-leaning red link

a b3-node

between
a and b

less
than a

greater
than b

a

b

between
a and b

less
than a

greater
than b

Encoding a 3-node with two 2-nodes
 connected by a left-leaning red link

a b3-node

between
a and b

less
than a

greater
than b

a

b

between
a and b

less
than a

greater
than b

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

black links connect
2-nodes and 3-nodesred links "glue"

nodes within a 3-node

2-3 tree red-black tree

A BST such that:

• No node has two red links connected to it.

• Every path from root to null link has the same number of black links.

• Red links lean left.

20

An equivalent definition

"perfect black balance"

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

Key property. 1–1 correspondence between 2–3 and LLRB.

21

Left-leaning red-black trees: 1-1 correspondence with 2-3 trees

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

Search implementation for red-black trees

Observation. Search is the same as for elementary BST (ignore color).

Remark. Many other ops (e.g., ceiling, selection, iteration) are also identical.
22

public Val get(Key key)
{
 Node x = root;
 while (x != null)
 {
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x = x.left;
 else if (cmp > 0) x = x.right;
 else if (cmp == 0) return x.val;
 }
 return null;
}

but runs faster because of better balance

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

Red-black tree representation

Each node is pointed to by precisely one link (from its parent) ⇒
can encode color of links in nodes.

23

 private static final boolean RED = true;
 private static final boolean BLACK = false;

 private class Node
 {
 Key key;
 Value val;
 Node left, right;
 boolean color; // color of parent link
 }

 private boolean isRed(Node x)
 {
 if (x == null) return false;
 return x.color == RED;
 }

null links are black

private static final boolean RED = true;
private static final boolean BLACK = false;

private class Node
{
 Key key; // key
 Value val; // associated data
 Node left, right; // subtrees
 int N; // # nodes in this subtree
 boolean color; // color of link from
 // parent to this node

 Node(Key key, Value val)
 {
 this.key = key;
 this.val = val;
 this.N = 1;
 this.color = RED;
 }
}

private boolean isRed(Node x)
{
 if (x == null) return false;
 return x.color == RED;
}

J
G

E

A D
C

Node representation for red−black trees

h
h.left.color

is RED
h.right.color

is BLACK

Elementary red-black tree operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

Invariants. Maintains symmetric order and perfect black balance.
24

 private Node rotateLeft(Node h)
 {
 assert (h != null) && isRed(h.right);
 Node x = h.right;
 h.right = x.left;
 x.left = h;
 x.color = h.color;
 h.color = RED;
 return x;
 }

Left rotate (right link of h)

Node rotateLeft(Node h)
{
 x = h.right;
 h.right = x.left;
 x.left = h;
 x.color = h.color;
 h.color = RED;
 x.N = h.N;
 h.N = 1 + size(h.left)
 + size(h.right);
 return x;
}

h

x

x

h

E

S

between
E and S

less
than E

greater
than S

E
S

between
E and S

could be right or left,
red or black

less
than E

greater
than S

Left rotate (right link of h)

Node rotateLeft(Node h)
{
 x = h.right;
 h.right = x.left;
 x.left = h;
 x.color = h.color;
 h.color = RED;
 x.N = h.N;
 h.N = 1 + size(h.left)
 + size(h.right);
 return x;
}

h

x

x

h

E

S

between
E and S

less
than E

greater
than S

E
S

between
E and S

could be right or left,
red or black

less
than E

greater
than S

Elementary red-black tree operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

Invariants. Maintains symmetric order and perfect black balance.
25

Node rotateRight(Node h)
{
 x = h.left;
 h.left = x.right;
 x.right = h;
 x.color = h.color;
 h.color = RED;
 x.N = h.N;
 h.N = 1 + size(h.left)
 + size(h.right);
 return x;
}

x

h

h

x

E

S

between
S and E

less
than E

greater
than S

E
S

between
S and E

less
than E

greater
than S

Right rotate (left link of h)Node rotateRight(Node h)
{
 x = h.left;
 h.left = x.right;
 x.right = h;
 x.color = h.color;
 h.color = RED;
 x.N = h.N;
 h.N = 1 + size(h.left)
 + size(h.right);
 return x;
}

x

h

h

x

E

S

between
S and E

less
than E

greater
than S

E
S

between
S and E

less
than E

greater
than S

Right rotate (left link of h)

 private Node rotateRight(Node h)
 {
 assert (h != null) && isRed(h.left);
 Node x = h.left;
 h.left = x.right;
 x.right = h;
 x.color = h.color;
 h.color = RED;
 return x;
 }

Elementary red-black tree operations

Color flip. Recolor to split a (temporary) 4-node.

Invariants. Maintains symmetric order and perfect black balance.
26

 private void flipColors(Node h)
 {
 assert !isRed(h) && isRed(h.left) && isRed(h.right);

 h.color = RED;
 h.left.color = BLACK;
 h.right.color = BLACK;
 }

void flipColors(Node h)
{
 h.color = RED;
 h.left.color = BLACK;
 h.right.color = BLACK;
}

h

A

E

between
A and E

less
than A

S

between
E and S

could be left
or right link

red link attaches
middle node

to parent

black links split
to 2-nodes

greater
than S

A

E

between
A and E

less
than A

S

between
E and S

greater
than S

Flipping colors to split a 4-node
void flipColors(Node h)
{
 h.color = RED;
 h.left.color = BLACK;
 h.right.color = BLACK;
}

h

A

E

between
A and E

less
than A

S

between
E and S

could be left
or right link

red link attaches
middle node

to parent

black links split
to 2-nodes

greater
than S

A

E

between
A and E

less
than A

S

between
E and S

greater
than S

Flipping colors to split a 4-node

Basic strategy. Maintain 1-1 correspondence with 2-3 trees by
applying elementary red-black tree operations

Insertion in a LLRB tree: overview

27

E

A

LLRB tree

 insert C

E

R
S

R
S

A
C

E

R
S

C
A

add new
node here

rotate left

E

A R S

E

R SA C

2-3 tree

E

A

E

R
S

R
S

A
C

E

R
S

C
A

add new
node here

right link red
so rotate left

insert C

Insert into a 2-node
at the bottom

Warmup 1. Insert into a tree with exactly 1 node.

Insertion in a LLRB tree

28

search ends
at this null link

red link to
 new node

containing a
converts 2-node

to 3-node

search ends
at this null link

attached new node
with red link

rotated left
to make a

legal 3-node

a

b

a

a

b

b

a

b

root

root

root

root

left

right

Insert into a single
2-node (two cases)

search ends
at this null link

red link to
 new node

containing a
converts 2-node

to 3-node

search ends
at this null link

attached new node
with red link

rotated left
to make a

legal 3-node

a

b

a

a

b

b

a

b

root

root

root

root

left

right

Insert into a single
2-node (two cases)

Case 1. Insert into a 2-node at the bottom.

• Do standard BST insert; color new link red.

• If new red link is a right link, rotate left.

Insertion in a LLRB tree

29

E

A

LLRB tree

 insert C

E

R
S

R
S

A
C

E

R
S

C
A

add new
node here

rotate left

E

A R S

E

R SA C

2-3 tree

E

A

E

R
S

R
S

A
C

E

R
S

C
A

add new
node here

right link red
so rotate left

insert C

Insert into a 2-node
at the bottom

Insertion in a LLRB tree

30

search ends
at this null link

search ends
at this null link

attached new
node with
red link

a

c
b

attached new
node with
red link

rotated left

rotated
right

rotated
right

colors flipped
to black

colors flipped
to black

search ends
at this

null link

attached new
node with
red link

colors flipped
to black

a

c
b

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

c

a

c

b

smaller between

a

b

a

b

c

a

b

c

larger

Insert into a single 3-node (three cases)

search ends
at this null link

search ends
at this null link

attached new
node with
red link

a

c
b

attached new
node with
red link

rotated left

rotated
right

rotated
right

colors flipped
to black

colors flipped
to black

search ends
at this

null link

attached new
node with
red link

colors flipped
to black

a

c
b

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

c

a

c

b

smaller between

a

b

a

b

c

a

b

c

larger

Insert into a single 3-node (three cases)

Warmup 2. Insert into a tree with exactly 2 nodes.

search ends
at this null link

search ends
at this null link

attached new
node with
red link

a

c
b

attached new
node with
red link

rotated left

rotated
right

rotated
right

colors flipped
to black

colors flipped
to black

search ends
at this

null link

attached new
node with
red link

colors flipped
to black

a

c
b

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

c

a

c

b

smaller between

a

b

a

b

c

a

b

c

larger

Insert into a single 3-node (three cases)

Case 2. Insert into a 3-node at the bottom.

• Do standard BST insert; color new link red.
• Rotate to balance the 4-node (if needed).

• Flip colors to pass red link up one level.
• Rotate to make lean left (if needed).

Insertion in a LLRB tree

31

H

E

R
S

A
C

S

S

R

E
H

add new
node here

E

R
S

A
C

right link red
so rotate left

two lefts in a row
so rotate right

E

H
R

A
C

both children red
so flip colors

S

E

H
R

A
C

A
C

inserting H

Insert into a 3-node
at the bottom

H

E

R
S

A
C

S

S

R

E
H

add new
node here

E

R
S

A
C

right link red
so rotate left

two lefts in a row
so rotate right

E

H
R

A
C

both children red
so flip colors

S

E

H
R

A
C

A
C

inserting H

Insert into a 3-node
at the bottom

H

E

R
S

A
C

S

S

R

E
H

add new
node here

E

R
S

A
C

right link red
so rotate left

two lefts in a row
so rotate right

E

H
R

A
C

both children red
so flip colors

S

E

H
R

A
C

A
C

inserting H

Insert into a 3-node
at the bottom

H

E

R
S

A
C

S

S

R

E
H

add new
node here

E

R
S

A
C

right link red
so rotate left

two lefts in a row
so rotate right

E

H
R

A
C

both children red
so flip colors

S

E

H
R

A
C

A
C

inserting H

Insert into a 3-node
at the bottom

H

E

R
S

A
C

S

S

R

E
H

add new
node here

E

R
S

A
C

right link red
so rotate left

two lefts in a row
so rotate right

E

H
R

A
C

both children red
so flip colors

S

E

H
R

A
C

A
C

inserting H

Insert into a 3-node
at the bottom

Case 2. Insert into a 3-node at the bottom.

• Do standard BST insert; color new link red.

• Rotate to balance the 4-node (if needed).

• Flip colors to pass red link up one level.

• Rotate to make lean left (if needed).

• Repeat Case 1 or Case 2 up the tree (if needed).

Insertion in a LLRB tree: passing red links up the tree

32

P

S

R

E

add new
node here

right link red
so rotate left

both children
red so

flip colors

A
C

H
M

inserting P

S

R

E

A
C

H
M

P

S

R

E

A
C

H
M

P
S

R

E

A
C H

M

Passing a red link up the tree

two lefts in a row
so rotate right

P S

RE

A
C H

M

both children red
so flip colors

P S

RE

A
C H

M

P

S

R

E

add new
node here

right link red
so rotate left

both children
red so

flip colors

A
C

H
M

inserting P

S

R

E

A
C

H
M

P

S

R

E

A
C

H
M

P
S

R

E

A
C H

M

Passing a red link up the tree

two lefts in a row
so rotate right

P S

RE

A
C H

M

both children red
so flip colors

P S

RE

A
C H

M

P

S

R

E

add new
node here

right link red
so rotate left

both children
red so

flip colors

A
C

H
M

inserting P

S

R

E

A
C

H
M

P

S

R

E

A
C

H
M

P
S

R

E

A
C H

M

Passing a red link up the tree

two lefts in a row
so rotate right

P S

RE

A
C H

M

both children red
so flip colors

P S

RE

A
C H

M

P

S

R

E

add new
node here

right link red
so rotate left

both children
red so

flip colors

A
C

H
M

inserting P

S

R

E

A
C

H
M

P

S

R

E

A
C

H
M

P
S

R

E

A
C H

M

Passing a red link up the tree

two lefts in a row
so rotate right

P S

RE

A
C H

M

both children red
so flip colors

P S

RE

A
C H

M

P

S

R

E

add new
node here

right link red
so rotate left

both children
red so

flip colors

A
C

H
M

inserting P

S

R

E

A
C

H
M

P

S

R

E

A
C

H
M

P
S

R

E

A
C H

M

Passing a red link up the tree

two lefts in a row
so rotate right

P S

RE

A
C H

M

both children red
so flip colors

P S

RE

A
C H

M

P

S

R

E

add new
node here

right link red
so rotate left

both children
red so

flip colors

A
C

H
M

inserting P

S

R

E

A
C

H
M

P

S

R

E

A
C

H
M

P
S

R

E

A
C H

M

Passing a red link up the tree

two lefts in a row
so rotate right

P S

RE

A
C H

M

both children red
so flip colors

P S

RE

A
C H

M

Standard indexing client.

33

LLRB tree construction trace

S

E

A S

E

A

PA

H

C M

E L

A

H

C M

E L

E

A

R

C

H

X

M

P

L

C

E

H

L

M

P

R

S

X

E

R
S

L
M

P
R

S
X

A

H

C

E

R
S

C

A
E

H

A
C

E
S

A

C

A E

A
C

S
X

M

R

E

A H
C

S
X

R

E

A
C H

P
R

S
X

M

E

A
C H

P
R

SH
X

M

E

A
C L

S

R

E

A
C H

L

H

C
A E

S

R

M
L P

A

H

C

E

R

M
L P

H

C
A E

Red-black tree construction traces

 standard indexing client same keys in increasing order

insert S insert A
S

S

E

A

E S

R S

E

A S

E

R SA C

H

E R

A C

red black tree 2-3 tree

Standard indexing client (continued).

34

LLRB tree construction trace

S

E

A S

E

A

PA

H

C M

E L

A

H

C M

E L

E

A

R

C

H

X

M

P

L

C

E

H

L

M

P

R

S

X

E

R
S

L
M

P
R

S
X

A

H

C

E

R
S

C

A
E

H

A
C

E
S

A

C

A E

A
C

S
X

M

R

E

A H
C

S
X

R

E

A
C H

P
R

S
X

M

E

A
C H

P
R

SH
X

M

E

A
C L

S

R

E

A
C H

L

H

C
A E

S

R

M
L P

A

H

C

E

R

M
L P

H

C
A E

Red-black tree construction traces

 standard indexing client same keys in increasing order

insert S insert A

M

E R

H P

H S X

E R

A C

S X

E R

A C H M

S XA C

M

E R

P S XA C H L

red black tree 2-3 tree

Insertion in a LLRB tree: Java implementation

Same code for both cases.

• Right child red, left child black: rotate left.

• Left child, left-left grandchild red: rotate right.

• Both children red: flip colors.

35

 private Node put(Node h, Key key, Value val)
 {
 if (h == null) return new Node(key, val, RED);
 int cmp = key.compareTo(h.key);
 if (cmp < 0) h.left = put(h.left, key, val);
 else if (cmp > 0) h.right = put(h.right, key, val);
 else h.val = val;

 if (isRed(h.right) && !isRed(h.left)) h = rotateLeft(h);
 if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);
 if (isRed(h.left) && isRed(h.right)) h = flipColors(h);

 return h;
 }

insert at bottom

split 4-node
balance 4-node
lean left

only a few extra lines of code
to provide near-perfect balance

flip
colors

right
rotate

left
rotate

Passing a red link up a red-black tree

h

h

h

Insertion in a LLRB tree: visualization

36

255 insertions in ascending order

37

Insertion in a LLRB tree: visualization

255 insertions in descending order

Insertion in a LLRB tree: visualization

38

50 random insertions

39

Insertion in a LLRB tree: visualization

255 random insertions

40

Balance in LLRB trees

Proposition. Height of tree is ≤ 2 lg N in the worst case.
Pf.

• Every path from root to null link has same number of black links.

• Never two red links in-a-row.

Property. Height of tree is ~ 1.00 lg N in typical applications.

ST implementations: summary

41

implementation
guaranteeguaranteeguarantee average caseaverage caseaverage case ordered

iteration?
operations

on keys
implementation

search insert delete search hit insert delete iteration? on keys

sequential search
(linked list) N N N N/2 N N/2 no equals()

binary search
(ordered array) lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.39 lg N 1.39 lg N ? yes compareTo()

2-3 tree c lg N c lg N c lg N c lg N c lg N c lg N yes compareTo()

red-black tree 2 lg N 2 lg N 2 lg N 1.00 lg N * 1.00 lg N * 1.00 lg N * yes compareTo()

* exact value of coefficient unknown but extremely close to 1

Costs for java FrequencyCounter 8 < tale.txt using RedBlackBST

20

12

0

Why left-leaning trees?

42

private Node put(Node x, Key key, Value val, boolean sw)
{
 if (x == null)
 return new Node(key, value, RED);
 int cmp = key.compareTo(x.key);

 if (isRed(x.left) && isRed(x.right))
 {
 x.color = RED;
 x.left.color = BLACK;
 x.right.color = BLACK;
 }
 if (cmp < 0)
 {
 x.left = put(x.left, key, val, false);
 if (isRed(x) && isRed(x.left) && sw)
 x = rotateRight(x);
 if (isRed(x.left) && isRed(x.left.left))
 {
 x = rotateRight(x);
 x.color = BLACK; x.right.color = RED;
 }
 }
 else if (cmp > 0)
 {
 x.right = put(x.right, key, val, true);
 if (isRed(h) && isRed(x.right) && !sw)
 x = rotateLeft(x);
 if (isRed(h.right) && isRed(h.right.right))
 {
 x = rotateLeft(x);
 x.color = BLACK; x.left.color = RED;
 }
 }
 else x.val = val;
 return x;
}

 public Node put(Node h, Key key, Value val)
 {
 if (h == null)
 return new Node(key, val, RED);
 int cmp = kery.compareTo(h.key);
 if (cmp < 0)
 h.left = put(h.left, key, val);
 else if (cmp > 0)
 h.right = put(h.right, key, val);
 else h.val = val;

 if (isRed(h.right) && !isRed(h.left))
 h = rotateLeft(h);
 if (isRed(h.left) && isRed(h.left.left))
 h = rotateRight(h);
 if (isRed(h.left) && isRed(h.right))
 h = flipColors(h);

 return h;
 }

old code (that students had to learn in the past) new code (that you have to learn)

extremely tricky

straightforward
 (if you’ve paid attention)

Why left-leaning trees?

43

Simplified code.

• Left-leaning restriction reduces number of cases.

• Short inner loop.

Same ideas simplify implementation of other operations.

• Delete min/max.

• Arbitrary delete.

Improves widely-used algorithms.

• AVL trees, 2-3 trees, 2-3-4 trees.

• Red-black trees.

Bottom line. Left-leaning red-black trees are the simplest balanced BST
to implement and the fastest in practice.

new

1972

1978

2008

44

‣ 2-3-4 trees
‣ red-black trees
‣ B-trees

45

File system model

Page. Contiguous block of data (e.g., a file or 4096-byte chunk).
Probe. First access to a page (e.g., from disk to memory).

Model. Time required for a probe is much larger than time to access
data within a page.

Goal. Access data using minimum number of probes.

slow fast

B-tree. Generalize 2-3 trees by allowing up to M-1 key-link pairs per node.

• At least 2 key-link pairs at root.

• At least M/2 key-link pairs in other nodes.

• External nodes contain client keys.

• Internal nodes contain copies of keys to guide search.

46

B-trees (Bayer-McCreight, 1972)

choose M as large as possible so
that M links fit in a page, e.g., M = 1000

Anatomy of a B-tree set (M = 6)

2-node

external
3-node external 5-node (full)

 internal 3-node

 external 4-node

all nodes except the root are 3-, 4- or 5-nodes

* B C

 sentinel key

D E F H I J K M N O P Q R T

* D H

* K

K Q U

U W X Y

each red key is a copy
of min key in subtree

client keys (black)
are in external nodes

• Start at root.

• Find interval for search key and take corresponding link.

• Search terminates in external node.

* B C

searching for E

D E F H I J K M N O P Q R T

* D H

* K

K Q U

U W X

search for E in
this external node

follow this link because
E is between * and K

follow this link because
E is between D and H

Searching in a B-tree set (M = 6)

47

Searching in a B-tree

• Search for new key.

• Insert at bottom.

• Split nodes with M key-link pairs on the way up the tree.

48

Insertion in a B-tree

* A B C E F H I J K M N O P Q R T

* C H

* K

K Q U

U W X

* A B C E F H I J K M N O P Q R T U W X

* C H K Q U

* A B C E F H I J K M N O P Q R T U W X

* H K Q U

* B C E F H I J K M N O P Q R T U W X

* H K Q U

new key (A) causes
overflow and split

root split causes
a new root to be created

new key (C) causes
overflow and split

Inserting a new key into a B-tree set

inserting A

Proposition. A search or an insertion in a B-tree of order M with N keys
requires between logM-1N and logM/2N probes.

Pf. All internal nodes (besides root) have between M/2 and M-1 links.

In practice. Number of probes is at most 4.

Optimization. Always keep root page in memory.

49

Balance in B-tree

M = 1000; N = 62 billion
log M/2 N ≤ 4

50

Building a large B tree

full page, about to split

Building a large B-tree

external nodes
(line segment of length proportional

to number of keys in that node)

51

Balanced trees in the wild

Red-black trees are widely used as system symbol tables.

• Java: java.util.TreeMap, java.util.TreeSet.

• C++ STL: map, multimap, multiset.

• Linux kernel: completely fair scheduler, linux/rbtree.h.

B-tree variants. B+ tree, B*tree, B# tree, …

B-trees (and variants) are widely used for file systems and databases.

• Windows: HPFS.

• Mac: HFS, HFS+.

• Linux: ReiserFS, XFS, Ext3FS, JFS.

• Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL.

52

Red-black trees in the wild

Common sense. Sixth sense.
Together they're the
FBI's newest team.

Red-black trees in the wild

53

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 22, 2010 10:54:35 PM

3.4 Hash Tables

‣ hash functions
‣ separate chaining
‣ linear probing
‣ applications

2

Optimize judiciously

Reference: Effective Java by Joshua Bloch

“ More computing sins are committed in the name of efficiency
(without necessarily achieving it) than for any other single reason—
including blind stupidity. ” — William A. Wulf

“ We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil. ” — Donald E. Knuth

“ We follow two rules in the matter of optimization:
 Rule 1: Don't do it.
 Rule 2 (for experts only). Don't do it yet - that is, not until
 you have a perfectly clear and unoptimized solution. ” — M. A. Jackson

ST implementations: summary

Q. Can we do better?
A. Yes, but with different access to the data.

3

implementation

guaranteeguarantee average caseaverage case
ordered operations

implementation

search insert delete search hit insert delete

ordered
iteration?

operations
on keys

sequential search
(linked list)

N N N N/2 N N/2 no equals()

binary search
(ordered array)

lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.38 lg N 1.38 lg N ? yes compareTo()

red-black tree 2 lg N 2 lg N 2 lg N 1.00 lg N 1.00 lg N 1.00 lg N yes compareTo()

4

Hashing: basic plan

Save items in a key-indexed table (index is a function of the key).

Hash function. Method for computing array index from key.

Issues.

• Computing the hash function.

• Equality test: Method for checking whether two keys are equal.

hash("it") = 3

0

1

2

3 "it"

4

5

5

Hashing: basic plan

Save items in a key-indexed table (index is a function of the key).

Hash function. Method for computing array index from key.

Issues.

• Computing the hash function.

• Equality test: Method for checking whether two keys are equal.

• Collision resolution: Algorithm and data structure
to handle two keys that hash to the same array index.

Classic space-time tradeoff.

• No space limitation: trivial hash function with key as index.

• No time limitation: trivial collision resolution with sequential search.

• Limitations on both time and space: hashing (the real world).

hash("times") = 3

??

0

1

2

3 "it"

4

5

hash("it") = 3

6

‣ hash functions
‣ separate chaining
‣ linear probing
‣ applications

7

Equality test

Needed because hash methods do not use compareTo().

All Java classes inherit a method equals().

Java requirements. For any references x, y and z:

• Reflexive: x.equals(x) is true.

• Symmetric: x.equals(y) iff y.equals(x).

• Transitive: if x.equals(y) and y.equals(z), then x.equals(z).

• Non-null: x.equals(null) is false.

Default implementation. (x == y)
Customized implementations. Integer, Double, String, File, URL, Date, …
User-defined implementations. Some care needed.

do x and y refer to
the same object?

equivalence
relation

Seems easy

public class Record
{
 private final String name;
 private final long val;
 ...

 public boolean equals(Record y)
 {

 Record that = y;
 return (this.val == that.val) &&
 (this.name.equals(that.name));
 }
}

Implementing equals for user-defined types

8

check that all significant
fields are the same

Seems easy, but requires some care.

public final class Record
{
 private final String name;
 private final long val;
 ...

 public boolean equals(Object y)
 {
 if (y == this) return true;

 if (y == null) return false;

 if (y.getClass() != this.getClass())
 return false;

 Record that = (Record) y;
 return (this.val == that.val) &&
 (this.name.equals(that.name));
 }
}

Implementing equals for user-defined types

9

check for null

optimize for true object equality

no safe way to use equals() with inheritance

must be Object.
Why? Experts still debate.

objects must be in the same class

check that all significant
fields are the same

10

Computing the hash function

Idealistic goal. Scramble the keys uniformly to produce a table index.

• Efficiently computable.

• Each table index equally likely for each key.

Ex 1. Phone numbers.

• Bad: first three digits.

• Better: last three digits.

Ex 2. Social Security numbers.

• Bad: first three digits.

• Better: last three digits.

Practical challenge. Need different approach for each key type.

573 = California, 574 = Alaska
(assigned in chronological order within geographic region)

thoroughly researched problem,
still problematic in practical applications

key

table
index

11

Java’s hash code conventions

All Java classes inherit a method hashCode(), which returns a 32-bit int.

Requirement. If x.equals(y), then (x.hashCode() == y.hashCode()).

Highly desirable. If !x.equals(y), then (x.hashCode() != y.hashCode()).

Default implementation. Memory address of x.
Customized implementations. Integer, Double, String, File, URL, Date, …
User-defined types. Users are on their own.

x.hashCode()

x

y.hashCode()

y

12

Implementing hash code: integers and doubles

public final class Integer
{
 private final int value;
 ...

 public int hashCode()
 { return value; }
}

convert to IEEE 64-bit representation;
xor most significant 32-bits
with least significant 32-bits

public final class Double
{
 private final double value;
 ...

 public int hashCode()
 {
 long bits = doubleToLongBits(value);
 return (int) (bits ^ (bits >>> 32));
 }
}

• Horner's method to hash string of length L: L multiplies/adds.

• Equivalent to h = 31L-1 · s0 + … + 312 · sL-3 + 311 · sL-2 + 310 · sL-1.

Ex.

public final class String
{
 private final char[] s;
 ...

 public int hashCode()
 {
 int hash = 0;
 for (int i = 0; i < length(); i++)
 hash = s[i] + (31 * hash);
 return hash;
 }
}

13

Implementing hash code: strings

3045982 = 99·313 + 97·312 + 108·311 + 108·310

 = 108 + 31· (108 + 31 · (97 + 31 · (99)))

ith character of s

String s = "call";
int code = s.hashCode();

char Unicode

… …

'a' 97

'b' 98

'c' 99

… ...

Ex. Strings (in Java 1.1).

• For long strings: only examine 8-9 evenly spaced characters.

• Benefit: saves time in performing arithmetic.

• Downside: great potential for bad collision patterns.

14

A poor hash code

public int hashCode()
{
 int hash = 0;
 int skip = Math.max(1, length() / 8);
 for (int i = 0; i < length(); i += skip)
 hash = s[i] + (37 * hash);
 return hash;
}

http://www.cs.princeton.edu/introcs/13loop/Hello.java
http://www.cs.princeton.edu/introcs/13loop/Hello.class
http://www.cs.princeton.edu/introcs/13loop/Hello.html
http://www.cs.princeton.edu/introcs/13loop/index.html
http://www.cs.princeton.edu/introcs/12type/index.html

15

Implementing hash code: user-defined types

public final class Record
{
 private String name;
 private int id;
 private double value;

 public Record(String name, int id, double value)
 { /* as before */ }

 ...

 public boolean equals(Object y)
 { /* as before */ }

 public int hashCode()
 {
 int hash = 17;
 hash = 31*hash + name.hashCode();
 hash = 31*hash + id;
 hash = 31*hash + Double.valueOf(value).hashCode();
 return hash;
 }
} typically a small prime

nonzero constant

16

Hash code design

"Standard" recipe for user-defined types.

• Combine each significant field using the 31x + y rule.

• If field is a primitive type, use built-in hash code.

• If field is an array, apply to each element.

• If field is an object, apply rule recursively.

In practice. Recipe works reasonably well; used in Java libraries.
In theory. Need a theorem for each type to ensure reliability.

Basic rule. Need to use the whole key to compute hash code;
consult an expert for state-of-the-art hash codes.

Hash code. An int between -231 and 231-1.
Hash function. An int between 0 and M-1 (for use as array index).

17

 Modular hashing

typically a prime or power of 2

 private int hash(Key key)
 { return key.hashCode() % M; }

bug

 private int hash(Key key)
 { return Math.abs(key.hashCode()) % M; }

1-in-a-billion bug

 private int hash(Key key)
 { return (key.hashCode() & 0x7fffffff) % M; }

correct

18

Uniform hashing assumption

Assumption J (uniform hashing hashing assumption).
Each key is equally likely to hash to an integer between 0 and M-1.

Bins and balls. Throw balls uniformly at random into M bins.

Birthday problem. Expect two balls in the same bin after ~ π M / 2 tosses.

Coupon collector. Expect every bin has ≥ 1 ball after ~ M ln M tosses.

Load balancing. After M tosses, expect most loaded bin has
Θ(log M / log log M) balls.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

19

Uniform hashing assumption

Assumption J (uniform hashing hashing assumption).
Each key is equally likely to hash to an integer between 0 and M-1.

Bins and balls. Throw balls uniformly at random into M bins.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Hash value frequencies for words in Tale of Two Cities (M = 97)

Java's String data uniformly distribute the keys of Tale of Two Cities

20

‣ hash functions
‣ separate chaining
‣ linear probing
‣ applications

21

Collisions

Collision. Two distinct keys hashing to same index.

• Birthday problem ⇒ can't avoid collisions unless you have
a ridiculous amount (quadratic) of memory.

• Coupon collector + load balancing ⇒ collisions will be evenly distributed.

Challenge. Deal with collisions efficiently.

hash("times") = 3

??

0

1

2

3 "it"

4

5

hash("it") = 3

Use an array of M < N linked lists. [H. P. Luhn, IBM 1953]

• Hash: map key to integer i between 0 and M-1.

• Insert: put at front of ith chain (if not already there).

• Search: only need to search ith chain.

22

Separate chaining ST

Hashing with separate chaining for standard indexing client

st

first

0

1

2

3

4

S 0X 7

E 12

first

first

first

first

A 8

P 10L 11

R 3C 4H 5M 9

independent
SequentialSearchST

objects

S 2 0

E 0 1

A 0 2

R 4 3

C 4 4

H 4 5

E 0 6

X 2 7

A 0 8

M 4 9

P 3 10

L 3 11

E 0 12

null

key hash value

public class SeparateChainingHashST<Key, Value>
{
 private int N; // number of key-value pairs
 private int M; // hash table size
 private SequentialSearchST<Key, Value> [] st; // array of STs

 public SeparateChainingHashST()
 { this(997); }

 public SeparateChainingHashST(int M)
 {
 this.M = M;
 st = (SequentialSearchST<Key, Value>[]) new SequentialSearchST[M];
 for (int i = 0; i < M; i++)
 st[i] = new SequentialSearchST<Key, Value>();
 }
 private int hash(Key key)
 { return (key.hashCode() & 0x7fffffff) % M; }

 public Value get(Key key)
 { return st[hash(key)].get(key); }

 public void put(Key key, Value val)
 { st[hash(key)].put(key, val); }
}

Separate chaining ST: Java implementation

23

array doubling code omitted

Proposition K. Under uniform hashing assumption, probability that the number
of keys in a list is within a constant factor of N/M is extremely close to 1.

Pf sketch. Distribution of list size obeys a binomial distribution.

Consequence. Number of probes for search/insert is proportional to N/M.

• M too large ⇒ too many empty chains.

• M too small ⇒ chains too long.

• Typical choice: M ~ N/5 ⇒ constant-time ops.
24

Analysis of separate chaining

M times faster than
sequential search

Binomial distribution (N = 104 , M = 103 , ! = 10)

.125

0

0 10 20 30

(10, .12511...)

equals() and hashCode()

25

‣ hash functions
‣ separate chaining
‣ linear probing
‣ applications

Open addressing. [Amdahl-Boehme-Rocherster-Samuel, IBM 1953]
When a new key collides, find next empty slot, and put it there.

26

Collision resolution: open addressing

null

null

linear probing (M = 30001, N = 15000)

jocularly

listen

suburban

browsing

st[0]

st[1]

st[2]

st[30000]

st[3]

Use an array of size M > N.

• Hash: map key to integer i between 0 and M-1.

• Insert: put at table index i if free; if not try i+1, i+2, etc.

• Search: search table index i; if occupied but no match, try i+1, i+2, etc.

27

Linear probing

- - - S H - - A C E R - -

0 1 2 3 4 5 6 7 8 9 10 11 12

insert I
hash(I) = 11

- - - S H - - A C E R I -

0 1 2 3 4 5 6 7 8 9 10 11 12

insert N
hash(N) = 8

- - - S H - - A C E R I N

0 1 2 3 4 5 6 7 8 9 10 11 12

28

Linear probing: trace of standard indexing client

0 1 2 3 4 5 6 7 8 9
 S
 0
 S E
 0 1
 A S E
 2 0 1
 A S E R
 2 0 1 3
 A C S E R
 2 5 0 1 3
 A C S H E R
 2 5 0 5 1 3
 A C S H E R
 2 5 0 5 6 3
 A C S H E R X
 2 5 0 5 6 3 7
 A C S H E R X
 8 5 0 5 6 3 7
 M A C S H E R X
 9 8 5 0 5 6 3 7
P M A C S H E R X
 9 8 5 0 5 6 3 7
P M A C S H L E R X
 9 8 5 0 5 6 3 7
P M A C S H L E R X
 9 8 5 0 5 3 7

10 11 12 13 14 15

11 12

1110

10

10

Trace of linear-probing ST implementation for standard indexing client

entries in gray
are untouched

probe sequence
wraps to 0

entries in red
are new

keys in black
are probes

S 6 0

E 10 1

A 4 2

R 14 3

C 5 4

H 4 5

E 10 6

X 15 7

A 4 8

M 1 9

P 14 10

L 6 11

E 10 12 keys[]
vals[]

key hash value

public class LinearProbingHashST<Key, Value>
{
 private int M = 30001;
 private Value[] vals = (Value[]) new Object[M];
 private Key[] keys = (Key[]) new Object[M];

 private int hash(Key key) { /* as before */ }

 public void put(Key key, Value val)
 {
 int i;
 for (i = hash(key); keys[i] != null; i = (i+1) % M)
 if (keys[i].equals(key))
 break;
 keys[i] = key;
 vals[i] = val;
 }

 public Value get(Key key)
 {
 for (int i = hash(key); keys[i] != null; i = (i+1) % M)
 if (key.equals(keys[i]))
 return vals[i];
 return null;
 }
}

Linear probing ST implementation

29

array doubling
code omitted

Cluster. A contiguous block of items.
Observation. New keys likely to hash into middle of big clusters.

30

Clustering

Model. Cars arrive at one-way street with M parking spaces.
Each desires a random space i: if space i is taken, try i+1, i+2, …

Q. What is mean displacement of a car?

Empty. With M/2 cars, mean displacement is ~ 3/2.
Full. With M cars, mean displacement is ~ π M / 8

31

Knuth's parking problem

displacement = 3

Proposition M. Under uniform hashing assumption, the average number of
probes in a hash table of size M that contains N = α M keys is:

Pf. [Knuth 1962] A landmark in analysis of algorithms.

Parameters.

• M too large ⇒ too many empty array entries.

• M too small ⇒ search time blows up.

• Typical choice: α = N/M ~ ½.

32

Analysis of linear probing

∼ 1
2

�
1 +

1
1− α

�
∼ 1

2

�
1 +

1
(1− α)2

�

search hit search miss / insert

probes for search hit is about 3/2
probes for search miss is about 5/2

ST implementations: summary

33

implementation

guaranteeguarantee average caseaverage case
ordered operations

implementation

search insert delete search hit insert delete
iteration? on keys

sequential search
(linked list) N N N N/2 N N/2 no equals()

binary search
(ordered array) lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.38 lg N 1.38 lg N ? yes compareTo()

red-black tree 2 lg N 2 lg N 2 lg N 1.00 lg N 1.00 lg N 1.00 lg N yes compareTo()

hashing lg N * lg N * lg N * 3-5 * 3-5 * 3-5 * no equals()

* under uniform hashing assumption

34

Algorithmic complexity attacks

Q. Is the uniform hashing assumption important in practice?
A. Obvious situations: aircraft control, nuclear reactor, pacemaker.
A. Surprising situations: denial-of-service attacks.

Real-world exploits. [Crosby-Wallach 2003]

• Bro server: send carefully chosen packets to DOS the server,
using less bandwidth than a dial-up modem.

• Perl 5.8.0: insert carefully chosen strings into associative array.

• Linux 2.4.20 kernel: save files with carefully chosen names.

malicious adversary learns your hash function
(e.g., by reading Java API) and causes a big pile-up

in single slot that grinds performance to a halt

Goal. Find family of strings with the same hash code.
Solution. The base-31 hash code is part of Java's string API.

35

Algorithmic complexity attack on Java

2N strings of length 2N that hash to same value!

key hashCode()

"AaAaAaAa" -540425984

"AaAaAaBB" -540425984

"AaAaBBAa" -540425984

"AaAaBBBB" -540425984

"AaBBAaAa" -540425984

"AaBBAaBB" -540425984

"AaBBBBAa" -540425984

"AaBBBBBB" -540425984

key hashCode()

"BBAaAaAa" -540425984

"BBAaAaBB" -540425984

"BBAaBBAa" -540425984

"BBAaBBBB" -540425984

"BBBBAaAa" -540425984

"BBBBAaBB" -540425984

"BBBBBBAa" -540425984

"BBBBBBBB" -540425984

key hashCode()

"Aa" 2112

"BB" 2112

36

Diversion: one-way hash functions

One-way hash function. Hard to find a key that will hash to a desired value,
or to find two keys that hash to same value.

Ex. MD4, MD5, SHA-0, SHA-1, SHA-2, WHIRLPOOL, RIPEMD-160.

Applications. Digital fingerprint, message digest, storing passwords.
Caveat. Too expensive for use in ST implementations.

known to be insecure

String password = args[0];
MessageDigest sha1 = MessageDigest.getInstance("SHA1");
byte[] bytes = sha1.digest(password);

/* prints bytes as hex string */

Separate chaining vs. linear probing

Separate chaining.

• Easier to implement delete.

• Performance degrades gracefully.

• Clustering less sensitive to poorly-designed hash function.

Linear probing.

• Less wasted space.

• Better cache performance.

37

Hashing: variations on the theme

Many improved versions have been studied.

Two-probe hashing. (separate chaining variant)

• Hash to two positions, put key in shorter of the two chains.

• Reduces average length of the longest chain to log log N.

Double hashing. (linear probing variant)

• Use linear probing, but skip a variable amount, not just 1 each time.

• Effectively eliminates clustering.

• Can allow table to become nearly full.

38

Hashing vs. balanced trees

Hashing.

• Simpler to code.

• No effective alternative for unordered keys.

• Faster for simple keys (a few arithmetic ops versus log N compares).

• Better system support in Java for strings (e.g., cached hash code).

Balanced trees.

• Stronger performance guarantee.

• Support for ordered ST operations.

• Easier to implement compareTo() correctly than equals() and hashCode().

Java system includes both.

• Red-black trees: java.util.TreeMap, java.util.TreeSet.

• Hashing: java.util.HashMap, java.util.IdentityHashMap.

39

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 22, 2010 10:56:33 PM

3.5 Symbol Tables Applications

‣ sets
‣ dictionary clients
‣ indexing clients
‣ sparse vectors

2

‣ sets
‣ dictionary clients
‣ indexing clients
‣ sparse vectors

3

Set API

Mathematical set. A collection of distinct keys.

Q. How to implement?

 public class SET<Key extends Comparable<Key>> public class SET<Key extends Comparable<Key>> public class SET<Key extends Comparable<Key>>

SET() create an empty set

void add(Key key) add the key to the set

boolean contains(Key key) is the key in the set?

void remove(Key key) remove the key from the set

int size() return the number of keys in the set

Iterator<Key> iterator() iterator through keys in the set

• Read in a list of words from one file.

• Print out all words from standard input that are { in, not in } the list.

4

Exception filter

% more list.txt
was it the of

% java WhiteList list.txt < tinyTale.txt
it was the of it was the of
it was the of it was the of
it was the of it was the of
it was the of it was the of
it was the of it was the of

% java BlackList list.txt < tinyTale.txt
best times worst times
age wisdom age foolishness
epoch belief epoch incredulity
season light season darkness
spring hope winter despair

list of exceptional words

• Read in a list of words from one file.

• Print out all words from standard input that are { in, not in } the list.

5

Exception filter applications

application purpose key in list

spell checker identify misspelled words word dictionary words

browser mark visited pages URL visited pages

parental controls block sites URL bad sites

chess detect draw board positions

spam filter eliminate spam IP address spam addresses

credit cards check for stolen cards number stolen cards

• Read in a list of words from one file.

• Print out all words from standard input that are { in, not in } the list.

6

Exception filter: Java implementation

public class WhiteList
{
 public static void main(String[] args)
 {
 SET<String> set = new SET<String>();

 In in = new In(args[0]);
 while (!in.isEmpty())
 set.add(in.readString());

 while (!StdIn.isEmpty())
 {
 String word = StdIn.readString();
 if (set.contains(word))
 StdOut.println(word);
 }
 }
}

create empty set of strings

read in whitelist

print words in list

• Read in a list of words from one file.

• Print out all words from standard input that are { in, not in } the list.

7

Exception filter: Java implementation

public class BlackList
{
 public static void main(String[] args)
 {
 SET<String> set = new SET<String>();

 In in = new In(args[0]);
 while (!in.isEmpty())
 set.add(in.readString());

 while (!StdIn.isEmpty())
 {
 String word = StdIn.readString();
 if (!set.contains(word))
 StdOut.println(word);
 }
 }
}

create empty set of strings

read in blacklist

print words not in list

8

‣ sets
‣ dictionary clients
‣ indexing clients
‣ sparse vectors

Dictionary lookup

Command-line arguments.

• A comma-separated value (CSV) file.

• Key field.

• Value field.

Ex 1. DNS lookup.

9

% more ip.csv
www.princeton.edu,128.112.128.15
www.cs.princeton.edu,128.112.136.35
www.math.princeton.edu,128.112.18.11
www.cs.harvard.edu,140.247.50.127
www.harvard.edu,128.103.60.24
www.yale.edu,130.132.51.8
www.econ.yale.edu,128.36.236.74
www.cs.yale.edu,128.36.229.30
espn.com,199.181.135.201
yahoo.com,66.94.234.13
msn.com,207.68.172.246
google.com,64.233.167.99
baidu.com,202.108.22.33
yahoo.co.jp,202.93.91.141
sina.com.cn,202.108.33.32
ebay.com,66.135.192.87
adobe.com,192.150.18.60
163.com,220.181.29.154
passport.net,65.54.179.226
tom.com,61.135.158.237
nate.com,203.226.253.11
cnn.com,64.236.16.20
daum.net,211.115.77.211
blogger.com,66.102.15.100
fastclick.com,205.180.86.4
wikipedia.org,66.230.200.100
rakuten.co.jp,202.72.51.22
...

% java LookupCSV ip.csv 0 1
adobe.com
192.150.18.60
www.princeton.edu
128.112.128.15
ebay.edu
Not found

% java LookupCSV ip.csv 1 0
128.112.128.15
www.princeton.edu
999.999.999.99
Not found

URL is key IP is value

IP is key URL is value

Dictionary lookup

Command-line arguments.

• A comma-separated value (CSV) file.

• Key field.

• Value field.

Ex 2. Amino acids.

10

% more amino.csv
TTT,Phe,F,Phenylalanine
TTC,Phe,F,Phenylalanine
TTA,Leu,L,Leucine
TTG,Leu,L,Leucine
TCT,Ser,S,Serine
TCC,Ser,S,Serine
TCA,Ser,S,Serine
TCG,Ser,S,Serine
TAT,Tyr,Y,Tyrosine
TAC,Tyr,Y,Tyrosine
TAA,Stop,Stop,Stop
TAG,Stop,Stop,Stop
TGT,Cys,C,Cysteine
TGC,Cys,C,Cysteine
TGA,Stop,Stop,Stop
TGG,Trp,W,Tryptophan
CTT,Leu,L,Leucine
CTC,Leu,L,Leucine
CTA,Leu,L,Leucine
CTG,Leu,L,Leucine
CCT,Pro,P,Proline
CCC,Pro,P,Proline
CCA,Pro,P,Proline
CCG,Pro,P,Proline
CAT,His,H,Histidine
CAC,His,H,Histidine
CAA,Gln,Q,Glutamine
CAG,Gln,Q,Glutamine
CGT,Arg,R,Arginine
CGC,Arg,R,Arginine
...

% java Lookup amino.csv 0 3
ACT
Threonine
TAG
Stop
CAT
Histidine

codon is key name is value

Dictionary lookup

Command-line arguments.

• A comma-separated value (CSV) file.

• Key field.

• Value field.

Ex 3. Class list.

11

% more classlist.csv
13,Berl,Ethan Michael,P01,eberl
11,Bourque,Alexander Joseph,P01,abourque
12,Cao,Phillips Minghua,P01,pcao
11,Chehoud,Christel,P01,cchehoud
10,Douglas,Malia Morioka,P01,malia
12,Haddock,Sara Lynn,P01,shaddock
12,Hantman,Nicole Samantha,P01,nhantman
11,Hesterberg,Adam Classen,P01,ahesterb
13,Hwang,Roland Lee,P01,rhwang
13,Hyde,Gregory Thomas,P01,ghyde
13,Kim,Hyunmoon,P01,hktwo
11,Kleinfeld,Ivan Maximillian,P01,ikleinfe
12,Korac,Damjan,P01,dkorac
11,MacDonald,Graham David,P01,gmacdona
10,Michal,Brian Thomas,P01,bmichal
12,Nam,Seung Hyeon,P01,seungnam
11,Nastasescu,Maria Monica,P01,mnastase
11,Pan,Di,P01,dpan
12,Partridge,Brenton Alan,P01,bpartrid
13,Rilee,Alexander,P01,arilee
13,Roopakalu,Ajay,P01,aroopaka
11,Sheng,Ben C,P01,bsheng
12,Webb,Natalie Sue,P01,nwebb
...

% java Lookup classlist.csv 4 1
eberl
Ethan
nwebb
Natalie

% java Lookup classlist.csv 4 3
dpan
P01

login is key
first name
is value

login is key
precept
is value

public class LookupCSV
{
 public static void main(String[] args)
 {
 In in = new In(args[0]);
 int keyField = Integer.parseInt(args[1]);
 int valField = Integer.parseInt(args[2]);

 ST<String, String> st = new ST<String, String>();
 while (!in.isEmpty())
 {
 String line = in.readLine();
 String[] tokens = database[i].split(",");
 String key = tokens[keyField];
 String val = tokens[valField];
 st.put(key, val);
 }

 while (!StdIn.isEmpty())
 {
 String s = StdIn.readString();
 if (!st.contains(s)) StdOut.println("Not found");
 else StdOut.println(st.get(s));
 }
 }
}

12

Dictionary lookup: Java implementation

process input file

build symbol table

process lookups
with standard I/O

13

‣ sets
‣ dictionary clients
‣ indexing clients
‣ sparse vectors

Goal. Index a PC (or the web).

File indexing

14

Goal. Given a list of files specified as command-line arguments, create an
index so that can efficiently find all files containing a given query string.

Solution. Key = query string; value = set of files containing that string.
15

File indexing

% ls *.txt
aesop.txt magna.txt moby.txt
sawyer.txt tale.txt

% java FileIndex *.txt
freedom
magna.txt moby.txt tale.txt

whale
moby.txt

lamb
sawyer.txt aesop.txt

% ls *.java

% java FileIndex *.java
BlackList.java Concordance.java
DeDup.java FileIndex.java ST.java
SET.java WhiteList.java

import
FileIndex.java SET.java ST.java

Comparator
null

public class FileIndex
{
 public static void main(String[] args)
 {
 ST<String, SET<File>> st = new ST<String, SET<File>>();

 for (String filename : args) {
 File file = new File(filename);
 In in = new In(file);
 while !(in.isEmpty())
 {
 String word = in.readString();
 if (!st.contains(word))
 st.put(s, new SET<File>());
 SET<File> set = st.get(key);
 set.add(file);
 }
 }

 while (!StdIn.isEmpty())
 {
 String query = StdIn.readString();
 StdOut.println(st.get(query));
 }
 }
}

File indexing

16

for each word in file,
add file to
corresponding set

list of file names
from command line

process queries

symbol table

Book index

Goal. Index for an e-book.

17

Concordance

Goal. Preprocess a text corpus to support concordance queries: given a word,
find all occurrences with their immediate contexts.

18

% java Concordance tale.txt
cities
tongues of the two *cities* that were blended in

majesty
their turnkeys and the *majesty* of the law fired
me treason against the *majesty* of the people in
of his most gracious *majesty* king george the third

princeton
no matches

public class Concordance
{
 public static void main(String[] args)
 {
 In in = new In(args[0]);
 String[] words = StdIn.readAll().split("\\s+");
 ST<String, SET<Integer>> st = new ST<String, SET<Integer>>();
 for (int i = 0; i < words.length; i++)
 {
 String s = words[i];
 if (!st.contains(s))
 st.put(s, new SET<Integer>());
 SET<Integer> pages = st.get(s);
 set.put(i);
 }

 while (!StdIn.isEmpty())
 {
 String query = StdIn.readString();
 SET<Integer> set = st.get(query);
 for (int k : set)
 // print words[k-5] to words[k+5]
 }
 }
}

Concordance

19

read text and
build index

process queries
and print

concordances

20

‣ sets
‣ dictionary clients
‣ indexing clients
‣ sparse vectors

Matrix-vector multiplication (standard implementation)

21

 0 .90 0 0 0

 0 0 .36 .36 .18

 0 0 0 .90 0

.90 0 0 0 0

.47 0 .47 0 0

.05

.04

.36

.37

.19

a[][] x[] b[]

.036

.297

.333

.045

.1927

=

Matrix-vector multiplication

...
double[][] a = new double[N][N];
double[] x = new double[N];
double[] b = new double[N];
...
// initialize a[][] and x[]
...
for (int i = 0; i < N; i++)
{
 sum = 0.0;
 for (int j = 0; j < N; j++)
 sum += a[i][j]*x[j];
 b[i] = sum;
}

nested loops
N2 running time

Problem. Sparse matrix-vector multiplication.
Assumptions. Matrix dimension is 10,000; average nonzeros per row ~ 10.

Sparse matrix-vector multiplication

22

 A * x = b

1D array (standard) representation.

• Constant time access to elements.

• Space proportional to N.

Symbol table representation.

• key = index, value = entry

• Efficient iterator.

• Space proportional to number of nonzeros.

23

Vector representations

 0 .36 0 0 0 .36 0 0 0 0 0 0 0 0 .18 0 0 0 0 0

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

 1 .36 5 .36 14 .18

key value
st

24

Sparse vector data type

public class SparseVector
{
 private HashST<Integer, Double> v;

 public SparseVector()
 { v = new HashST<Integer, Double>(); }

 public void put(int i, double x)
 { v.put(i, x); }

 public double get(int i)
 {
 if (!v.contains(i)) return 0.0;
 else return v.get(i);
 }

 public Iterable<Integer> indices()
 { return v.keys(); }

 public double dot(double[] that)
 {
 double sum = 0.0;
 for (int i : indices())
 sum += that[i]*this.get(i);
 return sum;
 }
}

empty ST represents all 0s vector

a[i] = value

return a[i]

dot product is constant
time for sparse vectors

HashST because order not important

2D array (standard) representation: Each row of matrix is an array.

• Constant time access to elements.

• Space proportional to N2.

Sparse representation: Each row of matrix is a sparse vector.

• Efficient access to elements.

• Space proportional to number of nonzeros (plus N).

25

Matrix representations

a

0

1

2

3

4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

a

0

1

2

3

4

array of double[]objects array of SparseVector objects

st

0.0 .90 0.0 0.0 0.0

0.0 0.0 .36 .36 .18

0.0 0.0 0.0 .90 0.0

.90 0.0 0.0 0.0 0.0

.45 0.0 .45 0.0 0.0
.452

.363 .184.362

st
.903

st
.900

st
.450

st
.901

independent
symbol-table

objects

key value

a[4][2]

Sparse matrix representations

a

0

1

2

3

4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

a

0

1

2

3

4

array of double[]objects array of SparseVector objects

st

0.0 .90 0.0 0.0 0.0

0.0 0.0 .36 .36 .18

0.0 0.0 0.0 .90 0.0

.90 0.0 0.0 0.0 0.0

.45 0.0 .45 0.0 0.0
.452

.363 .184.362

st
.903

st
.900

st
.450

st
.901

independent
symbol-table

objects

key value

a[4][2]

Sparse matrix representations

Sparse matrix-vector multiplication

26

 0 .90 0 0 0

 0 0 .36 .36 .18

 0 0 0 .90 0

.90 0 0 0 0

.47 0 .47 0 0

.05

.04

.36

.37

.19

a[][] x[] b[]

.036

.297

.333

.045

.1927

=

Matrix-vector multiplication

 ..
 SparseVector[] a;
 a = new SparseVector[N];
 double[] x = new double[N];
 double[] b = new double[N];
 ...
 // Initialize a[] and x[]
 ...
 for (int i = 0; i < N; i++)
 b[i] = a[i].dot(x);

one loop
linear running time
for sparse matrix

27

‣ sets
‣ dictionary clients
‣ indexing clients
‣ sparse vectors
‣ challenges

Searching challenge 2A:

Problem. IP lookups in a web monitoring device.
Assumption A. Billions of lookups, millions of distinct addresses.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

28

Searching challenge 2A

Problem. IP lookups in a web monitoring device.
Assumption A. Billions of lookups, millions of distinct addresses.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

29

total cost of insertions is c*10000002 =
c*1,000,000,000,000 (way too much)

✓

Searching challenge 2B

Problem. IP lookups in a web monitoring device.
Assumption B. Billions of lookups, thousands of distinct addresses.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

30

Searching challenge 2B

Problem. IP lookups in a web monitoring device.
Assumption B. Billions of lookups, thousands of distinct addresses.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

31

total cost of insertions is
c1*10002 = c1*1000000

and dominated by c2*1000000000
cost of lookups

✓

Searching challenge 4

Problem. Spell checking for a book.
Assumptions. Dictionary has 25,000 words; book has 100,000+ words.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

32

Searching challenge 4

Problem. Spell checking for a book.
Assumptions. Dictionary has 25,000 words; book has 100,000+ words.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

33

easy to presort dictionary total cost
of lookups is optimal c2*1,500,000✓

Searching challenge 1A

Problem. Maintain symbol table of song names for an iPod.
Assumption A. Hundreds of songs.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

34

Searching challenge 1A

Problem. Maintain symbol table of song names for an iPod.
Assumption A. Hundreds of songs.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

35

1002 = 10,000✓

Searching challenge 1B

Problem. Maintain symbol table of song names for an iPod.
Assumption B. Thousands of songs.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

36

Searching challenge 1B

Problem. Maintain symbol table of song names for an iPod.
Assumption B. Thousands of songs.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

37

maybe, but 10002 = 1,000,000 so user
might wait for complete rebuild of index

✓

Searching challenge 3

Problem. Frequency counts in “Tale of Two Cities.”
Assumptions. Book has 135,000+ words; about 10,000 distinct words.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

38

Searching challenge 3

Problem. Frequency counts in “Tale of Two Cities.”
Assumptions. Book has 135,000+ words; about 10,000 distinct words.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

39

total cost of searches:
c2*1,350,000,000

maybe, but total cost of
insertions is c1*100,000,000✓

Problem. Frequency counts in “Tale of Two Cities”
Assumptions. Book has 135,000+ words; about 10,000 distinct words.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.
5) BSTs.

Searching challenge 3 (revisited):

40

insertion cost < 10000 * 1.38 * lg 10000 < .2 million
lookup cost < 135000 * 1.38 * lg 10000 < 2.5 million

✓

Problem. Index for a PC or the web.
Assumptions. 1 billion++ words to index.

Which searching method to use?

• Hashing

• Red-black-trees

• Doesn’t matter much.

Searching challenge 5

41

Problem. Index for a PC or the web.
Assumptions. 1 billion++ words to index.

Which searching method to use?

• Hashing

• Red-black-trees

• Doesn’t matter much.

Solution. Symbol table with:

• Key = query string.

• Value = set of pointers to files.

Searching challenge 5

42

✓
too much space

sort the (relatively few) search hits

Searching challenge 6

Problem. Index for an e-book.
Assumptions. Book has 100,000+ words.

Which searching method to use?
1. Hashing
2. Red-black-tree
3. Doesn’t matter much.

43

Searching challenge 6

Problem. Index for an e-book.
Assumptions. Book has 100,000+ words.

Which searching method to use?
1. Hashing
2. Red-black-tree
3. Doesn’t matter much.

Solution. Symbol table with:

• Key = index term.

• Value = ordered set of pages on which term appears.

44

✓
need ordered

iteration

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 26, 2010 7:34:40 AM

4.1 Undirected Graphs

References: Algorithms in Java (Part 5), 3rd edition, Chapters 17 and 18

‣ graph API
‣ maze exploration
‣ depth-first search
‣ breadth-first search
‣ connected components
‣ challenges

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?

• Interesting and broadly useful abstraction.

• Challenging branch of computer science and discrete math.

• Hundreds of graph algorithms known.

• Thousands of practical applications.

2

Undirected graphs

3

Protein interaction network

Reference: Jeong et al, Nature Review | Genetics

4

The Internet as mapped by the Opte Project

http://en.wikipedia.org/wiki/Internet

5

Map of science clickstreams

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0004803

6

High-school dating

Reference: Bearman, Moody and Stovel, 2004
image by Mark Newman

7

Kevin's facebook friends (Princeton network)

8

One week of Enron emails

9

Graph applications

graph vertex edge

communication telephone, computer fiber optic cable

circuit gate, register, processor wire

mechanical joint rod, beam, spring

financial stock, currency transactions

transportation street intersection, airport highway, airway route

internet class C network connection

game board position legal move

social relationship person, actor friendship, movie cast

neural network neuron synapse

protein network protein protein-protein interaction

chemical compound molecule bond

10

Graph terminology

11

Some graph-processing problems

Path. Is there a path between s and t?
Shortest path. What is the shortest path between s and t?

Cycle. Is there a cycle in the graph?
Euler tour. Is there a cycle that uses each edge exactly once?
Hamilton tour. Is there a cycle that uses each vertex exactly once?

Connectivity. Is there a way to connect all of the vertices?
MST. What is the best way to connect all of the vertices?
Biconnectivity. Is there a vertex whose removal disconnects the graph?

Planarity. Can you draw the graph in the plane with no crossing edges?
Graph isomorphism. Do two adjacency matrices represent the same graph?

Challenge. Which of these problems are easy? difficult? intractable?

12

‣ graph API
‣ maze exploration
‣ depth-first search
‣ breadth-first search
‣ connected components
‣ challenges

Vertex representation.

• This lecture: use integers between 0 and V-1.

• Real world: convert between names and integers with symbol table.

Issues. Parallel edges, self-loops.

A

G

E

CB

F

D

13

Graph representation

symbol table

0

6

4

21

5

3

14

Graph API

 public class Graph public class Graph graph data typegraph data type

Graph(int V)Graph(int V) create an empty graph with V vertices

Graph(In in)Graph(In in) create a graph from input stream

void addEdge(int v, int w)addEdge(int v, int w) add an edge v-w

Iterable<Integer> adj(int v)adj(int v) return an iterator over the neighbors of v

int V()V() return number of vertices

 In in = new In();
 Graph G = new Graph(in);

 for (int v = 0; v < G.V(); v++)
 for (int w : G.adj(v))
 /* process edge v-w */

read graph from
standard input

process both
v-w and w-v

% more tiny.txt
7
0 1
0 2
0 5
0 6
3 4
3 5
4 6

Maintain a list of the edges (linked list or array).

15

Set of edges representation

87

109

1211

0

6

4

21

5

3

 0 1
 0 2
 0 5
 0 6
 3 4
 3 5
 4 6
 7 8
 9 10
 9 11
 9 12

Maintain a two-dimensional V-by-V boolean array;
for each edge v-w in graph: adj[v][w] = adj[w][v] = true.

0 1 2 3 4 5 6 7 8 9 10 11 12

0

1

2

3

4

5

6

7

8

9

10

11

12

0 1 1 0 0 1 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0 0

1 0 0 1 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 1 0 1 0

16

Adjacency-matrix representation

two entries
for each edge

87

109

1211

0

6

4

21

5

3

17

Adjacency-matrix representation: Java implementation

public class Graph
{
 private final int V;
 private final boolean[][] adj;

 public Graph(int V)
 {
 this.V = V;
 adj = new boolean[V][V];
 }

 public void addEdge(int v, int w)
 {
 adj[v][w] = true;
 adj[w][v] = true;
 }

 public Iterable<Integer> adj(int v)
 { return new AdjIterator(v); }
}

adjacency matrix

create empty graph
with V vertices

add edge v-w
(no parallel edges)

iterator for v's neighbors
(code for AdjIterator omitted)

18

Adjacency-list representation

Maintain vertex-indexed array of lists (implementation omitted).

5 2 1 6

0

0

5 4

6 5 3

0 4 3

4 0

8

7

10 11 12

9

9 12

9 11

two entries
for each edge

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

87

109

1211

0

6

4

21

5

3

Maintain vertex-indexed array of sets.

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

{ 1 2 5 6 }

{ 0 }

{ 0 }

{ 4, 5 }

{ 3, 5, 6 }

{ 0, 3, 4 }

{ 0, 4 }

{ 8 }

{ 7 }

{ 10, 11, 12 }

{ 9 }

{ 9, 12 }

{ 9, 11 }

19

Adjacency-set graph representation

two entries
for each edge

87

109

1211

0

6

4

21

5

3

20

Adjacency-set representation: Java implementation

public class Graph
{
 private final int V;
 private final SET<Integer>[] adj;

 public Graph(int V)
 {
 this.V = V;
 adj = (SET<Integer>[]) new SET[V];
 for (int v = 0; v < V; v++)
 adj[v] = new SET<Integer>();
 }

 public void addEdge(int v, int w)
 {
 adj[v].add(w);
 adj[w].add(v);
 }

 public Iterable<Integer> adj(int v)
 { return adj[v]; }
}

adjacency sets

create empty graph
with V vertices

add edge v-w
(no parallel edges)

iterator for v's neighbors

In practice. Use adjacency-set (or adjacency-list) representation.

• Algorithms based on iterating over edges incident to v.

• Real-world graphs tend to be “sparse.”

21

Graph representations

representation space insert edge edge between
v and w?

iterate over edges
incident to v?

list of edges E E E E

adjacency matrix V2 1 1 V

adjacency list E + V degree(v) degree(v) degree(v)

adjacency set E + V log (degree(v)) log (degree(v)) degree(v)

huge number of vertices,
small average vertex degree

22

‣ graph API
‣ maze exploration
‣ depth-first search
‣ breadth-first search
‣ connected components
‣ challenges

23

Maze exploration

Maze graphs.

• Vertex = intersection.

• Edge = passage.

Goal. Explore every passage in the maze.

24

Trémaux maze exploration

Algorithm.

• Unroll a ball of string behind you.

• Mark each visited intersection by turning on a light.

• Mark each visited passage by opening a door.

First use? Theseus entered labyrinth to kill the monstrous Minotaur;
Ariadne held ball of string.

Claude Shannon (with Theseus mouse)

25

26

Maze exploration

27

Maze exploration

28

Rat in a maze

29

‣ graph API
‣ maze exploration
‣ depth-first search
‣ breadth-first search
‣ connected components
‣ challenges

Goal. Systematically search through a graph.
Idea. Mimic maze exploration.

Running time.

• O(E) since each edge examined at most twice.

• Usually less than V in real-world graphs.

• Typical applications.

• Find all vertices connected to a given s.

• Find a path from s to t.

Depth-first search

Mark s as visited.
Recursively visit all unmarked
vertices v adjacent to s.

DFS (to visit a vertex s)

31

Design goal. Decouple graph data type from graph processing.

Typical client program.

• Create a Graph.

• Pass the Graph to a graph-processing routine, e.g., DFSearcher.

• Query the graph-processing routine for information.

Design pattern for graph processing

 // print all vertices connected to s
 In in = new In(args[0]);
 Graph G = new Graph(in);
 int s = 0;
 DFSearcher dfs = new DFSearcher(G, s);
 for (int v = 0; v < G.V(); v++)
 if (dfs.isConnected(v))
 StdOut.println(v);

32

Depth-first search (connectivity)

public class DFSearcher
{
 private boolean[] marked;

 public DFSearcher(Graph G, int s)
 {
 marked = new boolean[G.V()];
 dfs(G, s);
 }

 private void dfs(Graph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w]) dfs(G, w);
 }

 public boolean isConnected(int v)
 { return marked[v]; }
}

true if connected to s

constructor marks
vertices connected to s

recursive DFS does the work

client can ask whether any
vertex is connected to s

Flood fill

Photoshop “magic wand”

33

Graph-processing challenge 1

Problem. Flood fill.
Assumptions. Picture has millions to billions of pixels.

How difficult?

• Any COS 126 student could do it.

• Need to be a typical diligent COS 226 student.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.

34

35

Connectivity application: flood fill

Change color of entire blob of neighboring red pixels to blue.

Build a grid graph.

• Vertex: pixel.

• Edge: between two adjacent red pixels.

• Blob: all pixels connected to given pixel.

recolor red blob to blue

36

Connectivity application: flood fill

Change color of entire blob of neighboring red pixels to blue.

Build a grid graph.

• Vertex: pixel.

• Edge: between two adjacent red pixels.

• Blob: all pixels connected to given pixel.

recolor red blob to blue

Problem. Find a path from s to t ?
Assumption. Any path will do.

How difficult?

• Any COS 126 student could do it.

• Need to be a typical diligent COS 226 student.

• Hire an expert.

• Intractable.

• No one knows.

Graph-processing challenge 2

37

38

Paths in graphs: union find vs. DFS

Goal. Is there a path from s to t?

If so, find one.

• Union-find: not much help (run DFS on connected subgraph).

• DFS: easy (see next slides).

Union-find advantage. Can intermix queries and edge insertions.
DFS advantage. Can recover path itself in time proportional to its length.

method preprocessing time query time space

union-find V + E log* V log* V † V

DFS E + V 1 E + V

† amortized

39

Keeping track of paths with DFS

DFS tree. Upon visiting a vertex v for the first time, remember that you
came from pred[v] (parent-link representation).

Retrace path. To find path between s and v, follow pred[] back from v.

40

Depth-first-search (pathfinding)

public class DFSearcher
{
 private int[] pred;
 ...
 public DFSearcher(Graph G, int s)
 {
 ...
 pred = new int[G.V()];
 for (int v = 0; v < G.V(); v++)
 pred[v] = -1;
 ...
 }
 private void dfs(Graph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w])
 {
 pred[w] = v;
 dfs(G, w);
 }
 }

 public Iterable<Integer> path(int v)
 { /* see next slide */ }
}

add instance variable for parent-link
representation of DFS tree

initialize it in the constructor

set parent link

add method for client
to iterate through path

41

Depth-first-search (pathfinding iterator)

 public Iterable<Integer> path(int v)
 {
 Stack<Integer> path = new Stack<Integer>();
 while (v != -1 && marked[v])
 {
 path.push(v);
 v = pred[v];
 }
 return path;
 }

42

DFS summary

Enables direct solution of simple graph problems.

• Find path from s to t.

• Connected components (stay tuned).

• Euler tour (see book).

• Cycle detection (simple exercise).

• Bipartiteness checking (see book).

Basis for solving more difficult graph problems.

• Biconnected components (see book).

• Planarity testing (beyond scope).

✓

43

‣ graph API
‣ maze exploration
‣ depth-first search
‣ breadth-first search
‣ connected components
‣ challenge

Depth-first search. Put unvisited vertices on a stack.
Breadth-first search. Put unvisited vertices on a queue.

Shortest path. Find path from s to t that uses fewest number of edges.

Property. BFS examines vertices in increasing distance from s.
44

Breadth-first search

Put s onto a FIFO queue.
Repeat until the queue is empty:

 remove the least recently added vertex v

 add each of v's unvisited neighbors to the queue,
 and mark them as visited.

BFS (from source vertex s)

45

Breadth-first search scaffolding

public class BFSearcher
{
 private int[] dist;

 public BFSearcher(Graph G, int s)
 {
 dist = new int[G.V()];
 for (int v = 0; v < G.V(); v++)
 dist[v] = G.V() + 1;
 dist[s] = 0;

 bfs(G, s);
 }

 public int distance(int v)
 { return dist[v]; }

 private void bfs(Graph G, int s)
 { /* See next slide */ }

}

initialize distances

distances from s

compute distances

answer client query

46

Breadth-first search (compute shortest-path distances)

private void bfs(Graph G, int s)
{
 Queue<Integer> q = new Queue<Integer>();
 q.enqueue(s);
 while (!q.isEmpty())
 {
 int v = q.dequeue();
 for (int w : G.adj(v))
 {
 if (dist[w] > G.V())
 {
 q.enqueue(w);
 dist[w] = dist[v] + 1;
 }
 }
 }
}

47

BFS application

• Facebook.

• Kevin Bacon numbers.

• Fewest number of hops in a communication network.

ARPANET

48

BFS application

• Facebook.

• Kevin Bacon numbers.

• Fewest number of hops in a communication network.

49

Kevin Bacon graph

• Include vertex for each performer and movie.

• Connect movie to all performers that appear in movie.

• Compute shortest path from s = Kevin Bacon.

A tiny portion of the movie-performer relationship graph

Kevin
Bacon

Kathleen
Quinlan

Meryl
Streep

Nicole
Kidman

John
Gielguld

Kate
Winslet

Bill
Paxton

Donald
Sutherland

The Stepford
Wives

Portrait
of a Lady

Dial M
for Murder

Apollo 13

To Catch
a Thief

The Eagle
Has Landed

Cold
Mountain

Murder on the
Orient Express

Vernon
Dobtcheff

An American
Haunting

Jude

Enigma

Eternal Sunshine
of the Spotless

Mind

The
Woodsman

Wild
Things

Hamlet

Titanic

Animal
House

Grace
KellyCaligola

The River
Wild

Lloyd
Bridges

High
Noon

The Da
Vinci Code

Joe Versus
the Volcano

Patrick
Allen

Tom
Hanks

Serretta
Wilson

Glenn
Close

John
Belushi

Yves
Aubert Shane

Zaza

Paul
Herbert

50

‣ graph API
‣ maze exploration
‣ depth-first search
‣ breadth-first search
‣ connected components
‣ challenge

Def. Vertices v and w are connected if there is a path between them.
Def. A connected component is a maximal set of connected vertices.

Goal. Preprocess graph to answer queries: is v connected to w?
 in constant time

Union-Find? Not quite.
51

Connectivity queries

Vertex Component
 0 0
 1 1
 2 1
 3 0
 4 0
 5 0
 6 2
 7 0
 8 2
 9 1
 10 0
 11 0
 12 1

68

19

122

0

7

5

1011

3

4

Goal. Partition vertices into connected components.

52

Connected components

Initialize all vertices v as unmarked.

For each unmarked vertex v, run DFS to identify all
vertices discovered as part of the same component.

Connected components

preprocess time query time extra space

E + V 1 V

53

Depth-first search for connected components

public class CCFinder
{
 private final static int UNMARKED = -1;
 private int components;
 private int[] cc;

 public CCFinder(Graph G)
 { /* see next slide */ }

 public int connected(int v, int w)
 { return cc[v] == cc[w]; }

}

constant-time
connectivity query

component labels

54

Depth-first search for connected components

 public CCFinder(Graph G)
 {
 cc = new int[G.V()];
 for (int v = 0; v < G.V(); v++)
 cc[v] = UNMARKED;
 for (int v = 0; v < G.V(); v++)
 if (cc[v] == UNMARKED)
 {
 dfs(G, v);
 components++;
 }
 }

 private void dfs(Graph G, int v)
 {
 cc[v] = components;
 for (int w : G.adj(v))
 if (cc[w] == UNMARKED) dfs(G, w);
 }

DFS for each component

standard DFS

55

Connected components

63 components

56

Connected components application: image processing

Goal. Read in a 2D color image and find regions of connected pixels
that have the same color.

Input. Scanned image.
Output. Number of red and blue states.

assuming contiguous states

Goal. Read in a 2D color image and find regions of connected pixels
that have the same color.

Efficient algorithm.

• Create grid graph.

• Connect each pixel to neighboring pixel if same color.

• Find connected components in resulting graph.

7 7

7 7

3

3

1 1 1 1 1

1

1

1 1

1 1

11

11 11

11 11 11 11

57

Connected components application: image processing

0 6 6

0 0 0 6 6 6 8

0 0 6 6 4 8

0 0 6 2 11

10 10 10 10 2 11

2 2 2 2 2 11

5 5 5 2 2 11

8 9 9

8 9

11 11 11 11

11 11 11 11

11 11 11 11

11 11 11 11

58

Connected components application: particle detection

Particle detection. Given grayscale image of particles, identify "blobs."

• Vertex: pixel.

• Edge: between two adjacent pixels with grayscale value ≥ 70.

• Blob: connected component of 20-30 pixels.

Particle tracking. Track moving particles over time.

black = 0
white = 255

59

‣ graph API
‣ maze exploration
‣ depth-first search
‣ breadth-first search
‣ connected components
‣ challenges

Graph-processing challenge 3

Problem. Find a cycle that uses every edge.
Assumption. Need to use each edge exactly once.

How difficult?

• Any COS 126 student could do it.

• Need to be a typical diligent COS 226 student.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.

60

0-1
0-2
0-5
0-6
1-2
2-3
2-4
3-4
4-5
4-6

6

4

21

3

0

5

0-1-2-3-4-2-0-6-4-5-0

The Seven Bridges of Königsberg. [Leonhard Euler 1736]

Euler tour. Is there a cyclic path that uses each edge exactly once?
Answer. Yes iff connected and all vertices have even degree.
To find path. DFS-based algorithm (see Algs in Java).

61

Bridges of Königsberg

“ … in Königsberg in Prussia, there is an island A, called the
Kneiphof; the river which surrounds it is divided into two branches ...
and these branches are crossed by seven bridges. Concerning these
bridges, it was asked whether anyone could arrange a route in such a
way that he could cross each bridge once and only once. ”

Graph-processing challenge 4

Problem. Find a cycle that visits every vertex.
Assumption. Need to visit each vertex exactly once.

How difficult?

• Any COS 126 student could do it.

• Need to be a typical diligent COS 226 student.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.

62

0-1
0-2
0-5
0-6
1-2
2-6
3-4
3-5
4-5
4-6

6

4

21

3

0

5

0-5-3-4-6-2-1-0

Graph-processing challenge 5

Problem. Are two graphs identical except for vertex names?

How difficult?

• Any COS 126 student could do it.

• Need to be a typical diligent COS 226 student.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.

63

0-1
0-6
0-2
4-3
5-3
5-4
0-5
6-4

6

4

21

5

3

0

2-1
2-4
2-0
6-5
5-3
3-6
2-3
6-4

4

6

0

2

3

5

1

Graph-processing challenge 6

Problem. Lay out a graph in the plane without crossing edges?

How difficult?

• Any COS 126 student could do it.

• Need to be a typical diligent COS 226 student.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.

64

0-2
1-2
2-3
2-4
3-5
3-6
4-6
5-6

4

6

0

2

3

5

1

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 26, 2010 7:47:09 AM

4.2 Directed Graphs

References: Algorithms in Java, 3rd edition, Chapter 19

‣ digraph API
‣ digraph search
‣ transitive closure
‣ topological sort
‣ strong components

2

Directed graphs

Digraph. Set of vertices connected pairwise by oriented edges.
Address Holland Tunnel

New York, NY 10013

©2008 Google - Map data ©2008 Sanborn, NAVTEQ™ - Terms of Use

To see all the details that are visible on the screen,use the
"Print" link next to the map.

3

Link structure of political blogs

Vertex = web page.
Edge = hyperlink.

Page ranks with histogram for a larger example

18

31

6

42 13

28

32

49

22

45

1 14

40

48

7

44

10

41
29

0

39

11

9

12

30
26

21

46

5

24

37

43

35

47

38

23

16

36

4

3 17

27

20

34

15

2

19 33

25

8

 0 .002
 1 .017
 2 .009
 3 .003
 4 .006
 5 .016
 6 .066
 7 .021
 8 .017
 9 .040
 10 .002
 11 .028
 12 .006
 13 .045
 14 .018
 15 .026
 16 .023
 17 .005
 18 .023
 19 .026
 20 .004
 21 .034
 22 .063
 23 .043
 24 .011
 25 .005
 26 .006
 27 .008
 28 .037
 29 .003
 30 .037
 31 .023
 32 .018
 33 .013
 34 .024
 35 .019
 36 .003
 37 .031
 38 .012
 39 .023
 40 .017
 41 .021
 42 .021
 43 .016
 44 .023
 45 .006
 46 .023
 47 .024
 48 .019
 49 .016

6 22

4

Web graph

Vertex = synset.
Edge = hypernym relationship.

5

WordNet graph

 t

 m

t

 t

6

Digraph applications

graph vertex edge

transportation street intersection one-way street

web web page hyperlink

food web species predator-prey relationship

WordNet synset hypernym

scheduling task precedence constraint

financial stock, currency transaction

cell phone person placed call

infectious disease person infection

game board position legal move

citation journal article citation

object graph object pointer

inheritance hierarchy class inherits from

control flow code block jump

7

Some digraph problems

Path. Is there a directed path from s to t?
Shortest path. What is the shortest directed path from s and t?

Strong connectivity. Are all vertices mutually reachable?
Transitive closure. For which vertices v and w is there a path from v to w?

Topological sort. Can you draw the digraph so that all edges point
from left to right?

Precedence scheduling. Given a set of tasks with precedence constraints,
how can we best complete them all?

PageRank. What is the importance of a web page?

8

‣ digraph API
‣ digraph search
‣ topological sort
‣ transitive closure
‣ strong components

9

Digraph API

 public class Digraph public class Digraph digraph data typedigraph data type

Digraph(int V)Digraph(int V) create an empty digraph with V vertices

Digraph(In in)Digraph(In in) create a digraph from input stream

void addEdge(int v, int w)addEdge(int v, int w) add an edge from v to w

Iterable<Integer> adj(int v)adj(int v) return an iterator over the neighbors of v

int V()V() return number of vertices

 In in = new In();
 Digraph G = new Digraph(in);

 for (int v = 0; v < G.V(); v++)
 for (int w : G.adj(v))
 /* process edge v→w */

10

Set of edges representation

Store a list of the edges (linked list or array).

 0 1
 0 2
 0 5
 0 6
 4 3
 5 3
 5 4
 6 4
 7 8
 9 10
 9 11
 9 12
 11 12

0

6

4

21

5

3

7 12

109

118

11

Adjacency-matrix representation

Maintain a two-dimensional V-by-V boolean array;
for each edge v → w in the digraph: adj[v][w] = true.

0 1 2 3 4 5 6 7 8 9 10 11 12

0

1

2

3

4

5

6

7

8

9

10

11

12

0 1 1 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0

from

to
0

6

4

21

5

3

7 12

109

118

Maintain vertex-indexed array of lists.

12

Adjacency-list representation

5 2 1 6

3

4 3

4

8

10 11 12

12

same as undirected graph,
but one entry for each edge

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

0

6

4

21

5

3

7 12

109

118

Maintain vertex-indexed array of sets.

13

Adjacency-set representation

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

{ 1 2 5 6 }

{ }

{ }

{ }

{ 3 }

{ 3, 4 }

{ 4 }

{ 8 }

{ }

{ 10, 11, 12 }

{ }

{ 12 }

{ }

same as undirected graph,
but one entry for each edge

0

6

4

21

5

3

7 12

109

118

Same as Graph, but only insert one copy of each edge.

14

Adjacency-set representation: Java implementation

public class Digraph
{
 private final int V;
 private final SET<Integer>[] adj;

 public Digraph(int V)
 {
 this.V = V;
 adj = (SET<Integer>[]) new SET[V];
 for (int v = 0; v < V; v++)
 adj[v] = new SET<Integer>();
 }

 public void addEdge(int v, int w)
 { adj[v].add(w); }

 public Iterable<Integer> adj(int v)
 { return adj[v]; }
}

adjacency sets

create empty graph with
V vertices

add edge from v to w
(no parallel edges)

iterator for v's neighbors

In practice. Use adjacency-set (or adjacency-list) representation.

• Algorithms all based on iterating over edges incident to v.

• Real-world digraphs tend to be sparse.

15

Digraph representations

representation space insert edge
from v to w

edge from
v to w?

iterate over edges
leaving v?

list of edges E E E E

adjacency matrix V2 1 1 V

adjacency list E + V outdegree(v) outdegree(v) outdegree(v)

adjacency set E + V log (outdegree(v)) log (outdegree(v)) outdegree(v)

huge number of vertices,
small average vertex degree

16

Typical digraph application: Google's PageRank algorithm

Goal. Determine which pages on web are important.
Solution. Ignore keywords and content, focus on hyperlink structure.

Random surfer model.

• Start at random page.

• With probability 0.85, randomly select a hyperlink to visit next;
with probability 0.15, randomly select any page.

• PageRank = proportion of time random surfer spends on each page.

Solution 1. Simulate random surfer for a long time.
Solution 2. Compute ranks directly until they converge.
Solution 3. Compute eigenvalues of adjacency matrix!

None feasible without sparse digraph representation.

Page ranks with histogram for a larger example

18

31

6

42 13

28

32

49

22

45

1 14

40

48

7

44

10

41
29

0

39

11

9

12

30
26

21

46

5

24

37

43

35

47

38

23

16

36

4

3 17

27

20

34

15

2

19 33

25

8

 0 .002
 1 .017
 2 .009
 3 .003
 4 .006
 5 .016
 6 .066
 7 .021
 8 .017
 9 .040
 10 .002
 11 .028
 12 .006
 13 .045
 14 .018
 15 .026
 16 .023
 17 .005
 18 .023
 19 .026
 20 .004
 21 .034
 22 .063
 23 .043
 24 .011
 25 .005
 26 .006
 27 .008
 28 .037
 29 .003
 30 .037
 31 .023
 32 .018
 33 .013
 34 .024
 35 .019
 36 .003
 37 .031
 38 .012
 39 .023
 40 .017
 41 .021
 42 .021
 43 .016
 44 .023
 45 .006
 46 .023
 47 .024
 48 .019
 49 .016

6 22

17

‣ digraph API
‣ digraph search
‣ transitive closure
‣ topological sort
‣ strong components

18

Reachability

Problem. Find all vertices reachable from s along a directed path.

s

Same method as for undirected graphs.

Every undirected graph is a digraph.

• Happens to have edges in both directions.

• DFS is a digraph algorithm.

19

Depth-first search in digraphs

Mark v as visited.
Recursively visit all unmarked
vertices w adjacent to v.

DFS (to visit a vertex v)

20

Depth-first search (single-source reachability)

Identical to undirected version (substitute Digraph for Graph).

public class DFSearcher
{
 private boolean[] marked;

 public DFSearcher(Digraph G, int s)
 {
 marked = new boolean[G.V()];
 dfs(G, s);
 }

 private void dfs(Digraph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w]) dfs(G, w);
 }

 public boolean isReachable(int v)
 { return marked[v]; }
}

true if connected to s

constructor marks vertices
connected to s

recursive DFS does the work

client can ask whether any
vertex is reachable from s

21

Reachability application: program control-flow analysis

Every program is a digraph.

• Vertex = basic block of instructions (straight-line program).

• Edge = jump.

Dead code elimination.
Find (and remove) unreachable code.

Infinite loop detection.
Determine whether exit is unreachable.

Every data structure is a digraph.

• Vertex = object.

• Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program
(starting at a root and following a chain of pointers).

22

Reachability application: mark-sweep garbage collector

23

Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]

• Mark: mark all reachable objects.

• Sweep: if object is unmarked, it is garbage, so add to free list.

Memory cost. Uses 1 extra mark bit per object, plus DFS stack.

DFS enables direct solution of simple digraph problems.

• Reachability.

• Cycle detection.

• Topological sort.

• Transitive closure.

Basis for solving difficult digraph problems.

• Directed Euler path.

• Strong connected components.

24

Depth-first search (DFS)

✓

25

Breadth-first search in digraphs

Every undirected graph is a digraph.

• Happens to have edges in both directions.

• BFS is a digraph algorithm.

Property. Visits vertices in increasing distance from s.

Put s onto a FIFO queue.
Repeat until the queue is empty:

 remove the least recently added vertex v

 add each of v's unvisited neighbors to the
 queue and mark them as visited.

BFS (from source vertex s)

26

Digraph BFS application: web crawler

Goal. Crawl web, starting from some root web page, say www.princeton.edu.
Solution. BFS with implicit graph.

BFS.

• Start at some root web page.

• Maintain a Queue of websites to explore.

• Maintain a SET of discovered websites.

• Dequeue the next website and enqueue
websites to which it links
(provided you haven't done so before).

Q. Why not use DFS?

Page ranks with histogram for a larger example

18

31

6

42 13

28

32

49

22

45

1 14

40

48

7

44

10

41
29

0

39

11

9

12

30
26

21

46

5

24

37

43

35

47

38

23

16

36

4

3 17

27

20

34

15

2

19 33

25

8

 0 .002
 1 .017
 2 .009
 3 .003
 4 .006
 5 .016
 6 .066
 7 .021
 8 .017
 9 .040
 10 .002
 11 .028
 12 .006
 13 .045
 14 .018
 15 .026
 16 .023
 17 .005
 18 .023
 19 .026
 20 .004
 21 .034
 22 .063
 23 .043
 24 .011
 25 .005
 26 .006
 27 .008
 28 .037
 29 .003
 30 .037
 31 .023
 32 .018
 33 .013
 34 .024
 35 .019
 36 .003
 37 .031
 38 .012
 39 .023
 40 .017
 41 .021
 42 .021
 43 .016
 44 .023
 45 .006
 46 .023
 47 .024
 48 .019
 49 .016

6 22

27

Web crawler: BFS-based Java implementation

 Queue<String> q = new Queue<String>();
 SET<String> visited = new SET<String>();

 String s = "http://www.princeton.edu";
 q.enqueue(s);
 visited.add(s);

 while (!q.isEmpty())
 {
 String v = q.dequeue();
 StdOut.println(v);
 In in = new In(v);
 String input = in.readAll();

 String regexp = "http://(\\w+\\.)*(\\w+)";
 Pattern pattern = Pattern.compile(regexp);
 Matcher matcher = pattern.matcher(input);
 while (matcher.find())
 {
 String w = matcher.group();
 if (!visited.contains(w))
 {
 visited.add(w);
 q.enqueue(w);
 }
 }
 }

read in raw html for next website in queue

use regular expression to find all URLs
in website of form http://xxx.yyy.zzz

if unvisited, mark as visited
and put on queue

start crawling from website s

queue of websites to crawl
set of visited websites

28

‣ digraph API
‣ digraph search
‣ transitive closure
‣ topological sort
‣ strong components

‣

Problem. Is there an undirected path between v and w ?
Goals. Linear preprocessing time, constant query time.

How difficult?

• Any COS 126 student could do it.

• Need to be a typical diligent COS 226 student.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.

Graph-processing challenge (revisited)

29

0-1
0-6
0-2
3-4
3-5
4-5

0

6

4

21

5

3

✓

Problem. Is there a directed path from v to w ?
Goals. Linear preprocessing time, constant query time.

How difficult?

• Any COS 126 student could do it.

• Need to be a typical diligent COS 226 student.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.

Digraph-processing challenge 1

30

0→1

0→6

0→2

3→4
3→2

5→4

5→0

3→5

2→1
6→4

3→1

0

6

4

21

5

3
can't do better than V2

(reduction from boolean matrix multiplication)

✓

31

Def. The transitive closure of a digraph G is another digraph with a directed
edge from v to w if there is a directed path from v to w in G.

Transitive closure

digraph G

transitive closure TC(G)

TC(G) is usually dense

digraph G is usually sparse

Digraph-processing challenge 1 (revised)

Problem. Is there a directed path from v to w ?
Goals. ~ V2 preprocessing time, constant query time.

How difficult?

• Any COS 126 student could do it.

• Need to be a typical diligent COS 226 student.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.

32

open research problem✓

0→1

0→6

0→2

3→4
3→2

5→4

5→0

3→5

2→1
6→4

3→1

0

6

4

21

5

3

Digraph-processing challenge 1 (revised again)

Problem. Is there a directed path from v to w ?
Goals. ~ V E preprocessing time, ~ V2 space, constant query time.

How difficult?

• Any COS 126 student could do it.

• Need to be a typical diligent COS 226 student.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.

33

Use DFS once for each vertex
to compute rows of transitive closure

0→1

0→6

0→2

3→4
3→2

5→4

5→0

3→5

2→1
6→4

3→1

0

6

4

21

5

3

✓

Use an array of DFSearcher objects, one for each row of transitive closure.

34

Transitive closure: Java implementation

public class TransitiveClosure
{
 private DFSearcher[] tc;

 public TransitiveClosure(Digraph G)
 {
 tc = new DFSearcher[G.V()];
 for (int v = 0; v < G.V(); v++)
 tc[v] = new DFSearcher(G, v);
 }

 public boolean reachable(int v, int w)
 { return tc[v].isReachable(w); }
}

is there a directed path
from v to w ?

array of DFSearcher objects

initialize array

35

‣ digraph API
‣ digraph search
‣ transitive closure
‣ topological sort
‣ strong components

Scheduling. Given a set of tasks to be completed with precedence
constraints, in what order should we schedule the tasks?

Graph model.

• Create a vertex v for each task.

• Create an edge v→w if task v must precede task w.

0. read programming assignment
1. download files
2. write code
3. attend precept
…
12. sleep

36

Digraph application: scheduling

tasks

precedence
constraint graph

feasible
schedule

37

Topological sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point left to right.

Fact. Digraph is a DAG iff no directed cycle.

Digraph-processing challenge 2a

Problem. Check that a digraph is a DAG; if so, find a topological order.
Goal. Linear time.

How difficult?

• Any COS 126 student could do it.

• Need to be a typical diligent COS 226 student.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.

38

use DFS

✓ 0→1

 0→6

 0→2

 0→5
 2→3

 4→9

 6→4

 6→9

 7→6
 8→7

 9→10

 9→11

 9→12

11→120 1 2 3 8 7 6 4 5 9 10 11 12

39

Topological sort in a DAG: Java implementation

public class TopologicalSorter
{
 private boolean[] marked;
 private Stack<Integer> sorted;

 public TopologicalSorter(Digraph G)
 {
 marked = new boolean[G.V()];
 sorted = new Stack<Integer>();
 for (int v = 0; v < G.V(); v++)
 if (!marked[v]) tsort(G, v);
 }

 private void tsort(Digraph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w]) tsort(G, w);
 sorted.push(v);
 }

 public Iterable<Integer> order()
 { return sorted; }
}

vertices in topological order

reverse DFS postorder

40

Topological sort in a DAG: trace

Visit means call tsort() and leave means return from tsort().

visit 0: 1 0 0 0 0 0 0 -
 visit 1: 1 1 0 0 0 0 0 -
 visit 4: 1 1 0 0 1 0 0 -
 leave 4: 1 1 0 0 1 0 0 4
 leave 1: 1 1 0 0 1 0 0 4 1
 visit 2: 1 1 1 0 1 0 0 4 1
 leave 2: 1 1 1 0 1 0 0 4 1 2
 visit 5: 1 1 1 0 1 1 0 4 1 2
 check 2: 1 1 1 0 1 1 0 4 1 2
 leave 5: 1 1 1 0 1 1 0 4 1 2 5
leave 0: 1 1 1 0 1 1 0 4 1 2 5 0
check 1: 1 1 1 0 1 1 0 4 1 2 5 0
check 2: 1 1 1 0 1 1 0 4 1 2 5 0
visit 3: 1 1 1 1 1 1 0 4 1 2 5 0
 check 2: 1 1 1 1 1 1 0 4 1 2 5 0
 check 4: 1 1 1 1 1 1 0 4 1 2 5 0
 check 5: 1 1 1 1 1 1 0 4 1 2 5 0
 visit 6: 1 1 1 1 1 1 1 4 1 2 5 0
 leave 6: 1 1 1 1 1 1 1 4 1 2 5 0 6
leave 3: 1 1 1 1 1 1 1 4 1 2 5 0 6 3
check 4: 1 1 1 1 1 1 0 4 1 2 5 0 6 3
check 5: 1 1 1 1 1 1 0 4 1 2 5 0 6 3
check 6: 1 1 1 1 1 1 0 4 1 2 5 0 6 3

marked[] sorted

0

1 2 5

4

3

6

3 6 0 5 2 1 4

0→1

0→6

0→2

3→4
3→2

5→4

5→0

3→5

2→1
6→4

3→1

0

1

4

52

6

3

41

Topological sort in a DAG: correctness proof

Proposition. If digraph is a DAG, algorithm yields a topological order.

Pf.

• Algorithm terminates in O(E + V) time since it's just a version of DFS.

• Consider any edge v→w. When tsort(G, v) is called,

- Case 1: tsort(G, w) has already been called and returned.
Thus, w will appear after v in topological order.

- Case 2: tsort(G, w) has not yet been called, so it will get called directly
or indirectly by tsort(G, v) and it will finish before tsort(G, v).
Thus, w will appear after v in topological order.

- Case 3: tsort(G, w) has already been called, but not returned. Then the
function call stack contains a directed path from w to v. Combining this
path with the edge v→w yields a directed cycle, contradicting DAG.

Digraph-processing challenge 2b

Problem. Given a digraph, is there a directed cycle?
Goal. Linear time.

How difficult?

• Any COS 126 student could do it.

• Need to be a typical diligent COS 226 student.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.

42

run DFS-based topological sort algorithm;
if it yields a topological sort, no directed cycle

(can modify code to find cycle)

✓ 0→1

 0→6

 0→2

 0→5
 2→3

 4→9

 6→4

 6→9

 7→6
 8→7

 9→10

 9→11

 9→12

11→120 1 2 3 8 7 6 4 5 9 10 11 12

43

Topological sort and cycle detection applications

• Causalities.

• Email loops.

• Compilation units.

• Class inheritance.

• Course prerequisites.

• Deadlocking detection.

• Precedence scheduling.

• Temporal dependencies.

• Pipeline of computing jobs.

• Check for symbolic link loop.

• Evaluate formula in spreadsheet.

44

Cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

public class A extends B
{
 ...
}

public class B extends C
{
 ...
}

public class C extends A
{
 ...
}

% javac A.java
A.java:1: cyclic inheritance
involving A
public class A extends B { }
 ^
1 error

Microsoft Excel does cycle detection (and has a circular reference toolbar!)

45

Cycle detection application: spreadsheet recalculation

46

Cycle detection application: symbolic links

The Linux file system does not do cycle detection.

% ln -s a.txt b.txt
% ln -s b.txt c.txt
% ln -s c.txt a.txt

% more a.txt
a.txt: Too many levels of symbolic links

47

Topological sort application: precedence scheduling

Precedence scheduling.

• Task v takes time[v] units of time.

• Can work on jobs in parallel.

• Precedence constraints: must finish task v
before beginning task w.

• Goal: finish each task as soon as possible.

Ex.

index task time prereqs

A begin 0 -

B framing 4 A

C roofing 2 B

D siding 6 B

E windows 5 D

F plumbing 3 D

G electricity 4 C, E

H paint 6 C, E

I finish 0 F, H

4

6

2

5

3

4 60 0

F

E

D

IHGCBA

Program Evaluation and Review Technique / Critical Path Method

48

PERT/CPM algorithm.

• Compute topological order of vertices.

• Initialize fin[v] = time[v] for all vertices v.

• Consider vertices v in topologically sorted order.
- for each edge v→w, set fin[w] = max(fin[w], fin[v] + time[w])

4

6

2

5

3

4 60 0

F

E

D

0

IHGCBA

4 2 4 6 0

6
3

5

Program Evaluation and Review Technique / Critical Path Method

49

PERT/CPM algorithm.

• Compute topological order of vertices.

• Initialize fin[v] = time[v] for all vertices v.

• Consider vertices v in topologically sorted order.
- for each edge v→w, set fin[w] = max(fin[w], fin[v] + time[w])

4

6

2

5

3

4 60 0

F

E

D

0

IHGCBA

4 2 4 6 0

6
3

5

4

Program Evaluation and Review Technique / Critical Path Method

50

PERT/CPM algorithm.

• Compute topological order of vertices.

• Initialize fin[v] = time[v] for all vertices v.

• Consider vertices v in topologically sorted order.
- for each edge v→w, set fin[w] = max(fin[w], fin[v] + time[w])

4

6

2

5

3

4 60 0

F

E

D

0

IHGCBA

4 2 4 6 0

6
3

5

4

10

6

Program Evaluation and Review Technique / Critical Path Method

51

PERT/CPM algorithm.

• Compute topological order of vertices.

• Initialize fin[v] = time[v] for all vertices v.

• Consider vertices v in topologically sorted order.
- for each edge v→w, set fin[w] = max(fin[w], fin[v] + time[w])

4

6

2

5

3

4 60 0

F

E

D

0

IHGCBA

4 2 4 6 0

6
3

5

4

10

6 10 12

Program Evaluation and Review Technique / Critical Path Method

52

PERT/CPM algorithm.

• Compute topological order of vertices.

• Initialize fin[v] = time[v] for all vertices v.

• Consider vertices v in topologically sorted order.
- for each edge v→w, set fin[w] = max(fin[w], fin[v] + time[w])

4

6

2

5

3

4 60 0

F

E

D

0

IHGCBA

4 2 4 6 0

6
3

5

4

10

6 10 12

13

15

Program Evaluation and Review Technique / Critical Path Method

53

PERT/CPM algorithm.

• Compute topological order of vertices.

• Initialize fin[v] = time[v] for all vertices v.

• Consider vertices v in topologically sorted order.
- for each edge v→w, set fin[w] = max(fin[w], fin[v] + time[w])

4

6

2

5

3

4 60 0

F

E

D

0

IHGCBA

4 2 4 6 0

6
3

5

4

10

6 10 12

13

15

19 21

Program Evaluation and Review Technique / Critical Path Method

54

PERT/CPM algorithm.

• Compute topological order of vertices.

• Initialize fin[v] = time[v] for all vertices v.

• Consider vertices v in topologically sorted order.
- for each edge v→w, set fin[w] = max(fin[w], fin[v] + time[w])

4

6

2

5

3

4 60 0

F

E

D

0

IHGCBA

4 2 4 6 0

6
3

5

4

10

6 10 12

13

15

19 21
13

Program Evaluation and Review Technique / Critical Path Method

55

PERT/CPM algorithm.

• Compute topological order of vertices.

• Initialize fin[v] = time[v] for all vertices v.

• Consider vertices v in topologically sorted order.
- for each edge v→w, set fin[w] = max(fin[w], fin[v] + time[w])

4

6

2

5

3

4 60 0

F

E

D

0

IHGCBA

4 2 4 6 0

6
3

5

4

10

6 10 12

13

15

19 21
1325

Program Evaluation and Review Technique / Critical Path Method

56

PERT/CPM algorithm.

• Compute topological order of vertices.

• Initialize fin[v] = time[v] for all vertices v.

• Consider vertices v in topologically sorted order.
- for each edge v→w, set fin[w] = max(fin[w], fin[v] + time[w])

4

6

2

5

3

4 60 0

F

E

D

0

IHGCBA

4 2 4 6 0

6
3

5

4

10

6 10 12

13

15

19 21
1325
25

Program Evaluation and Review Technique / Critical Path Method

57

PERT/CPM algorithm.

• Compute topological order of vertices.

• Initialize fin[v] = time[v] for all vertices v.

• Consider vertices v in topologically sorted order.
- for each edge v→w, set fin[w] = max(fin[w], fin[v] + time[w])

4

6

2

5

3

4 60 0

F

E

D

0

IHGCBA

4 2 4 6 0

6
3

5

4

10

6 10 12

13

15

19 21
1325
25

Program Evaluation and Review Technique / Critical Path Method

58

PERT/CPM algorithm.

• Compute topological order of vertices.

• Initialize fin[v] = time[v] for all vertices v.

• Consider vertices v in topologically sorted order.
- for each edge v→w, set fin[w] = max(fin[w], fin[v] + time[w])

4

6

2

5

3

4 60 0

F

E

D

0

IHGCBA

4 2 4 6 0

6
3

5

4

10

6 10 12

13

15

19 21
1325
25

Critical path. Longest path from source to sink.

To compute:

• Remember vertex that set value (parent-link).

• Work backwards from sink.

Program Evaluation and Review Technique / Critical Path Method

59

index time prereqs finish

A 0 - 0

B 4 A 4

C 2 B 6

D 6 B 10

E 5 D 15

F 3 D 13

G 4 C, E 19

H 6 C, E 25

I 0 F, H 25

4

6

2

5

3

4 60 0

F

E

D

0

IHGCBA

4 6 19 25 25

10
13

15

60

PERT/CPM: Java implementation

 double[] fin = new double[G.V()];
 for (int v = 0; v < G.V(); v++)
 fin[v] = time[v];

 TopologicalSorter ts = new TopologicalSorter(G);
 for (int v : ts.order())
 for (int w : G.adj(v))
 fin[w] = Math.max(fin[w], fin[v] + time[w]);

fin[v] = finishing time of task v

apply updates to vertices
in topological order

G = DAG of precedence constraints

61

‣ digraph API
‣ digraph search
‣ transitive closure
‣ topological sort
‣ strong components

Strongly connected components

Def. Vertices v and w are strongly connected if there is a directed path
from v to w and one from w to v.

Def. A strong component is a maximal subset of strongly connected vertices.

62

Problem. Are v and w strongly connected?
Goal. Linear preprocessing time, constant query time.

How difficult?

• Any COS 126 student could do it.

• Need to be a typical diligent COS 226 student.

• Hire an expert (or a COS 423 student).

• Intractable.

• No one knows.

• Impossible.

Digraph-processing challenge 3

63

implementation: use DFS twice to find
strong components (see textbook)

correctness proof 5 strong components

✓

✓

0
6

4

21

5

3

7

12

109

11

8

64

Ecological food web graph

Vertex = species.
Edge: from producer to consumer.

Strong component. Subset of species with common energy flow.

65

Software module dependency graph

Vertex = software module.
Edge: from module to dependency.

Strong component. Subset of mutually interacting modules.
Approach 1. Package strong components together.
Approach 2. Use to improve design!

Internet explorerFirefox

Strong components algorithms: brief history

1960s: Core OR problem.

• Widely studied; some practical algorithms.

• Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).

• Classic algorithm.

• Level of difficulty: CS226++.

• Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju).

• Forgot notes for teaching algorithms class; developed alg in order to teach it!

• Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms (Gabow, Mehlhorn).

• Gabow: fixed old OR algorithm.

• Mehlhorn: needed one-pass algorithm for LEDA.
66

67

Simple (but mysterious) algorithm for computing strong components

• Run DFS on GR and compute postorder.

• Run DFS on G, considering vertices in reverse postorder.

Proposition. Trees in second DFS are strong components. (!)
Pf. [see COS 423]

Kosaraju's algorithm

G

GR

Digraph-processing summary: algorithms of the day

68

single-source
reachability DFS

transitive closure DFS
(from each vertex)

topological sort
(DAG) DFS

strong components Kosaraju
DFS (twice)

0
6

4

21

5

3

7

12

109

11

8

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 26, 2010 8:00:14 AM

4.3 Minimum Spanning Trees

Reference: Algorithms in Java, 3rd edition, Part 5, Chapter 20

‣ weighted graph API
‣ cycles and cuts
‣ Kruskal’s algorithm
‣ Prim’s algorithm
‣ advanced topics

2

Given. Undirected graph G with positive edge weights (connected).
Def. A spanning tree of G is a subgraph T that is connected and acyclic.
Goal. Find a min weight spanning tree.

Minimum spanning tree

graph G

23

10

21

14

24

 16

4

18
9

7

11

8

5

6

3

Given. Undirected graph G with positive edge weights (connected).
Def. A spanning tree of G is a subgraph T that is connected and acyclic.
Goal. Find a min weight spanning tree.

Minimum spanning tree

not connected

23

10

21

14

24

 16

4

18
9

7

11

8

5

6

4

Given. Undirected graph G with positive edge weights (connected).
Def. A spanning tree of G is a subgraph T that is connected and acyclic.
Goal. Find a min weight spanning tree.

Minimum spanning tree

23

10

21

14

24

 16

4

18
9

7

11

8

5

6

not acyclic

5

Given. Undirected graph G with positive edge weights (connected).
Def. A spanning tree of G is a subgraph T that is connected and acyclic.
Goal. Find a min weight spanning tree.

Brute force. Try all spanning trees.

Minimum spanning tree

spanning tree T: cost = 50 = 4 + 6 + 8 + 5 + 11 + 9 + 7

23

10

21

14

24

 16

4

18
9

7

11

8

5

6

6

MST is fundamental problem with diverse applications.

• Cluster analysis.

• Max bottleneck paths.

• Real-time face verification.

• LDPC codes for error correction.

• Image registration with Renyi entropy.

• Find road networks in satellite and aerial imagery.

• Reducing data storage in sequencing amino acids in a protein.

• Model locality of particle interactions in turbulent fluid flows.

• Autoconfig protocol for Ethernet bridging to avoid cycles in a network.

• Network design (communication, electrical, hydraulic, cable, computer, road).

• Approximation algorithms for NP-hard problems (e.g., TSP, Steiner tree).

Applications

http://www.ics.uci.edu/~eppstein/gina/mst.html

7

MST of bicycle routes in North Seattle

http://www.flickr.com/photos/ewedistrict/21980840

Network design

8

MST describes arrangement of nuclei in the epithelium for cancer research

http://www.bccrc.ca/ci/ta01_archlevel.html

Medical image processing

9

MST of tissue relationships measured by gene expression correlation coefficient

http://riodb.ibase.aist.go.jp/CELLPEDIA

Genetic research

10

Kruskal's algorithm. Consider edges in ascending order of weight.
Add to T the next edge unless doing so would create a cycle.

Prim's algorithm. Start with any vertex s and greedily grow a tree T from s.
At each step, add to T the edge of min weight with exactly one endpoint in T.

Proposition. Both greedy algorithms compute MST.

Two greedy algorithms

“ Greed is good. Greed is right. Greed works. Greed
 clarifies, cuts through, and captures the essence of
 the evolutionary spirit. ” — Gordon Gecko

11

‣ weighted graph API
‣ cycles and cuts
‣ Kruskal’s algorithm
‣ Prim’s algorithm
‣ advanced topics

12

Edge API

Edge abstraction needed for weighted edges.

 public class Edge implements Comparable<Edge> public class Edge implements Comparable<Edge> public class Edge implements Comparable<Edge>

Edge(int v, int w, double weight) create a weighted edge v-w

int either() either endpoint

int other(int v) the endpoint that's not v

double weight() the weight

Comparator<Edge> ByWeight() compare by edge weight

v weight w

13

Conventions.

• Allow self-loops.

• Allow parallel edges (provided they have different weights).

Weighted graph API

 public class WeightedGraph public class WeightedGraph

WeightedGraph(int V)WeightedGraph(int V) create an empty graph with V vertices

WeightedGraph(In in)WeightedGraph(In in) create a graph from input stream

void addEdge(Edge e)addEdge(Edge e) add edge e

void removeEdge(Edge e)removeEdge(Edge e) delete edge e

Iterable<Edge> adj(int v)adj(int v) return an iterator over edges incident to v

int V()V() return number of vertices

14

Weighted graph API

iterate through all edges
(once in each direction)

for (int v = 0; v < G.V(); v++)
{
 for (Edge e : G.adj(v))
 {
 int w = e.other(v);
 // process edge v-w
 }
}

 public class WeightedGraph public class WeightedGraph

WeightedGraph(int V)WeightedGraph(int V) create an empty graph with V vertices

WeightedGraph(In in)WeightedGraph(In in) create a graph from input stream

void addEdge(Edge e)addEdge(Edge e) add edge e

void removeEdge(Edge e)removeEdge(Edge e) delete edge e

Iterable<Edge> adj(int v)adj(int v) return an iterator over edges incident to v

int V()V() return number of vertices

15

public class WeightedGraph
{
 private final int V;
 private final SET<Edge>[] adj;

 public WeightedGraph(int V)
 {
 this.V = V;
 adj = (SET<Edge>[]) new SET[V];
 for (int v = 0; v < V; v++)
 adj[v] = new SET<Edge>();
 }

 public void addEdge(Edge e)
 {
 int v = e.either(), w = e.other(v);
 adj[v].add(e);
 adj[w].add(e);
 }

 public Iterable<Edge> adj(int v)
 { return adj[v]; }
}

Weighted graph: adjacency-set implementation

add edge to both
adjacency sets

constructor

same as Graph, but
adjacency sets of Edges
instead of integers

16

public class Edge implements Comparable<Edge>
{
 private final int v, w;
 private final double weight;

 public Edge(int v, int w, double weight)
 {
 this.v = Math.min(v, w);
 this.w = Math.max(v, w);
 this.weight = weight;
 }

 public int either()
 { return v; }

 public int other(int vertex)
 {
 if (vertex == v) return w;
 else return v;
 }

 public int weight()
 { return weight; }

 // See next slide for compare methods.
}

Weighted edge: Java implementation

constructor

either endpoint

other endpoint

weight of edge

17

Weighted edge: Java implementation (cont)

 public static class ByWeight implements Comparator<Edge>
 {
 public int compare(Edge e, Edge f)
 {
 if (e.weight < f.weight) return -1;
 if (e.weight > f.weight) return +1;
 return 0;
 }
 }

 public int compareTo(Edge that)
 {
 if (this.v < that.v) return -1;
 if (this.v > that.v) return +1;
 if (this.w < that.w) return -1;
 if (this.w > that.w) return +1;
 if (this.weight < that.weight) return -1;
 if (this.weight > that.weight) return +1;
 return 0;
 }

lexicographic order,
breaking ties by weight
(for use in a symbol table)

order edges by weight
(for sorting in Kruskal)

18

‣ weighted graph API
‣ cycles and cuts
‣ Kruskal’s algorithm
‣ Prim’s algorithm
‣ advanced topics

19

Simplifying assumption. All edge weights we are distinct.

Cycle property. Let C be any cycle, and let f be the max weight edge
belonging to C. Then the MST T* does not contain f.

Cut property. Let S be any subset of vertices, and let e be the min weight
edge with exactly one endpoint in S. Then the MST contains e.

f
cycle C

cut S

e is in the MST T*

e

f is not in the MST T*

Cycle and cut properties

20

Simplifying assumption. All edge weights we are distinct.

Cycle property. Let C be any cycle, and let f be the max weight edge
belonging to C. Then the MST T* does not contain f.

Pf. [by contradiction]

• Suppose f belongs to T*. Let's see what happens.

• Deleting f from T* disconnects T*. Let S be one side of the cut.

• Some other edge in C, say e, has exactly one endpoint in S.

• T = T* ∪ { e } − { f } is also a spanning tree.

• Since we < wf, weight(T) < weight(T*).

• Contradicts minimality of T*. ▪
f

e

S

Cycle property: correctness proof

 MST T*

cycle C

21

Simplifying assumption. All edge weights we are distinct.

Cut property. Let S be any subset of vertices, and let e be the min weight
edge with exactly one endpoint in S. Then the MST T* contains e.

Pf. [by contradiction]

• Suppose e does not belong to T*. Let's see what happens.

• Adding e to T* creates a cycle C in T*.

• Some other edge in C, say f, has exactly one endpoint in S.

• T = T* ∪ { e } − { f } is also a spanning tree.

• Since we < wf, weight(T) < weight(T*).

• Contradicts minimality of T*. ▪

Cut property: correctness proof

f

e

 MST T*

cycle C

S

22

‣ weighted graph API
‣ cycles and cuts
‣ Kruskal’s algorithm
‣ Prim’s algorithm
‣ advanced topics

23

Kruskal's algorithm. [Kruskal 1956] Consider edges in ascending order of weight.
Add to T the next edge unless doing so would create a cycle.

3-5 1-7 6-7

0-2 0-7 0-1 3-4 4-5 4-7

3-5 0.18

1-7 0.21

6-7 0.25

0-2 0.29

0-7 0.31

0-1 0.32

3-4 0.34

4-5 0.40

4-7 0.46

0-6 0.51

4-6 0.51

0-5 0.60

Kruskal's algorithm

Proposition. Kruskal's algorithm computes the MST.

Pf. [Case 1] Suppose that adding e to T creates a cycle C.

• Edge e is the max weight edge in C.

• Edge e is not in the MST (cycle property).

24

C

e

Kruskal's algorithm: correctness proof

why max weight?

Proposition. Kruskal's algorithm computes the MST.

Pf. [Case 2] Suppose that adding e = v-w to T does not create a cycle.

• Let S be the vertices in v’s connected component.

• Vertex w is not in S.

• Edge e is the min weight edge with exactly one endpoint in S.

• Edge e is in the MST (cut property). ▪

25

v

e

Kruskal's algorithm: correctness proof

S

w

why min weight?

Problem. Check if adding an edge v-w to T creates a cycle.

How difficult?

• O(E + V) time.

• O(V) time.

• O(log V) time.

• O(log* V) time.

• Constant time.

26

Kruskal implementation challenge

run DFS from v, check if w is reachable
(T has at most V-1 edges)

use the union-find data structure !

w
e

S

v

27

Problem. Check if adding an edge v-w to T creates a cycle.

Efficient solution. Use the union-find data structure.

• Maintain a set for each connected component in T.

• If v and w are in same component, then adding v-w creates a cycle.

• To add v-w to T, merge sets containing v and w.

Case 2: add v-w to T and merge setsCase 1: adding v-w creates a cycle

Kruskal's algorithm implementation

v w

w

v

sort edges by weight

28

Kruskal's algorithm: Java implementation

public class Kruskal
{
 private SET<Edge> mst = new SET<Edge>();

 public Kruskal(WeightedGraph G)
 {
 Edge[] edges = G.edges();
 Arrays.sort(edges, new Edge.ByWeight());

 UnionFind uf = new UnionFind(G.V());
 for (Edge e : edges)
 {
 int v = e.either(), w = e.other(v);
 if (!uf.find(v, w))
 {
 uf.unite(v, w);
 mst.add(e);
 }
 }
 }

 public Iterable<Edge> mst()
 { return mst; }
}

greedily add edges to MST

get all edges in graph

29

Proposition. Kruskal's algorithm computes MST in O(E log E) time.

Pf.

Improvements.

• Stop as soon as there are V-1 edges.

• If edges are already sorted, time is proportional to E log* V.

† amortized bound using weighted quick union with path compression

Kruskal's algorithm running time

recall: log* V ≤ 5 in this universe

operation frequency time per op

sort 1 E log E

union V log* V †

find E log* V †

30

Kruskal's algorithm example

25%

50%

75%

100%

31

‣ weighted graph API
‣ cycles and cuts
‣ Kruskal’s algorithm
‣ Prim’s algorithm
‣ advanced topics

Prim's algorithm. [Jarník 1930, Dijkstra 1957, Prim 1959]
Start with vertex 0 and greedily grow tree T. At each step,
add to T the edge of min weight with exactly one endpoint in T.

32

0-1 0.32

0-2 0.29

0-5 0.60

0-6 0.51

0-7 0.31

1-7 0.21

3-4 0.34

3-5 0.18

4-5 0.40

4-6 0.51

4-7 0.46

6-7 0.25

Prim's algorithm example

0-2 0-7 0-1
0-6 0-5

0-7 0-1 0-6 0-5 7-1 7-6 0-1
7-4 0-6 0-5

7-6 7-4 0-6 0-5

7-4 6-4 0-5 4-3 4-5 0-5 3-5 4-5 0-5

edges with exactly one endpoint in T, sorted by weight

Proposition. Prim's algorithm computes the MST.
Pf.

• Let S be the subset of vertices in current tree T.

• Prim adds the min weight edge e with exactly one endpoint in S.

• Edge e is in the MST (cut property). ▪

33

Prim's algorithm correctness proof

eS

34

Problem. Find min weight edge with exactly one endpoint in S.

How difficult?

• O(E) time.

• O(V) time.

• O(log E) time.

• O(log* E) time.

• Constant time.

Prim implementation challenge

try all edges

use a priority queue !

eS

35

Problem. Find min weight edge with exactly one endpoint in S.

Efficient solution. Maintain a PQ of edges with (at least) one endpoint in S.

• Delete min to determine next edge e = v-w to add to T.

• Disregard if both v and w are in S.

• Let w be vertex not in S:

- add to PQ any edge incident to w (assuming other endpoint not in S)
- add w to S

Prim's algorithm implementation (lazy)

S e

v

w

Use PQ: key = edge.
(lazy version leaves some obsolete entries on the PQ)

36

0-1 0.32

0-2 0.29

0-5 0.60

0-6 0.51

0-7 0.31

1-7 0.21

3-4 0.34

3-5 0.18

4-5 0.40

4-6 0.51

4-7 0.46

6-7 0.25

Prim's algorithm example: lazy implementation

0-2 0-7 0-1
0-6 0-5

0-7 0-1 0-6 0-5 7-1 7-6 0-1
7-4 0-6 0-5

7-6 0-1 7-4
0-6 0-5

0-1 7-4 0-6
6-4 0-5

4-3 4-5 0-6
6-4 0-5

3-5 4-5 0-6
6-4 0-5

black = PQ edge with exactly one endpoint in S, sorted by weight
gray = PQ edge with both endpoints in S (obsolete)

4-5 0-6 6-4 0-5

public class LazyPrim
{
 private boolean[] scanned; // vertices in MST
 private Queue<Edge> mst; // edges in the MST
 private MinPQ<Edge> pq // the priority queue of edges

 public LazyPrim(WeightedGraph G)
 {
 scanned = new boolean[G.V()];
 mst = new Queue<Edge>();
 pq = new MinPQ<Edge>(Edge.ByWeight());
 prim(G, 0);
 }

 public Iterable<Edge> mst()
 { return mst; }

 // See next slide for prim() implementation.
}

37

Lazy implementation of Prim's algorithm

comparator by edge weight
(instead of by lexicographic order)

 private void scan(WeightedGraph G, int v)
 {
 scanned[v] = true;
 for (Edge e : G.adj(v))
 if (!scanned[e.other(v)])
 pq.insert(e);
 }

 private void prim(WeightedGraph G, int s)
 {
 scan(G, s);
 while (!pq.isEmpty())
 {
 Edge e = pq.delMin();
 int v = e.either(), w = e.other(v);
 if (scanned[v] && scanned[w]) continue;
 mst.enqueue(e);
 if (!scanned[v]) scan(G, v);
 if (!scanned[w]) scan(G, w);
 }
 }

38

Lazy implementation of Prim's algorithm

for each edge v-w, add to
PQ if w not already in S

repeatedly delete the
min weight edge v-w from PQ

ignore if both endpoints in S

add e to MST and scan v and w

39

Proposition. Prim's algorithm computes MST in O(E log E) time.
Pf.

Improvements.

• Stop when MST has V-1 edges.

• Eagerly eliminate obsolete edges from PQ.

• Maintain on PQ at most one edge incident to each vertex v not in T
 ⇒ at most V edges on PQ.

• Use fancier priority queue: best in theory yields O(E + V log V).

Prim's algorithm running time

operation frequency time per op

delete min E E log E

insert E E log E

40

Prim's algorithm example

25%

50%

75%

100%

41

Simplifying assumption. All edge weights are distinct.

Approach 1. Introduce tie-breaking rule for compare() in ByWeight.

Approach 2. Prim and Kruskal still find MST if equal weights!
(only our proof of correctness fails)

public int compare(Edge e, Edge f)
{
 if (e.weight < f.weight) return -1;
 if (e.weight > f.weight) return +1;
 if (e.v < f.v) return -1;
 if (e.v > f.v) return +1;
 if (e.w < f.w) return -1;
 if (e.w > f.w) return +1;
 return 0;
}

Removing the distinct edge weight assumption

return e.compareTo(f);

42

‣ weighted graph API
‣ cycles and cuts
‣ Kruskal’s algorithm
‣ Prim’s algorithm
‣ advanced topics

Remark. Linear-time randomized MST algorithm (Karger-Klein-Tarjan 1995).

43

deterministic compare-based MST algorithms

Does a linear-time MST algorithm exist?

year worst case discovered by

1975 E log log V Yao

1976 E log log V Cheriton-Tarjan

1984 E log* V, E + V log V Fredman-Tarjan

1986 E log (log* V) Gabow-Galil-Spencer-Tarjan

1997 E α(V) log α(V) Chazelle

2000 E α(V) Chazelle

2002 optimal Pettie-Ramachandran

20xx E ???

44

Given N points in the plane, find MST connecting them, where the distances
between point pairs are their Euclidean distances.

Brute force. Compute ~ N2/2 distances and run Prim's algorithm.
Ingenuity. Exploit geometry and do it in ~ c N lg N.

Euclidean MST

45

k-clustering. Divide a set of objects classify into k coherent groups.
Distance function. Numeric value specifying "closeness" of two objects.

Goal. Divide into clusters so that objects in different clusters are far apart.

Applications.

• Routing in mobile ad hoc networks.

• Document categorization for web search.

• Similarity searching in medical image databases.

• Skycat: cluster 109 sky objects into stars, quasars, galaxies.

outbreak of cholera deaths in London in 1850s (Nina Mishra)

Scientific application: clustering

k-clustering. Divide a set of objects classify into k coherent groups.
Distance function. Numeric value specifying "closeness" of two objects.

Single link. Distance between two clusters equals the distance
between the two closest objects (one in each cluster).

Single-link clustering. Given an integer k, find a k-clustering that maximizes
the distance between two closest clusters.

46

Single-link clustering

distance between
two closest clusters

4-clustering

distance between two clusters

47

“Well-known” algorithm for single-link clustering:

• Form V clusters of one object each.

• Find the closest pair of objects such that each object is in a different
cluster, and merge the two clusters.

• Repeat until there are exactly k clusters.

Observation. This is Kruskal's algorithm
(stop when k connected components).

Alternate solution. Run Prim's algorithm and delete k-1 max weight edges.

Single-link clustering algorithm

48

Dendrogram. Tree diagram that illustrates arrangement of clusters.

Dendrogram

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html

49

Dendrogram. Tree diagram that illustrates arrangement of clusters.

Dendrogram

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html

50

Dendrogram. Tree diagram that illustrates arrangement of clusters.

Dendrogram

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html

51

Dendrogram. Tree diagram that illustrates arrangement of clusters.

Dendrogram

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html

52

Dendrogram. Tree diagram that illustrates arrangement of clusters.

Dendrogram

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html

53

Dendrogram. Tree diagram that illustrates arrangement of clusters.

Dendrogram

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html

54

Tumors in similar tissues cluster together.

Reference: Botstein & Brown group

Gene 1

Gene n

gene expressed
gene not expressed

Dendrogram of cancers in human

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 26, 2010 8:07:50 AM

4.4 Shortest Paths

References: Algorithms in Java, 3rd edition, Chapter 21

‣ Dijkstra's algorithm
‣ implementation
‣ negative weights

Google maps

2

Given a weighted digraph G, find the shortest directed path from s to t.

3

Shortest paths in a weighted digraph

shortest path: s→6→3→5→t

cost: 14 + 18 + 2 + 16 = 50

s

3

t

2

6

1

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

0

9 32

14

15 50

34

45

4

Shortest path versions

Which vertices?

• From one vertex to another.

• From one vertex to every other.

• Between all pairs of vertices.

Restrictions on edge weights?

• Nonnegative weights.

• Arbitrary weights.

• Euclidean weights.

4

5

Early history of shortest paths algorithms

Shimbel (1955). Information networks.

Ford (1956). RAND, economics of transportation.

Leyzorek, Gray, Johnson, Ladew, Meaker, Petry, Seitz (1957).
Combat Development Dept. of the Army Electronic Proving Ground.

Dantzig (1958). Simplex method for linear programming.

Bellman (1958). Dynamic programming.

Moore (1959). Routing long-distance telephone calls for Bell Labs.

Dijkstra (1959). Simpler and faster version of Ford's algorithm.

• Maps.

• Robot navigation.

• Texture mapping.

• Typesetting in TeX.

• Urban traffic planning.

• Optimal pipelining of VLSI chip.

• Telemarketer operator scheduling.

• Subroutine in advanced algorithms.

• Routing of telecommunications messages.

• Approximating piecewise linear functions.

• Network routing protocols (OSPF, BGP, RIP).

• Exploiting arbitrage opportunities in currency exchange.

• Optimal truck routing through given traffic congestion pattern.

6

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

Shortest path applications

7

‣ Dijkstra's algorithm
‣ implementation
‣ negative weights

8

Edsger W. Dijkstra: select quote

Edger Dijkstra
Turing award 1972

“ The question of whether computers can think is like the question
 of whether submarines can swim. ”

“ Do only what only you can do. ”

“ In their capacity as a tool, computers will be but a ripple on the
 surface of our culture. In their capacity as intellectual challenge,
 they are without precedent in the cultural history of mankind. ”

“ The use of COBOL cripples the mind; its teaching should,
 therefore, be regarded as a criminal offence. ”

“ APL is a mistake, carried through to perfection. It is the
 language of the future for the programming techniques
 of the past: it creates a new generation of coding bums. ”

9

Single-source shortest-paths

Input. Weighted digraph G, source vertex s.
Goal. Find shortest path from s to every other vertex.
Observation. Use parent-link representation to store shortest path tree.

0

3

7

2

6

1

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

0

9 32

14

15 50

34

45

0 1 2 3 4 5 6 7

dist[v]

pred[v]

0 15 9 32 45 34 14 50

- 0→1 0→2 6→3 5→4 3→5 0→6 5→7

source s

4

• Initialize S to s, dist[s] to 0.

• Repeat until S contains all vertices connected to s:
- find edge e with v in S and w not in S that minimizes dist[v] + e.weight().

10

Dijkstra's algorithm

s

w

v

dist[v]

S

e

• Initialize S to s, dist[s] to 0.

• Repeat until S contains all vertices connected to s:
- find edge e with v in S and w not in S that minimizes dist[v] + e.weight().

- set dist[w] = dist[v] + e.weight() and pred[w] = e
- add w to S

11

Dijkstra's algorithm

s

w

v

dist[v]

S

e

dist[w] = dist[v] + e.weight();
pred[w] = e;

12

Dijkstra’s algorithm example

0→1 .41

0→5 .29

1→2 .51

1→4 .32

2→3 .50

3→0 .45

3→5 .38

4→2 .32

4→3 .36

5→1 .29

5→4 .21

0
1

3 2

5

4

4→2 (.82 = .50 + .32)
4→3 (.86 = .50 + .36)
1→2 (.92)

0
1

3 2

5

4

4→3 (0.86)
2→3 (1.32 = .82 + .50)

0
1

3 2

5

4

1

3 2

5

4

0→5 (.29)
0→1 (.41)

0
1

3 2

5

4

0→1 (.41)
5→4 (.50 = .29 + .21)
5→1 (.58 = .29 + .29)

0

edge with v in S and w not in S

2

4

5→4 (.50)
1→4 (.73 = .41 + .32)
1→2 (.92 = .41 + .51)

0
1

5

3

edge in shortest path tree

Invariant. For v in S, dist[v] is the length of the shortest path from s to v.

Pf. (by induction on |S|)

• Let w be next vertex added to S.

• Let P* be the s ↝ w path through v.

• Consider any other s ↝ w path P, and let x be first node on path outside S.

• P is already as long as P* as soon as it reaches x by greedy choice.

• Thus, dist[w] is the length of the shortest path from s to w.

13

Dijkstra's algorithm: correctness proof

P

v

s

x

w

S P*

Remark. Dijkstra examines vertices in increasing distance from source.

14

Shortest path trees

50%

75% 100%

25%

15

‣ Dijkstra's algorithm
‣ implementation
‣ negative weights

16

Weighted directed graph API

public class DirectedEdge implements Comparable<DirectedEdge>public class DirectedEdge implements Comparable<DirectedEdge>public class DirectedEdge implements Comparable<DirectedEdge>

DirectedEdge(int v, int w, double weight) create a weighted edge v→w

int from() vertex v

int to() vertex w

double weight() the weight

public class WeightedDigraphpublic class WeightedDigraph weighted digraph data typeweighted digraph data type

WeightedDigraph(int V)WeightedDigraph(int V) create an empty digraph with V vertices

WeightedDigraph(In in)WeightedDigraph(In in) create a digraph from input stream

void addEdge(DirectedEdge e)addEdge(DirectedEdge e) add a weighted edge from v to w

Iterable<DirectedEdge> adj(int v)adj(int v) return an iterator over edges leaving v

int V()V() return number of vertices

17

public class WeightedDigraph
{
 private final int V;
 private final SET<Edge>[] adj;

 public WeightedDigraph(int V)
 {
 this.V = V;
 adj = (SET<DirectedEdge>[]) new SET[V];
 for (int v = 0; v < V; v++)
 adj[v] = new SET<DirectedEdge>();
 }

 public void addEdge(DirectedEdge e)
 {
 int v = e.from();
 adj[v].add(e);
 }

 public Iterable<DirectedEdge> adj(int v)
 { return adj[v]; }

 public int V()
 { return V; }
}

Weighted digraph: adjacency-set implementation in Java

same as weighted undirected
graph, but only add edge to
v's adjacency set

18

public class DirectedEdge implements Comparable<DirectedEdge>
{
 private final int v, w;
 private final double weight;

 public DirectedEdge(int v, int w, double weight)
 {
 this.v = v;
 this.w = w;
 this.weight = weight;
 }

 public int from() { return v; }
 public int to() { return w; }
 public int weight() { return weight; }

 public int compareTo(DirectedEdge that)
 {
 if (this.v < that.v) return -1;
 if (this.v > that.v) return +1;
 if (this.w < that.w) return -1;
 if (this.w > that.w) return +1;
 if (this.weight < that.weight) return -1;
 if (this.weight > that.weight) return +1;
 return 0;
 }
}

Weighted directed edge: implementation in Java

same as Edge, except
from() and to() replace
either() and other()

for use in a symbol table
(allow parallel edges with
different weights)

19

Shortest path data type

Design pattern.

• Dijkstra class is a WeightedDigraph client.

• Client query methods return distance and path iterator.

 public class Dijkstra public class Dijkstra

 Dijkstra(WeightedDigraph G, int s) shortest path from s in graph G

 double distanceTo(int v) length of shortest path from s to v

Iterable <DirectedEdge> path(int v) shortest path from s to v

In in = new In("network.txt");
WeightedDigraph G = new WeightedDigraph(in);
int s = 0, t = G.V() - 1;
Dijktra dijkstra = new Dijkstra(G, s);
StdOut.println("distance = " + dijkstra.distanceTo(t));
for (DirectedEdge e : dijkstra.path(t))
 StdOut.println(e);

20

Find edge e with v in S and w not in S that minimizes dist[v] + e.weight().

How difficult?

• Intractable.

• O(E) time.

• O(V) time.

• O(log E) time.

• O(log* E) time.

• Constant time.

Dijkstra implementation challenge

try all edges

Dijkstra with a binary heap

s

w

v

dist[v]

S

e

21

Lazy Dijkstra’s algorithm example

0→1 .41

0→5 .29

1→2 .51

1→4 .32

2→3 .50

3→0 .45

3→5 .38

4→2 .32

4→3 .36

5→1 .29

5→4 .21

0
1

3 2

5

4

1→4 (.73)
4→2 (.82 = .50 + .32)
4→3 (.86 = .50 + .36)
1→2 (.92)

0
1

3 2

5

4

4→3 (0.86)
1→2 (.92)
2→3 (1.32 = .82 + .50)

1

3 2

5

4

0→5 (.29)
0→1 (.41)

0
1

3 2

5

4

0→1 (.41)
5→4 (.50 = .29 + .21)
5→1 (.58 = .29 + .29)

0

2

4

5→4 (.50)
1→4 (.73 = .41 + .32)
1→2 (.92 = .41 + .51)

0
1

5

3

0
1

3 2

5

4

1→2 (.92)
2→3 (1.32)

priority queue

22

Lazy implementation of Dijkstra's algorithm

public class LazyDijkstra
{
 private boolean[] scanned;
 private double[] dist;
 private DirectedEdge[] pred;
 private MinPQ<DirectedEdge> pq;

 private class ByDistanceFromSource implements Comparator<DirectedEdge>
 {
 public int compare(DirectedEdge e, DirectedEdge f) {
 double dist1 = dist[e.from()] + e.weight();
 double dist2 = dist[f.from()] + f.weight();
 if (dist1 < dist2) return -1;
 else if (dist1 > dist2) return +1;
 else return 0;
 }
 }

 public LazyDijkstra(WeightedDigraph G, int s) {
 scanned = new boolean[G.V()];
 pred = new DirectedEdge[G.V()];
 dist = new double[G.V()];
 pq = new MinPQ<DirectedEdge>(new ByDistanceFromSource());
 dijkstra(G, s);
 }

compare edges in pq by
dist[v] + e.weight()

23

Lazy implementation of Dijkstra's algorithm

 private void dijkstra(WeightedDigraph G, int s)
 {
 scan(G, s);
 while (!pq.isEmpty()) {
 DirectedEdge e = pq.delMin();
 int v = e.from(), w = e.to();
 if (scanned[w]) continue;
 pred[w] = e;
 dist[w] = dist[v] + e.weight();
 scan(G, w);
 }
 }

 private void scan(WeightedDigraph G, int v) {
 scanned[v] = true;
 for (DirectedEdge e : G.adj(v))
 if (!scanned[e.to()]) pq.insert(e);
 }

both endpoints in S

add all edges v->w to pq,
provided w not already in S

found shortest path to w

24

Proposition. Dijkstra's algorithm computes shortest paths in O(E log E) time.
Pf.

Improvements.

• Eagerly eliminate obsolete edges from PQ.

• Maintain on PQ at most one edge incident to each vertex v not in T
 ⇒ at most V edges on PQ.

• Use fancier priority queue: best in theory yields O(E + V log V).

Dijkstra's algorithm running time

operation frequency time per op

delete min E log E

insert E log E

25

Priority-first search

Insight. All of our graph-search methods are the same algorithm!

• Maintain a set of explored vertices S.

• Grow S by exploring edges with exactly one endpoint leaving S.

DFS. Take edge from vertex which was discovered most recently.
BFS. Take edge from vertex which was discovered least recently.
Prim. Take edge of minimum weight.
Dijkstra. Take edge to vertex that is closest to s.

Challenge. Express this insight in reusable Java code.

s

w

v

dist[v]

S

e

26

‣ Dijkstra's algorithm
‣ implementation
‣ negative weights

Problem. Given currencies and exchange rates, what is best way to convert
one ounce of gold to US dollars?
• 1 oz. gold ⇒ $327.25.

• 1 oz. gold ⇒ £208.10 ⇒ $327.00.

• 1 oz. gold ⇒ 455.2 Francs ⇒ 304.39 Euros ⇒ $327.28.

27

Currency conversion

[208.10 × 1.5714]

[455.2 × .6677 × 1.0752]

currency £ Euro ¥ Franc $ Gold

UK pound 1.0000 0.6853 0.005290 0.4569 0.6368 208.100

Euro 1.45999 1.0000 0.007721 0.6677 0.9303 304.028

Japanese Yen 189.50 129.520 1.0000 85.4694 120.400 39346.7

Swiss Franc 2.1904 1.4978 0.01574 1.0000 1.3941 455.200

US dollar 1.5714 1.0752 0.008309 0.7182 1.0000 327.250

Gold (oz.) 0.004816 0.003295 0.0000255 0.002201 0.003065 1.0000

Graph formulation.

• Vertex = currency.

• Edge = transaction, with weight equal to exchange rate.

• Find path that maximizes product of weights.

Challenge. Express as a shortest path problem.
28

Currency conversion

$G

£ EF

0.003065

1.3941208.100 455.2

2.1904 0.6677

1.0752
0.004816

327.25

¥

129.520

0.008309

Reduce to shortest path problem by taking logs.

• Let weight of edge v→w be - lg (exchange rate from currency v to w).

• Multiplication turns to addition.

• Shortest path with given weights corresponds to best exchange sequence.

Challenge. Solve shortest path problem with negative weights.
29

Currency conversion

-lg(455.2) = -8.8304

0.5827

-0.1046

¥

$G

£ EF

0.003065

1.3941208.100 455.2

2.1904 0.6677

1.0752
0.004816

327.25

¥

129.520

0.008309

Dijkstra. Doesn’t work with negative edge weights.

Re-weighting. Add a constant to every edge weight also doesn’t work.

Bad news. Need a different algorithm.
30

Shortest paths with negative weights: failed attempts

0

3

1

2

4

2-9

6

0

3

1

11

13

20

15

Dijkstra selects vertex 3 immediately after 0.
But shortest path from 0 to 3 is 0→1→2→3.

Adding 9 to each edge changes the shortest path
because it adds 9 to each edge;
wrong thing to do for paths with many edges.

31

Negative cycles

Def. A negative cycle is a directed cycle whose sum of edge weights is negative.

Observations. If negative cycle C is on a path from s to t, then shortest path
can be made arbitrarily negative by spinning around cycle.

Worse news. Need a different problem.

s t

C
cost(C) < 0

-6

7

 -4

32

Shortest paths with negative weights

Problem 1. Does a given digraph contain a negative cycle?
Problem 2. Find the shortest simple path from s to t.

Bad news. Problem 2 is intractable.

Good news. Can solve problem 1 in O(VE) steps;
if no negative cycles, can solve problem 2 with same algorithm!

s t

C
cost(C) < 0

33

 Edge relaxation

Relax edge e from v to w.

• dist[v] is length of some path from s to v.
• dist[w] is length of some path from s to w.

• If v→w gives a shorter path to w through v, update dist[w] and pred[w].

dist[w] = 47

dist[v] = 11

dist[s] = 0

int v = e.from(), w = e.to();
if (dist[w] > dist[v] + e.weight())
{
 dist[w] = dist[v] + e.weight());
 pred[w] = e;
}

w

v

33

44

s

34

Shortest paths with negative weights: dynamic programming algorithm

A simple solution that works!

• Initialize dist[v] = ∞, dist[s]= 0.

• Repeat V times: relax each edge e.

for (int i = 1; i <= G.V(); i++)
 for (int v = 0; v < G.V(); v++)
 for (DirectedEdge e : G.adj(v))
 {
 int w = e.to();
 if (dist[w] > dist[v] + e.weight())
 {
 dist[w] = dist[v] + e.weight())
 pred[w] = e;
 }
 }

relax edge v-w

phase i

35

Dynamic programming algorithm trace

0→1 .41

0→5 .29

1→2 .51

1→4 .32

2→3 .50

3→0 .45

3→5 .38

4→2 .32

4→3 .36

5→1 .29

5→4 .21

1

3 2

5

4

0

dist[v]

0
∞

∞∞

∞

∞

1

3 2

5

4

00

.41

.92∞

.50

.29

1→2 (.92 = .41 + .51)
1→4 (.73 = .41 + .32)
5→4 (.50 = .29 + .21)

1

3 2

5

4

00

.41

.82.86

.50

.29

2→3 (1.33 = .83 + .50)
4→3 (.86 = .50 + .36)
4→2 (.82 = .50 + .32)

1

3 2

5

4

00
.41

∞∞

∞

.29

0→1 (.41 = 0 + .41)
0→5 (.50 = 0 + .50)

relaxed edges that update dist[]

1

3 2

5

4

00

.41

.82.86

.50

.29 can stop early since
no entries in dist[] updated

36

Dynamic programming algorithm: analysis

Running time. Proportional to E V.

Invariant. At end of phase i, dist[v] ≤ length of any path from s to v
using at most i edges.

Proposition. If there are no negative cycles, upon termination dist[v] is the
length of the shortest path from from s to v.

and pred[] gives the shortest paths

37

Observation. If dist[v] doesn't change during phase i,
no need to relax any edge leaving v in phase i+1.

FIFO implementation. Maintain queue of vertices whose distance changed.

Running time.

• Proportional to EV in worst case.

• Much faster than that in practice.

Bellman-Ford-Moore algorithm

be careful to keep at most one copy of each vertex on queue

38

Single source shortest paths implementation: cost summary

Remark 1. Negative weights makes the problem harder.
Remark 2. Negative cycles makes the problem intractable.

algorithm worst case typical case

nonnegative
costs

Dijkstra (binary heap) E log E E

no negative
dynamic programming E V E V

no negative
cycles

Bellman-Ford E V E

39

Shortest paths application: arbitrage

Is there an arbitrage opportunity in currency graph?

• Ex: $1 ⇒ 1.3941 Francs ⇒ 0.9308 Euros ⇒ $1.00084.

• Is there a negative cost cycle?

Remark. Fastest algorithm is valuable!

0.5827

-0.1046

¥

$G

£ EF

0.003065

1.3941208.100 455.2

2.1904 0.6677

1.0752
0.004816

327.25

¥

129.520

0.008309

-0.4793

0.5827 - 0.1046 - 0.4793 < 0

40

Negative cycle detection

If there is a negative cycle reachable from s.
Bellman-Ford-Moore gets stuck in loop, updating vertices in cycle.

Proposition. If any vertex v is updated in phase V, there exists a negative
cycle, and we can trace back pred[v] to find it.

pred[v]

s 3

v

2 6

1

4

5

Goal. Identify a negative cycle (reachable from any vertex).

Solution. Initialize Bellman-Ford by setting dist[v] = 0 for all vertices v.
41

Negative cycle detection

¥

$G

£ EF

8.3499

-0.4793-7.7011 -8.8303

-1.1311 0.5827

-0.1046
7.6979

-8.3542

¥

-7.0170

6.91111

Shortest paths summary

Dijkstra’s algorithm.

• Nearly linear-time when weights are nonnegative.

Priority-first search.

• Generalization of Dijkstra’s algorithm.

• Encompasses DFS, BFS, and Prim.

• Enables easy solution to many graph-processing problems.

Negative weights.

• Arise in applications.

• If negative cycles, problem is intractable (!)

• If no negative cycles, solvable via classic algorithms.

Shortest-paths is a broadly useful problem-solving model.

42

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 26, 2010 8:15:36 AM

5. Strings

‣ 5.1 Sorting Strings
‣ 5.2 String Symbol Tables
‣ 5.3 Substring Search
‣ 5.4 Pattern Matching
‣ 5.5 Data Compression

2

String processing

String. Sequence of characters.

Important fundamental abstraction.

• Java programs.

• Natural languages.

• Genomic sequences.

• …

“ The digital information that underlies biochemistry, cell

 biology, and development can be represented by a simple
 string of G's, A's, T's and C's. This string is the root data

 structure of an organism's biology. ” — M. V. Olson

3

The char data type

C char data type. Typically an 8-bit integer.

• Supports 7-bit ASCII.

• Need more bits to represent certain characters.

Java char data type. A 16-bit unsigned integer.

• Supports original 16-bit Unicode.

• Awkwardly supports 21-bit Unicode 3.0.

6676.5 Data Compression

ASCII encoding. When you HexDump a bit-
stream that contains ASCII-encoded charac-
ters, the table at right is useful for reference.
Given a 2-digit hex number, use the first hex
digit as a row index and the second hex digit
as a column reference to find the character
that it encodes. For example, 31 encodes the
digit 1, 4A encodes the letter J, and so forth.
This table is for 7-bit ASCII, so the first hex
digit must be 7 or less. Hex numbers starting
with 0 and 1 (and the numbers 20 and 7F)
correspond to non-printing control charac-
ters. Many of the control characters are left over from the days when physical devices
like typewriters were controlled by ASCII input; the table highlights a few that you
might see in dumps. For example SP is the space character, NUL is the null character, LF
is line-feed, and CR is carriage-return.

In summary, working with data compression requires us to reorient our thinking about
standard input and standard output to include binary encoding of data. BinaryStdIn
and BinaryStdOut provide the methods that we need. They provide a way for you to
make a clear distinction in your client programs between writing out information in-
tended for file storage and data transmission (that will be read by programs) and print-
ing information (that is likely to be read by humans).

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 SP ! “ # $ % & ‘ () * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [\] ^ _

6 ` a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

Hexadecimal to ASCII conversion table

4

The String data type

Character extraction. Get the ith character.
Substring extraction. Get a contiguous sequence of characters from a string.
String concatenation. Append one character to end of another string.

String s = "strings"; // s = "strings"
char c = s.charAt(2); // c = 'r'
String t = s.substring(2, 6); // t = "ring"
String u = t + c; // u = "ringr"

s t r i n g s

0 1 2 3 4 5 6

5

Implementing strings in Java

Java strings are immutable ⇒ two strings can share underlying char[] array.

public final class String implements Comparable<String>
{
 private char[] value; // characters
 private int offset; // index of first char in array
 private int count; // length of string
 private int hash; // cache of hashCode()

 private String(int offset, int count, char[] value)
 {
 this.offset = offset;
 this.count = count;
 this.value = value;
 }

 public String substring(int from, int to)
 { return new String(offset + from, to - from, value); }

 public char charAt(int index)
 { return value[index + offset]; }
 …
} java.lang.String

constant time

6

Implementing strings in Java

Memory. 40 + 2N bytes for a virgin String of length N.

 public String concat(String that)
 {
 char[] buffer = new char[this.length() + that.length());
 for (int i = 0; i < this.length(); i++)
 buffer[i] = this.value[i];
 for (int j = 0; j < that.length(); j++)
 buffer[this.length() + j] = that.value[j];
 return new String(0, this.length() + that.length(), buffer);
 }

use byte[] or char[] instead of String to save space

operation guarantee extra space

charAt() 1 1

substring() 1 1

concat() N N

7

String vs. StringBuilder

String. [immutable] Constant substring, linear concatenation.
StringBuilder. [mutable] Linear substring, constant (amortized) append.

Ex. Reverse a String.

quadratic time

 public static String reverse(String s)
 {
 String rev = "";
 for (int i = s.length() - 1; i >= 0; i--)
 rev += s.charAt(i);
 return rev;
 }

 public static String reverse(String s)
 {
 StringBuilder rev = new StringBuilder();
 for (int i = s.length() - 1; i >= 0; i--)
 rev.append(s.charAt(i));
 return rev.toString();
 }

linear time

8

String challenge: array of suffixes

Challenge. How to efficiently form array of suffixes?

a a c a a g t t t a c a a g c

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

input string

0 a a c a a g t t t a c a a g c
1 a c a a g t t t a c a a g c
2 c a a g t t t a c a a g c
3 a a g t t t a c a a g c
4 a g t t t a c a a g c
5 g t t t a c a a g c
6 t t t a c a a g c
7 t t a c a a g c
8 t a c a a g c
9 a c a a g c
10 c a a g c
11 a a g c
12 a g c
13 g c
14 c

suffixes

 public static String[] suffixes(String s)
 {
 int N = s.length();
 StringBuilder sb = new StringBuilder(s);
 String[] suffixes = new String[N];
 for (int i = 0; i < N; i++)
 suffixes[i] = sb.substring(i, N);
 return suffixes;
 }

9

String challenge: array of suffixes

Challenge. How to efficiently form array of suffixes?

A.

B.

 public static String[] suffixes(String s)
 {
 int N = s.length();
 String[] suffixes = new String[N];
 for (int i = 0; i < N; i++)
 suffixes[i] = s.substring(i, N);
 return suffixes;
 }

linear time and space

quadratic time and space!

Digital key. Sequence of digits over fixed alphabet.
Radix. Number of digits R in alphabet.

Alphabets

10

604 CHAPTER 6 ! Strings

holds the frequencies in Count is an example of a character-indexed array. With a Java
String, we have to use an array of size 256; with Alphabet, we just need an array with
one entry for each alphabet character. This savings might seem modest, but, as you will
see, our algorithms can produce huge numbers of such arrays, and the space for arrays
of size 256 can be prohibitive.

Numbers. As you can see from our several of the standard Alphabet examples, we of-
ten represent numbers as strings. The methods toIndices() coverts any String over
a given Alphabet into a base-R number represented as an int[] array with all values
between 0 and R!1. In some situations, doing this conversion at the start leads to com-
pact code, because any digit can be used as an index in a character-indexed array. For
example, if we know that the input consists only of characters from the alphabet, we
could replace the inner loop in Count with the more compact code

int[] a = alpha.toIndices(s);
for (int i = 0; i < N; i++)
 count[a[i]]++;

name R() lgR() characters

BINARY 2 1 01

OCTAL 8 3 01234567

DECIMAL 10 4 0123456789

HEXADECIMAL 16 4 0123456789ABCDEF

DNA 4 2 ACTG

LOWERCASE 26 5 abcdefghijklmnopqrstuvwxyz

UPPERCASE 26 5 ABCDEFGHIJKLMNOPQRSTUVWXYZ

PROTEIN 20 5 ACDEFGHIKLMNPQRSTVWY

BASE64 64 6
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdef
ghijklmnopqrstuvwxyz0123456789+/

ASCII 128 7 ASCII characters

EXTENDED_ASCII 256 8 extended ASCII characters

UNICODE16 65536 16 Unicode characters

Standard alphabets

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 26, 2010 8:15:36 AM

6.1 Sorting Strings

‣ key-indexed counting
‣ LSD string sort
‣ MSD string sort
‣ 3-way string quicksort
‣ suffix arrays

Review: summary of the performance of sorting algorithms

Frequency of operations = key compares.

Lower bound. ~ N lg N compares are required by any compare-based algorithm.

Q. Can we do better (despite the lower bound)?
A. Yes, if we don't depend on compares.

12

algorithm guarantee random extra space stable? operations on keys

insertion sort N2 /2 N2 /4 no yes compareTo()

mergesort N lg N N lg N N yes compareTo()

quicksort 1.39 N lg N * 1.39 N lg N c lg N no compareTo()

heapsort 2 N lg N 2 N lg N no no compareTo()

* probabilistic

13

‣ key-indexed counting
‣ LSD string sort
‣ MSD string sort
‣ 3-way radix quicksort
‣ longest repeated substring

Key-indexed counting: assumptions about keys

Assumption. Keys are integers between 0 and R-1.
Implication. Can use key as an array index.

Applications.

• Sort string by first letter.

• Sort class roster by section.

• Sort phone numbers by area code.

• Subroutine in a sorting algorithm.

Remark. Keys may have associated data ⇒
can't just count up number of keys of each value.

14

Anderson 2 Harris 1
Brown 3 Martin 1
Davis 3 Moore 1
Garcia 4 Anderson 2
Harris 1 Martinez 2
Jackson 3 Miller 2
Johnson 4 Robinson 2
Jones 3 White 2
Martin 1 Brown 3
Martinez 2 Davis 3
Miller 2 Jackson 3
Moore 1 Jones 3
Robinson 2 Taylor 3
Smith 4 Williams 3
Taylor 3 Garcia 4
Thomas 4 Johnson 4
Thompson 4 Smith 4
White 2 Thomas 4
Williams 3 Thompson 4
Wilson 4 Wilson 4

Typical candidate for key-indexed counting

input sorted result

keys are
small integers

section (by section) name

Goal. Sort an array a[] of N integers between 0 and R-1.

• Count frequencies of each letter using key as index.

•

•

•

 int N = a.length;
 int[] count = new int[R+1];

 for (int i = 0; i < N; i++)
 count[a[i]+1]++;

 for (int r = 0; r < R; r++)
 count[r+1] += count[r];

 for (int i = 0; i < N; i++)
 aux[count[a[i]]++] = a[i];

 for (int i = 0; i < N; i++)
 a[i] = aux[i];

a 0

b 2

c 3

d 1

e 2

f 1

- 3

15

Key-indexed counting

i a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

count
frequencies

offset by 1
[stay tuned]

r count[r]

Goal. Sort an array a[] of N integers between 0 and R-1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

•

•

a 0

b 2

c 5

d 6

e 8

f 9

- 12

16

Key-indexed counting

i a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

r count[r]

compute
cumulates

 int N = a.length;
 int[] count = new int[R+1];

 for (int i = 0; i < N; i++)
 count[a[i]+1]++;

 for (int r = 0; r < R; r++)
 count[r+1] += count[r];

 for (int i = 0; i < N; i++)
 aux[count[a[i]]++] = a[i];

 for (int i = 0; i < N; i++)
 a[i] = aux[i]; 6 keys < d, 8 keys < e

so d’s go in a[6] and a[7]

Goal. Sort an array a[] of N integers between 0 and R-1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

• Access cumulates using key as index to move records.

•

a 0

b 2

c 5

d 6

e 8

f 9

- 12

17

Key-indexed counting

i a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

r count[r]

0

1

2

3

4

5

6

7

8

9

10

11

i aux[i]

 int N = a.length;
 int[] count = new int[R+1];

 for (int i = 0; i < N; i++)
 count[a[i]+1]++;

 for (int r = 0; r < R; r++)
 count[r+1] += count[r];

 for (int i = 0; i < N; i++)
 aux[count[a[i]]++] = a[i];

 for (int i = 0; i < N; i++)
 a[i] = aux[i];

move
records

Goal. Sort an array a[] of N integers between 0 and R-1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

• Access cumulates using key as index to move records.

•

a 0

b 2

c 5

d 7

e 8

f 9

- 12

18

Key-indexed counting

i a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

0

1

2

3

4

5

6 d

7

8

9

10

11

r count[r]

 int N = a.length;
 int[] count = new int[R+1];

 for (int i = 0; i < N; i++)
 count[a[i]+1]++;

 for (int r = 0; r < R; r++)
 count[r+1] += count[r];

 for (int i = 0; i < N; i++)
 aux[count[a[i]]++] = a[i];

 for (int i = 0; i < N; i++)
 a[i] = aux[i];

move
records

i aux[i]

Goal. Sort an array a[] of N integers between 0 and R-1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

• Access cumulates using key as index to move records.

•

a 1

b 2

c 5

d 7

e 8

f 9

- 12

19

Key-indexed counting

i a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

0 a

1

2

3

4

5

6 d

7

8

9

10

11

r count[r]

 int N = a.length;
 int[] count = new int[R+1];

 for (int i = 0; i < N; i++)
 count[a[i]+1]++;

 for (int r = 0; r < R; r++)
 count[r+1] += count[r];

 for (int i = 0; i < N; i++)
 aux[count[a[i]]++] = a[i];

 for (int i = 0; i < N; i++)
 a[i] = aux[i];

move
records

i aux[i]

Goal. Sort an array a[] of N integers between 0 and R-1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

• Access cumulates using key as index to move records.

•

a 1

b 2

c 6

d 7

e 8

f 9

- 12

20

Key-indexed counting

i a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

0 a

1

2

3

4

5 c

6 d

7

8

9

10

11

r count[r]

 int N = a.length;
 int[] count = new int[R+1];

 for (int i = 0; i < N; i++)
 count[a[i]+1]++;

 for (int r = 0; r < R; r++)
 count[r+1] += count[r];

 for (int i = 0; i < N; i++)
 aux[count[a[i]]++] = a[i];

 for (int i = 0; i < N; i++)
 a[i] = aux[i];

move
records

i aux[i]

Goal. Sort an array a[] of N integers between 0 and R-1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

• Access cumulates using key as index to move records.

•

a 1

b 2

c 6

d 7

e 8

f 10

- 12

21

Key-indexed counting

i a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

0 a

1

2

3

4

5 c

6 d

7

8

9 f

10

11

r count[r]

 int N = a.length;
 int[] count = new int[R+1];

 for (int i = 0; i < N; i++)
 count[a[i]+1]++;

 for (int r = 0; r < R; r++)
 count[r+1] += count[r];

 for (int i = 0; i < N; i++)
 aux[count[a[i]]++] = a[i];

 for (int i = 0; i < N; i++)
 a[i] = aux[i];

move
records

i aux[i]

Goal. Sort an array a[] of N integers between 0 and R-1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

• Access cumulates using key as index to move records.

•

a 1

b 2

c 6

d 7

e 8

f 11

- 12

22

Key-indexed counting

i a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

0 a

1

2

3

4

5 c

6 d

7

8

9 f

10 f

11

r count[r]

 int N = a.length;
 int[] count = new int[R+1];

 for (int i = 0; i < N; i++)
 count[a[i]+1]++;

 for (int r = 0; r < R; r++)
 count[r+1] += count[r];

 for (int i = 0; i < N; i++)
 aux[count[a[i]]++] = a[i];

 for (int i = 0; i < N; i++)
 a[i] = aux[i];

move
records

i aux[i]

Goal. Sort an array a[] of N integers between 0 and R-1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

• Access cumulates using key as index to move records.

•

a 1

b 3

c 6

d 7

e 8

f 11

- 12

23

Key-indexed counting

i a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

0 a

1

2 b

3

4

5 c

6 d

7

8

9 f

10 f

11

r count[r]

 int N = a.length;
 int[] count = new int[R+1];

 for (int i = 0; i < N; i++)
 count[a[i]+1]++;

 for (int r = 0; r < R; r++)
 count[r+1] += count[r];

 for (int i = 0; i < N; i++)
 aux[count[a[i]]++] = a[i];

 for (int i = 0; i < N; i++)
 a[i] = aux[i];

move
records

i aux[i]

Goal. Sort an array a[] of N integers between 0 and R-1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

• Access cumulates using key as index to move records.

•

a 1

b 3

c 6

d 8

e 8

f 11

- 12

24

Key-indexed counting

i a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

0 a

1

2 b

3

4

5 c

6 d

7 d

8

9 f

10 f

11

 int N = a.length;
 int[] count = new int[R+1];

 for (int i = 0; i < N; i++)
 count[a[i]+1]++;

 for (int r = 0; r < R; r++)
 count[r+1] += count[r];

 for (int i = 0; i < N; i++)
 aux[count[a[i]]++] = a[i];

 for (int i = 0; i < N; i++)
 a[i] = aux[i];

move
records

i aux[i]

r count[r]

Goal. Sort an array a[] of N integers between 0 and R-1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

• Access cumulates using key as index to move records.

•

a 1

b 4

c 6

d 8

e 8

f 11

- 12

25

Key-indexed counting

i a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

0 a

1

2 b

3 b

4

5 c

6 d

7 d

8

9 f

10 f

11

r count[r]

 int N = a.length;
 int[] count = new int[R+1];

 for (int i = 0; i < N; i++)
 count[a[i]+1]++;

 for (int r = 0; r < R; r++)
 count[r+1] += count[r];

 for (int i = 0; i < N; i++)
 aux[count[a[i]]++] = a[i];

 for (int i = 0; i < N; i++)
 a[i] = aux[i];

move
records

i aux[i]

Goal. Sort an array a[] of N integers between 0 and R-1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

• Access cumulates using key as index to move records.

•

a 1

b 4

c 6

d 8

e 8

f 12

- 12

26

Key-indexed counting

i a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

0 a

1

2 b

3 b

4

5 c

6 d

7 d

8

9 f

10 f

11 f

r count[r]

 int N = a.length;
 int[] count = new int[R+1];

 for (int i = 0; i < N; i++)
 count[a[i]+1]++;

 for (int r = 0; r < R; r++)
 count[r+1] += count[r];

 for (int i = 0; i < N; i++)
 aux[count[a[i]]++] = a[i];

 for (int i = 0; i < N; i++)
 a[i] = aux[i];

move
records

i aux[i]

Goal. Sort an array a[] of N integers between 0 and R-1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

• Access cumulates using key as index to move records.

•

a 1

b 5

c 6

d 8

e 8

f 12

- 12

27

Key-indexed counting

i a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

0 a

1

2 b

3 b

4 b

5 c

6 d

7 d

8

9 f

10 f

11 f

r count[r]

 int N = a.length;
 int[] count = new int[R+1];

 for (int i = 0; i < N; i++)
 count[a[i]+1]++;

 for (int r = 0; r < R; r++)
 count[r+1] += count[r];

 for (int i = 0; i < N; i++)
 aux[count[a[i]]++] = a[i];

 for (int i = 0; i < N; i++)
 a[i] = aux[i];

move
records

i aux[i]

Goal. Sort an array a[] of N integers between 0 and R-1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

• Access cumulates using key as index to move records.

•

a 1

b 5

c 6

d 8

e 9

f 12

- 12

28

Key-indexed counting

i a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

0 a

1

2 b

3 b

4 b

5 c

6 d

7 d

8 e

9 f

10 f

11 f

r count[r]

 int N = a.length;
 int[] count = new int[R+1];

 for (int i = 0; i < N; i++)
 count[a[i]+1]++;

 for (int r = 0; r < R; r++)
 count[r+1] += count[r];

 for (int i = 0; i < N; i++)
 aux[count[a[i]]++] = a[i];

 for (int i = 0; i < N; i++)
 a[i] = aux[i];

move
records

i aux[i]

Goal. Sort an array a[] of N integers between 0 and R-1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

• Access cumulates using key as index to move records.

•

a 2

b 5

c 6

d 8

e 9

f 12

- 12

29

Key-indexed counting

i a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

0 a

1 a

2 b

3 b

4 b

5 c

6 d

7 d

8 e

9 f

10 f

11 f

r count[r]

 int N = a.length;
 int[] count = new int[R+1];

 for (int i = 0; i < N; i++)
 count[a[i]+1]++;

 for (int r = 0; r < R; r++)
 count[r+1] += count[r];

 for (int i = 0; i < N; i++)
 aux[count[a[i]]++] = a[i];

 for (int i = 0; i < N; i++)
 a[i] = aux[i];

move
records

i aux[i]

Goal. Sort an array a[] of N integers between 0 and R-1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

• Access cumulates using key as index to move records.

•

 int N = a.length;
 int[] count = new int[R+1];

 for (int i = 0; i < N; i++)
 count[a[i]+1]++;

 for (int r = 0; r < R; r++)
 count[r+1] += count[r];

 for (int i = 0; i < N; i++)
 aux[count[a[i]]++] = a[i];

 for (int i = 0; i < N; i++)
 a[i] = aux[i];

a 2

b 5

c 6

d 8

e 9

f 12

- 12

30

Key-indexed counting

i a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

move
records

0 a

1 a

2 b

3 b

4 b

5 c

6 d

7 d

8 e

9 f

10 f

11 f

r count[r]

i aux[i]

Goal. Sort an array a[] of N integers between 0 and R-1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

• Access cumulates using key as index to move records.

• Copy back into original array.

 int N = a.length;
 int[] count = new int[R+1];

 for (int i = 0; i < N; i++)
 count[a[i]+1]++;

 for (int r = 0; r < R; r++)
 count[r+1] += count[r];

 for (int i = 0; i < N; i++)
 aux[count[a[i]]++] = a[i];

 for (int i = 0; i < N; i++)
 a[i] = aux[i];

a 2

b 5

c 6

d 8

e 9

f 12

- 12

31

Key-indexed counting

i a[i]

0 a

1 a

2 b

3 b

4 b

5 c

6 d

7 d

8 e

9 f

10 f

11 f
copy
back

0 a

1 a

2 b

3 b

4 b

5 c

6 d

7 d

8 e

9 f

10 f

11 f

r count[r]

i aux[i]

Key-indexed counting: analysis

Proposition. Key-indexed counting takes time proportional to N + R
to sort N records whose keys are integers between 0 and R-1.

Proposition. Key-indexed counting uses extra space proportional to N + R.

Stable? Yes!

32

Anderson 2 Harris 1
Brown 3 Martin 1
Davis 3 Moore 1
Garcia 4 Anderson 2
Harris 1 Martinez 2
Jackson 3 Miller 2
Johnson 4 Robinson 2
Jones 3 White 2
Martin 1 Brown 3
Martinez 2 Davis 3
Miller 2 Jackson 3
Moore 1 Jones 3
Robinson 2 Taylor 3
Smith 4 Williams 3
Taylor 3 Garcia 4
Thomas 4 Johnson 4
Thompson 4 Smith 4
White 2 Thomas 4
Williams 3 Thompson 4
Wilson 4 Wilson 4

Distributing the data (records with key 3 highlighted)

 count[]
1 2 3 4
0 3 8 14
0 4 8 14
0 4 9 14
0 4 10 14
0 4 10 15
1 4 10 15
1 4 11 15
1 4 11 16
1 4 12 16
2 4 12 16
2 5 12 16
2 6 12 16
3 6 12 16
3 7 12 16
3 7 12 17
3 7 13 17
3 7 13 18
3 7 13 19
3 8 13 19
3 8 14 19
3 8 14 20

 a[0]

 a[1]

 a[2]

 a[3]

 a[4]

 a[5]

 a[6]

 a[7]

 a[8]

 a[9]

a[10]

a[11]

a[12]

a[13]

a[14]

a[15]

a[16]

a[17]

a[18]

a[19]

aux[0]

aux[1]

aux[2]

aux[3]

aux[4]

aux[5]

aux[6]

aux[7]

aux[8]

aux[9]

aux[10]

aux[11]

aux[12]

aux[13]

aux[14]

aux[15]

aux[16]

aux[17]

aux[18]

aux[19]

for (int i = 0; i < N; i++)
 aux[count[a[i].key(d)]++] = a[i];

33

‣ key-indexed counting
‣ LSD string sort
‣ MSD string sort
‣ 3-way string quicksort
‣ suffix arrays

Least-significant-digit-first radix sort

LSD string sort.

• Consider characters from right to left.

• Stably sort using dth character as the key (using key-indexed counting).

34

0 d a b

1 a d d

2 c a b

3 f a d

4 f e e

5 b a d

6 d a d

7 b e e

8 f e d

9 b e d

10 e b b

11 a c e

0 d a b

1 c a b

2 f a d

3 b a d

4 d a d

5 e b b

6 a c e

7 a d d

8 f e d

9 b e d

10 f e e

11 b e e

sort key

0 a c e

1 a d d

2 b a d

3 b e d

4 b e e

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e d

11 f e e

sort key

0 d a b

1 c a b

2 e b b

3 a d d

4 f a d

5 b a d

6 d a d

7 f e d

8 b e d

9 f e e

10 b e e

11 a c e

sort must be stable
(arrows do not cross)

sort key

35

LSD string sort: correctness proof

Proposition. LSD sorts fixed-length strings in ascending order.

Pf. [thinking about the future]

• If the characters not yet examined differ,
it doesn't matter what we do now.

• If the characters not yet examined agree,
stability ensures later pass won't affect order.

0 d a b

1 c a b

2 f a d

3 b a d

4 d a d

5 e b b

6 a c e

7 a d d

8 f e d

9 b e d

10 f e e

11 b e e

0 a c e

1 a d d

2 b a d

3 b e d

4 b e e

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e d

11 f e e

sort key

in order
by previous

passes

36

LSD string sort: Java implementation

key-indexed counting

public class LSD
{
 public static void sort(String[] a, int W)
 {
 int R = 256
 int N = a.length;
 String[] aux = new String[N];
 for (int d = W-1; d >= 0; d--)
 {
 int[] count = new int[R+1];
 for (int i = 0; i < N; i++)
 count[a[i].charAt(d) + 1]++;
 for (int r = 0; r < R; r++)
 count[r+1] += count[r];
 for (int i = 0; i < N; i++)
 aux[count[a[i].charAt(d)]++] = a[i];
 for (int i = 0; i < N; i++)
 a[i] = aux[i];
 }
 }
}

do key-indexed counting
for each digit from right to left

radix R

fixed-length W strings

37

LSD string sort: example

607 Sorting Strings

4PGC938
2IYE230
3CIO720
1ICK750
1OHV845
4JZY524
1ICK750
3CIO720
1OHV845
1OHV845
2RLA629
2RLA629
3ATW723

2IYE230
3CIO720
1ICK750
1ICK750
3CIO720
3ATW723
4JZY524
1OHV845
1OHV845
1OHV845
4PGC938
2RLA629
2RLA629

3CIO720
3CIO720
3ATW723
4JZY524
2RLA629
2RLA629
2IYE230
4PGC938
1OHV845
1OHV845
1OHV845
1ICK750
1ICK750

2IYE230
4JZY524
2RLA629
2RLA629
3CIO720
3CIO720
3ATW723
1ICK750
1ICK750
1OHV845
1OHV845
1OHV845
4PGC938

2RLA629
2RLA629
4PGC938
2IYE230
1ICK750
1ICK750
3CIO720
3CIO720
1OHV845
1OHV845
1OHV845
3ATW723
4JZY524

1ICK750
1ICK750
4PGC938
1OHV845
1OHV845
1OHV845
3CIO720
3CIO720
2RLA629
2RLA629
3ATW723
2IYE230
4JZY524

3ATW723
3CIO720
3CIO720
1ICK750
1ICK750
2IYE230
4JZY524
1OHV845
1OHV845
1OHV845
4PGC938
2RLA629
2RLA629

1ICK750
1ICK750
1OHV845
1OHV845
1OHV845
2IYE230
2RLA629
2RLA629
3ATW723
3CIO720
3CIO720
4JZY524
4PGC938

1ICK750
1ICK750
1OHV845
1OHV845
1OHV845
2IYE230
2RLA629
2RLA629
3ATW723
3CIO720
3CIO720
4JZY524
4PGC938

Input d = 6 d = 5 d = 4 d = 3 d= 2 d= 1 d = 0 Output

ALGORITHM 6.1 LSD string sort

public class LSD
{
 public static void sort(String[] a, int W)
 { // Sort a[] on leading W characters.
 int N = a.length;
 int R = 256;
 String[] aux = new String[N];

 for (int d = W-1; d >= 0; d--)
 { // Sort by key-indexed counting on dth char.

 int[] count = new int[R+1]; // Compute frequency counts.
 for (int i = 0; i < N; i++)
 count[a[i].charAt(d) + 1]++;

 for (int r = 0; r < R; r++) // Transform counts to indices.
 count[r+1] += count[r];

 for (int i = 0; i < N; i++) // Distribute.
 aux[count[a[i].charAt(d)]++] = a[i];

 for (int i = 0; i < N; i++) // Copy back.
 a[i] = aux[i];
 }
 }
}

To sort an array a[] of strings that each have exactly W characters, we do W key-indexed counting
sorts: one for each character position, proceeding from right to left.

Summary of the performance of sorting algorithms

Frequency of operations.

38

algorithm guarantee random extra space stable? operations on keys

insertion sort N2 /2 N2 /4 1 yes compareTo()

mergesort N lg N N lg N N yes compareTo()

quicksort 1.39 N lg N * 1.39 N lg N c lg N no compareTo()

heapsort 2 N lg N 2 N lg N 1 no compareTo()

LSD † 2 W N 2 W N N + R yes charAt()

* probabilistic
† fixed-length W keys

Problem. Sort a huge commercial database on a fixed-length key field.
Ex. Account number, date, SS number, ...

Which sorting method to use?

• Insertion sort.

• Mergesort.

• Quicksort.

• Heapsort.

• LSD string sort.

39

Sorting challenge 1

B14-99-8765

756-12-AD46

CX6-92-0112

332-WX-9877

375-99-QWAX

CV2-59-0221

387-SS-0321

KJ-00-12388

715-YT-013C

MJ0-PP-983F

908-KK-33TY

BBN-63-23RE

48G-BM-912D

982-ER-9P1B

WBL-37-PB81

810-F4-J87Q

LE9-N8-XX76

908-KK-33TY

B14-99-8765

CX6-92-0112

CV2-59-0221

332-WX-23SQ

332-6A-9877

✓

256 (or 65536) counters;
Fixed-length strings sort in W passes.

40

Sorting challenge 2a

Problem. Sort 1 million 32-bit integers.
Ex. Google interview or presidential interview.

Which sorting method to use?

• Insertion sort.

• Mergesort.

• Quicksort.

• Heapsort.

• LSD string sort.

LSD string sort: a moment in history (1960s)

41

card punch punched cards card reader mainframe line printer

To sort a card deck
start on right column
put cards into hopper
machine distributes into bins
pick up cards (stable)
move left one column
continue until sorted

Lysergic Acid Diethylamide
(Lucy in the Sky with Diamonds)

not related to sorting

card sorter

42

‣ key-indexed counting
‣ LSD string sort
‣ MSD string sort
‣ 3-way string quicksort
‣ suffix arrays

43

MSD string sort.

• Partition file into R pieces according to first character
(use key-indexed counting).

• Recursively sort all strings that start with each character
(key-indexed counts delineate subarrays to sort).

Most-significant-digit-first string sort

0 d a b

1 a d d

2 c a b

3 f a d

4 f e e

5 b a d

6 d a d

7 b e e

8 f e d

9 b e d

10 e b b

11 a c e

0 a d d

1 a c e

2 b a d

3 b e e

4 b e d

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e e

11 f e d

sort key

0 a d d

1 a c e

2 b a d

3 b e e

4 b e d

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e e

11 f e d

sort these
independently
(recursive)

count[]

a 0

b 2

c 5

d 6

e 8

f 9

- 12

44

MSD string sort: top level trace

Trace of MSD string sort (top level)

0 0
1 a 0
2 b 1
3 c 2
4 d 2
5 e 2
6 f 2
7 g 2
8 h 2
9 i 2
10 j 2
11 k 2
12 l 2
13 m 2
14 n 2
15 o 2
16 p 2
17 q 2
18 r 2
19 s 2
20 t 12
21 u 14
22 v 14
23 w 14
24 x 14
25 y 14
26 z 14
27 14

0 0
1 a 0
2 b 1
3 c 1
4 d 0
5 e 0
6 f 0
7 g 0
8 h 0
9 i 0
10 j 0
11 k 0
12 l 0
13 m 0
14 n 0
15 o 0
16 p 0
17 q 0
18 r 0
19 s 0
20 t 10
21 u 2
22 v 0
23 w 0
24 x 0
25 y 0
26 z 0
27 0

0 0 0
1 a 1
2 b 2
3 c 2
4 d 2
5 e 2
6 f 2
7 g 2
8 h 2
9 i 2
10 j 2
11 k 2
12 l 2
13 m 2
14 n 2
15 o 2
16 p 2
17 q 2
18 r 2
19 s 12
20 t 14
21 u 14
22 v 14
23 w 14
24 x 14
25 y 14
26 z 14
27 14

sort(a, 0, 0);
sort(a, 1, 1);
sort(a, 2, 1);
sort(a, 2, 1);
sort(a, 2, 1);
sort(a, 2, 1);
sort(a, 2, 1);
sort(a, 2, 1);
sort(a, 2, 1);
sort(a, 2, 1);
sort(a, 2, 1);
sort(a, 2, 1);
sort(a, 2, 1);
sort(a, 2, 1);
sort(a, 2, 1);
sort(a, 2, 1);
sort(a, 2, 1);
sort(a, 2, 1);
sort(a, 2, 11);
sort(a, 12, 13);
sort(a, 14, 13);
sort(a, 14, 13);
sort(a, 14, 13);
sort(a, 14, 13);
sort(a, 14, 13);
sort(a, 14, 13);
sort(a, 14, 13);
sort(a, 14, 13);

she
sells
seashells
by
the
sea
shore
the
shells
she
sells
are
surely
seashells

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

are
by
she
sells
seashells
sea
shore
shells
she
sells
surely
seashells
the
the

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

are

by

sea
seashells
seashells
sells
sells
she
she
shells
shore
surely

the
the

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

count
frequencies

transform counts
to indices

distribute
and copy back

indices at completion
of distribute phase

recursively sort subarraysuse key-indexed counting on !rst character

start of s subarray
1 + end of s subarray

45

MSD string sort: example

she
sells
seashells
by
the
sea
shore
the
shells
she
sells
are
surely
seashells

are
by
she
sells
seashells
sea
shore
shells
she
sells
surely
seashells
the
the

are
by
sells
seashells
sea
sells
seashells
she
shore
shells
she
surely
the
the

input

are
by
sea
seashells
seashells
sells
sells
she
she
shells
shore
surely
the
the

output

are
by
seashells
sea
seashells
sells
sells
she
shore
shells
she
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
shore
shells
she
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
shore
shells
she
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
shore
shells
she
surely
the
the

are
by
seas
seashells
seashells
sells
sells
she
shells
shore
she
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
shells
shore
she
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
shells
she
shore
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
shells
she
shore
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
shells
she
shore
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
shells
she
shore
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
she
shells
shore
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
she
shells
shore
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
she
shells
shore
surely
the
the

Trace of recursive calls for MSD string sort (no cuto! for small subarrays, subarrays of size 0 and 1 omitted)

end-of-string
goes before any

char value

need to examine
every character
in equal keys

d

lo

hi

Variable-length strings

Treat strings as if they had an extra char at end (smaller than any char).

C strings. Have extra char '\0' at end ⇒ no extra work needed.
46

0 s e a -1

1 s e a s h e l l s -1

2 s e l l s -1

3 s h e -1

4 s h e -1

5 s h e l l s -1

6 s h o r e -1

7 s u r e l y -1

she before shells

private static int charAt(String s, int d)
{
 if (d < s.length()) return s.charAt(d);
 else return -1;
}

47

MSD string sort: Java implementation

public static void sort(String[] a)
{
 aux = new String[a.length];
 sort(a, aux, 0, a.length, 0);
}

private static void sort(String[] a, String[] aux, int lo, int hi, int d)
{
 if (hi <= lo) return;
 int[] count = new int[R+2];
 for (int i = lo; i <= hi; i++)
 count[charAt(a[i], d) + 2]++;
 for (int r = 0; r < R+1; r++)
 count[r+1] += count[r];
 for (int i = lo; i <= hi; i++)
 aux[count[charAt(a[i], d) + 1]++] = a[i];
 for (int i = lo; i <= hi; i++)
 a[i] = aux[i - lo];

 for (int r = 0; r < R; r++)
 sort(a, aux, lo + count[r], lo + count[r+1] - 1, d+1);
}

key-indexed counting

recursively sort subarrays

can recycle aux[]
but not count[]

48

 MSD string sort: potential for disastrous performance

Observation 1. Much too slow for small subarrays.

• The count[] array must be re-initialized.

• ASCII (256 counts): 100x slower than copy pass for N = 2.

• Unicode (65536 counts): 32,000x slower for N = 2.

Observation 2. Huge number of small subarrays because of recursion.

Solution. Cutoff to insertion sort for small N.

a[]

0 b

1 a

count[]

aux[]

0 a

1 b

49

Cutoff to insertion sort

Solution. Cutoff to insertion sort for small N.

• Insertion sort, but start at dth character.

• Implement less() so that it compares starting at dth character.

 public static void sort(String[] a, int lo, int hi, int d)
 {
 for (int i = lo; i <= hi; i++)
 for (int j = i; j > lo && less(a[j], a[j-1], d); j--)
 exch(a, j, j-1);
 }

 private static boolean less(String v, String w, int d)
 { return v.substring(d).compareTo(w.substring(d)) < 0; }

in Java, forming and comparing
substrings is faster than directly
comparing chars with charAt() !

Number of characters examined.

• MSD examines just enough characters to sort the keys.

• Number of characters examined depends on keys.

• Can be sublinear!

50

 MSD string sort: performance

1EIO402
1HYL490
1ROZ572
2HXE734
2IYE230
2XOR846
3CDB573
3CVP720
3IGJ319
3KNA382
3TAV879
4CQP781
4QGI284
4YHV229

1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377

Non-random
with duplicates
(nearly linear)

Random
(sublinear)

Worst case
(linear)

Characters examined by MSD string sort

are
by
sea
seashells
seashells
sells
sells
she
she
shells
shore
surely
the
the

Summary of the performance of sorting algorithms

Frequency of operations.

51

algorithm guarantee random extra space stable? operations on keys

insertion sort N2 /2 N2 /4 1 yes compareTo()

mergesort N lg N N lg N N yes compareTo()

quicksort 1.39 N lg N * 1.39 N lg N c lg N no compareTo()

heapsort 2 N lg N 2 N lg N 1 no compareTo()

LSD † 2 N W 2 N W N + R yes charAt()

MSD ‡ 2 N W N log R N N + D R yes charAt()

* probabilistic
† fixed-length W keys
‡ average-length W keys

stack depth D = length of
longest prefix match

52

MSD string sort vs. quicksort for strings

Disadvantages of MSD string sort.

• Accesses memory "randomly" (cache inefficient).

• Inner loop has a lot of instructions.

• Extra space for count[].

• Extra space for aux[].

Disadvantage of quicksort.

• Linearithmic number of string compares (not linear).

• Has to rescan long keys for compares.
[but stay tuned]

53

‣ key-indexed counting
‣ LSD string sort
‣ MSD string sort
‣ 3-way string quicksort
‣ suffix arrays

Overview. Do 3-way partitioning on the dth character.

• Cheaper than R-way partitioning of MSD string sort.

• Need not examine again characters equal to the partitioning char.

54

3-way string quicksort (Bentley and Sedgewick, 1997)

Trace of recursive calls for 3-way string quicksort (no cuto! for small subarrays)

she

sells

seashells

by

the

sea

shore

the

shells

she

sells

are

surely

seashells

by

are

she

seashells

seashells

sea

shore

surely

shells

she

sells

sells

the

the

are

by

seashells

seashells

sea

sells

sells

she

shells

she

shore

surely

the

the

are

by

seashells

seashells

sea

sells

sells

she

shells

she

shore

surely

the

the

seashells

seashells

sea

sells

sells

she

she

shells

shore

the

the

sea

seashells

seashells

sells

sells

shells

the

the

sea

seashells

seashells

sells

sells

seashells

seashells

sells

sells

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

three more passes
to reach end

gray bars represent
empty subarrays

no recursive calls
(end of string)

Trace of recursive calls for 3-way string quicksort (no cuto! for small subarrays)

she

sells

seashells

by

the

sea

shore

the

shells

she

sells

are

surely

seashells

by

are

she

seashells

seashells

sea

shore

surely

shells

she

sells

sells

the

the

are

by

seashells

seashells

sea

sells

sells

she

shells

she

shore

surely

the

the

are

by

seashells

seashells

sea

sells

sells

she

shells

she

shore

surely

the

the

seashells

seashells

sea

sells

sells

she

she

shells

shore

the

the

sea

seashells

seashells

sells

sells

shells

the

the

sea

seashells

seashells

sells

sells

seashells

seashells

sells

sells

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

three more passes
to reach end

gray bars represent
empty subarrays

no recursive calls
(end of string)

partitioning element

use first character value
to partition into "less", "equal",

and "greater" subarrays

recursively sort subarrays,
excluding first character

for "equal" subarray

55

3-way string quicksort: trace of recursive calls

Trace of recursive calls for 3-way string quicksort (no cuto! for small subarrays)

she

sells

seashells

by

the

sea

shore

the

shells

she

sells

are

surely

seashells

by

are

she

seashells

seashells

sea

shore

surely

shells

she

sells

sells

the

the

are

by

seashells

seashells

sea

sells

sells

she

shells

she

shore

surely

the

the

are

by

seashells

seashells

sea

sells

sells

she

shells

she

shore

surely

the

the

seashells

seashells

sea

sells

sells

she

she

shells

shore

the

the

sea

seashells

seashells

sells

sells

shells

the

the

sea

seashells

seashells

sells

sells

seashells

seashells

sells

sells

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

three more passes
to reach end

gray bars represent
empty subarrays

no recursive calls
(end of string)

 private static void sort(String[] a)
 { sort(a, 0, a.length - 1, 0); }

 private static void sort(String[] a, int lo, int hi, int d)
 {
 int lt = lo, gt = hi;
 int v = charAt(a[lo], d);
 int i = lo + 1;
 while (i <= gt)
 {
 int t = charAt(a[i], d);
 if (t < v) exch(a, lt++, i++);
 else if (t > v) exch(a, i, gt--);
 else i++;
 }

 sort(a, lo, lt-1, d);
 if (v >= 0) sort(a, lt, gt, d+1);
 sort(a, gt+1, hi, d);
 }

56

3-way string quicksort: Java implementation

3-way partitioning,
using dth character

sort 3 pieces recursively

57

3-way string quicksort vs. standard quicksort

Standard quicksort.

• Uses 2N ln N string compares on average.

• Costly for long keys that differ only at the end (and this is a common case!)

3-way string quicksort.

• Uses 2 N ln N character compares on average for random strings.

• Avoids recomparing initial parts of the string.

• Adapts to data: uses just "enough" characters to resolve order.

• Sublinear when strings are long.

Proposition. 3-way string quicksort is optimal (to within a constant factor);
no sorting algorithm can (asymptotically) examine fewer chars.

Pf. Ties cost to entropy. Beyond scope of 226.

58

3-way string quicksort vs. MSD string sort

MSD string sort.

• Has a long inner loop.

• Is cache-inefficient.

• Too much overhead reinitializing count[] and aux[].

3-way string quicksort.

• Has a short inner loop.

• Is cache-friendly.

• Is in-place.

Bottom line. 3-way string quicksort is the method of choice for sorting strings.

library call numbers

WUS-------10706-----7---10
WUS-------12692-----4---27
WLSOC------2542----30
LTK--6015-P-63-1988
LDS---361-H-4
...

Summary of the performance of sorting algorithms

Frequency of operations.

59

algorithm guarantee random extra space stable? operations on keys

insertion sort N2 /2 N2 /4 1 yes compareTo()

mergesort N lg N N lg N N yes compareTo()

quicksort 1.39 N lg N * 1.39 N lg N c lg N no compareTo()

heapsort 2 N lg N 2 N lg N 1 no compareTo()

LSD † 2 N W 2 N W N + R yes charAt()

MSD ‡ 2 N W N log R N N + D R yes charAt()

3-way string
quicksort

1.39 W N lg N * 1.39 N lg N log N + W no charAt()

* probabilistic
† fixed-length W keys
‡ average-length W keys

60

‣ key-indexed counting
‣ LSD string sort
‣ MSD string sort
‣ 3-way radix quicksort
‣ suffix arrays

LCP. Given two strings, find the longest substring that is a prefix of both.

Running time. Linear-time in length of prefix match.
Space. Constant extra space.

61

Warmup: longest common prefix

p r e f i x

p r e f e t c h

0 1 2 3 4 5 6 7

 public static String lcp(String s, String t)
 {
 int n = Math.min(s.length(), t.length());
 for (int i = 0; i < n; i++)
 {
 if (s.charAt(i) != t.charAt(i))
 return s.substring(0, i);
 }
 return s.substring(0, n);
 }

62

Longest repeated substring

LRS. Given a string of N characters, find the longest repeated substring.

Ex.

Applications. Bioinformatics, cryptanalysis, data compression, ...

a a c a a g t t t a c a a g c a t g a t g c t g t a c t a
g g a g a g t t a t a c t g g t c g t c a a a c c t g a a
c c t a a t c c t t g t g t g t a c a c a c a c t a c t a
c t g t c g t c g t c a t a t a t c g a g a t c a t c g a
a c c g g a a g g c c g g a c a a g g c g g g g g g t a t
a g a t a g a t a g a c c c c t a g a t a c a c a t a c a
t a g a t c t a g c t a g c t a g c t c a t c g a t a c a
c a c t c t c a c a c t c a a g a g t t a t a c t g g t c
a a c a c a c t a c t a c g a c a g a c g a c c a a c c a
g a c a g a a a a a a a a c t c t a t a t c t a t a a a a

63

Longest repeated substring: a musical application

Visualize repetitions in music. http://www.bewitched.com

Mary Had a Little Lamb

Bach's Goldberg Variations

64

Longest repeated substring

LRS. Given a string of N characters, find the longest repeated substring.

Brute force algorithm.

• Try all indices i and j for start of possible match.

• Compute longest common prefix (LCP) for each pair.

Analysis. Running time ≤ M N2 , where M is length of longest match.

i

a a c a a g t t t a c a a g c

j

65

Longest repeated substring: a sorting solution

a a c a a g t t t a c a a g c

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

input string

0 a a c a a g t t t a c a a g c
1 a c a a g t t t a c a a g c
2 c a a g t t t a c a a g c
3 a a g t t t a c a a g c
4 a g t t t a c a a g c
5 g t t t a c a a g c
6 t t t a c a a g c
7 t t a c a a g c
8 t a c a a g c
9 a c a a g c
10 c a a g c
11 a a g c
12 a g c
13 g c
14 c

form suffixes

0 a a c a a g t t t a c a a g c
11 a a g c
3 a a g t t t a c a a g c
9 a c a a g c
1 a c a a g t t t a c a a g c
12 a g c
4 a g t t t a c a a g c
14 c
10 c a a g c
2 c a a g t t t a c a a g c
13 g c
5 g t t t a c a a g c
8 t a c a a g c
7 t t a c a a g c
6 t t t a c a a g c

sort suffixes to bring repeated substrings together

compute longest prefix between adjacent suffixes

a a c a a g t t t a c a a g c

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

 public String lrs(String s)
 {
 int N = s.length();

 String[] suffixes = new String[N];
 for (int i = 0; i < N; i++)
 suffixes[i] = s.substring(i, N);

 Arrays.sort(suffixes);

 String lrs = "";
 for (int i = 0; i < N-1; i++)
 {
 String x = lcp(suffixes[i], suffixes[i+1]);
 if (x.length() > lrs.length()) lrs = x;
 }
 return lrs;
 }

66

Longest repeated substring: Java implementation

% java LRS < mobydick.txt
,- Such a funny, sporty, gamy, jesty, joky, hoky-poky lad, is the Ocean, oh! Th

create suffixes
(linear time and space)

sort suffixes

find LCP between
suffixes that are adjacent
after sorting

67

Sorting challenge

Problem. Five scientists A, B, C, D, and E are looking for long repeated
substring in a genome with over 1 billion nucleotides.

• A has a grad student do it by hand.

• B uses brute force (check all pairs).

• C uses suffix sorting solution with insertion sort.

• D uses suffix sorting solution with LSD string sort.

• E uses suffix sorting solution with 3-way string quicksort.

Q. Which one is more likely to lead to a cure cancer?

only if LRS is not long (!)

✓

input file characters brute suffix sort length of LRS

LRS.java 2,162 0.6 sec 0.14 sec 73

amendments.txt 18,369 37 sec 0.25 sec 216

aesop.txt 191,945 1.2 hours 1.0 sec 58

mobydick.txt 1.2 million 43 hours † 7.6 sec 79

chromosome11.txt 7.1 million 2 months † 61 sec 12,567

pi.txt 10 million 4 months † 84 sec 14

68

Longest repeated substring: empirical analysis

 † estimated

Longest repeated substring not long. Hard to beat 3-way string quicksort.

Longest repeated substring very long.

• Radix sorts are quadratic in the length of the longest match.

• Ex: two copies of Aesop's fables.

69

Suffix sorting: worst-case input

 % more abcdefgh2.txt
 abcdefgh
 abcdefghabcdefgh
 bcdefgh
 bcdefghabcdefgh
 cdefgh
 cdefghabcdefgh
 defgh
 efghabcdefgh
 efgh
 fghabcdefgh
 fgh
 ghabcdefgh
 fh
 habcdefgh
 h

time to suffix sort (seconds)time to suffix sort (seconds)

algorithm mobydick.txt aesopaesop.txt

brute-force 36,000 † 4000 †

quicksort 9.5 167

LSD not fixed length not fixed length

MSD 395 out of memory

MSD with cutoff 6.8 162

3-way string quicksort 2.8 400

 † estimated

70

Suffix sorting challenge

Problem. Suffix sort an arbitrary string of length N.

Q. What is worst-case running time of best algorithm for problem?

• Quadratic.

• Linearithmic.

• Linear.

• Nobody knows.
suffix trees (see COS 423)✓

Manber's algorithm✓

71

Suffix sorting in linearithmic time

Manber's MSD algorithm.

• Phase 0: sort on first character using key-indexed counting sort.

• Phase i: given array of suffixes sorted on first 2i-1 characters,
create array of suffixes sorted on first 2i characters.

Worst-case running time. N log N.

• Finishes after lg N phases.

• Can perform a phase in linear time. (!) [stay tuned]

17 0
1 a b a a a a b c b a b a a a a a 0
16 a 0
3 a a a a b c b a b a a a a a 0
4 a a a b c b a b a a a a a 0
5 a a b c b a b a a a a a 0
6 a b c b a b a a a a a 0
15 a a 0
14 a a a 0
13 a a a a 0
12 a a a a a 0
10 a b a a a a a 0
0 b a b a a a a b c b a b a a a a a 0
9 b a b a a a a a 0
11 b a a a a a 0
7 b c b a b a a a a a 0
2 b a a a a b c b a b a a a a a 0
8 c b a b a a a a a 0

72

Linearithmic suffix sort example: phase 0

0 b a b a a a a b c b a b a a a a a 0
1 a b a a a a b c b a b a a a a a 0
2 b a a a a b c b a b a a a a a 0
3 a a a a b c b a b a a a a a 0
4 a a a b c b a b a a a a a 0
5 a a b c b a b a a a a a 0
6 a b c b a b a a a a a 0
7 b c b a b a a a a a 0
8 c b a b a a a a a 0
9 b a b a a a a a 0
10 a b a a a a a 0
11 b a a a a a 0
12 a a a a a 0
13 a a a a 0
14 a a a 0
15 a a 0
16 a 0
17 0

key-indexed counting sort (first character)

sorted

original suffixes

73

Linearithmic suffix sort example: phase 1

17 0
16 a 0
12 a a a a a 0
3 a a a a b c b a b a a a a a 0
4 a a a b c b a b a a a a a 0
5 a a b c b a b a a a a a 0
13 a a a a 0
15 a a 0
14 a a a 0
6 a b c b a b a a a a a 0
1 a b a a a a b c b a b a a a a a 0
10 a b a a a a a 0
0 b a b a a a a b c b a b a a a a a 0
9 b a b a a a a a 0
11 b a a a a a 0
2 b a a a a b c b a b a a a a a 0
7 b c b a b a a a a a 0
8 c b a b a a a a a 0

0 b a b a a a a b c b a b a a a a a 0
1 a b a a a a b c b a b a a a a a 0
2 b a a a a b c b a b a a a a a 0
3 a a a a b c b a b a a a a a 0
4 a a a b c b a b a a a a a 0
5 a a b c b a b a a a a a 0
6 a b c b a b a a a a a 0
7 b c b a b a a a a a 0
8 c b a b a a a a a 0
9 b a b a a a a a 0
10 a b a a a a a 0
11 b a a a a a 0
12 a a a a a 0
13 a a a a 0
14 a a a 0
15 a a 0
16 a 0
17 0

sorted

index sort (first two characters)original suffixes

74

Linearithmic suffix sort example: phase 2

17 0
16 a 0
15 a a 0
14 a a a 0
3 a a a a b c b a b a a a a a 0
12 a a a a a 0
13 a a a a 0
4 a a a b c b a b a a a a a 0
5 a a b c b a b a a a a a 0
1 a b a a a a b c b a b a a a a a 0
10 a b a a a a a 0
6 a b c b a b a a a a a 0
2 b a a a a b c b a b a a a a a 0 a 0
11 b a a a a a 0
0 b a b a a a a b c b a b a a a a a 0
9 b a b a a a a a 0
7 b c b a b a a a a a 0
8 c b a b a a a a a 0

0 b a b a a a a b c b a b a a a a a 0
1 a b a a a a b c b a b a a a a a 0
2 b a a a a b c b a b a a a a a 0
3 a a a a b c b a b a a a a a 0
4 a a a b c b a b a a a a a 0
5 a a b c b a b a a a a a 0
6 a b c b a b a a a a a 0
7 b c b a b a a a a a 0
8 c b a b a a a a a 0
9 b a b a a a a a 0
10 a b a a a a a 0
11 b a a a a a 0
12 a a a a a 0
13 a a a a 0
14 a a a 0
15 a a 0
16 a 0
17 0

sorted

index sort (first four characters)original suffixes

75

Linearithmic suffix sort example: phase 3

FINISHED! (no equal keys)

17 0
16 a 0
15 a a 0
14 a a a 0
13 a a a a 0
12 a a a a a 0
3 a a a a b c b a b a a a a a 0
4 a a a b c b a b a a a a a 0
5 a a b c b a b a a a a a 0
10 a b a a a a a 0
1 a b a a a a b c b a b a a a a a 0
6 a b c b a b a a a a a 0
11 b a a a a a 0
2 b a a a a b c b a b a a a a a 0 a 0
9 b a b a a a a a 0
0 b a b a a a a b c b a b a a a a a 0
7 b c b a b a a a a a 0
8 c b a b a a a a a 0

original suffixes

0 b a b a a a a b c b a b a a a a a 0
1 a b a a a a b c b a b a a a a a 0
2 b a a a a b c b a b a a a a a 0
3 a a a a b c b a b a a a a a 0
4 a a a b c b a b a a a a a 0
5 a a b c b a b a a a a a 0
6 a b c b a b a a a a a 0
7 b c b a b a a a a a 0
8 c b a b a a a a a 0
9 b a b a a a a a 0
10 a b a a a a a 0
11 b a a a a a 0
12 a a a a a 0
13 a a a a 0
14 a a a 0
15 a a 0
16 a 0
17 0

sorted

index sort (first eight characters)

17 0
16 a 0
15 a a 0
14 a a a 0
3 a a a a b c b a b a a a a a 0
12 a a a a a 0
13 a a a a 0
4 a a a b c b a b a a a a a 0
5 a a b c b a b a a a a a 0
1 a b a a a a b c b a b a a a a a 0
10 a b a a a a a 0
6 a b c b a b a a a a a 0
2 b a a a a b c b a b a a a a a 0 a 0
11 b a a a a a 0
0 b a b a a a a b c b a b a a a a a 0
9 b a b a a a a a 0
7 b c b a b a a a a a 0
8 c b a b a a a a a 0

0 b a b a a a a b c b a b a a a a a 0
1 a b a a a a b c b a b a a a a a 0
2 b a a a a b c b a b a a a a a 0
3 a a a a b c b a b a a a a a 0
4 a a a b c b a b a a a a a 0
5 a a b c b a b a a a a a 0
6 a b c b a b a a a a a 0
7 b c b a b a a a a a 0
8 c b a b a a a a a 0
9 b a b a a a a a 0
10 a b a a a a a 0
11 b a a a a a 0
12 a a a a a 0
13 a a a a 0
14 a a a 0
15 a a 0
16 a 0
17 0

76

Achieve constant-time string compare by indexing into inverse

0 + 4 = 4

9 + 4 = 13

suffixes4[13] ≤ suffixes4[4] (because inverse[13] < inverse[4])
so suffixes8[9] ≤ suffixes8[0]

0 14

1 9

2 12

3 4

4 7

5 8

6 11

7 16

8 17

9 15

10 10

11 13

12 5

13 6

14 3

15 2

16 1

17 0

index sort (first four characters) inverseoriginal suffixes

77

Suffix sort: experimental results

 † estimated

time to suffix sort (seconds)time to suffix sort (seconds)

algorithm mobydick.txt aesopaesop.txt

brute-force 36.000 † 4000 †

quicksort 9.5 167

LSD not fixed length not fixed length

MSD 395 out of memory

MSD with cutoff 6.8 162

3-way string quicksort 2.8 400

Manber MSD 17 8.5

String sorting summary

We can develop linear-time sorts.

• Compares not necessary for string keys.

• Use digits to index an array.

We can develop sublinear-time sorts.

• Should measure amount of data in keys, not number of keys.

• Not all of the data has to be examined.

3-way string quicksort is asymptotically optimal.

• 1.39 N lg N chars for random data.

Long strings are rarely random in practice.

• Goal is often to learn the structure!

• May need specialized algorithms.

78

‣ tries
‣ TSTs
‣ applications

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 26, 2010 8:19:33 AM

5.2 Tries

Review: summary of the performance of symbol-table implementations

Frequency of operations.

Q. Can we do better?
A. Yes, if we can avoid examining the entire key, as with string sorting.

2

implementation
typical case

ordered
operations

operations
on keys

implementation

search insert delete

ordered
operations

operations
on keys

red-black BST 1.00 lg N 1.00 lg N 1.00 lg N yes compareTo()

hashing 1 † 1 † 1 † no
equals()

hashcode()

† under uniform hashing assumption

String symbol table. Symbol table specialized to string keys.

Goal. As fast as hashing, more flexible than binary search trees.

3

String symbol table basic API

 public class StringST<Value> public class StringST<Value> string symbol table typestring symbol table type

StringST()StringST() create an empty symbol table

void put(String key, Value val)put(String key, Value val) put key-value pair into the symbol table

Value get(String key)get(String key) return value paired with given key

boolean contains(String key)contains(String key) is there a value paired with the given key?

4

String symbol table implementations cost summary

Challenge. Efficient performance for string keys.

Parameters

• N = number of strings
• L = length of string
• R = radix

file size words distinct

moby.txt 1.2 MB 210 K 32 K

actors.txt 82 MB 11.4 M 900 K

character accesses (typical case)character accesses (typical case)character accesses (typical case)character accesses (typical case) dedupdedup

implementation
search

hit
search
miss insert

space
(links)

moby.txt actors.txt

red-black BST L + c lg 2 N c lg 2 N c lg 2 N 4 N 1.40 97.4

hashing L L L 4 N to 16 N 0.76 40.6

5

‣ tries
‣ TSTs
‣ string symbol table API

Tries. [from retrieval, but pronounced "try"]

• Store characters and values in nodes (not keys).

• Each node has R children, one for each possible character.

Ex. she sells sea shells by the

6

Tries

Anatomy of a trie

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 2

value for she in node
corresponding to
last key character

label each node with
character associated
with incoming link

link to trie for all keys
that start with s

link to trie for all keys
that start with she

root

key value
4by
2sea
1sells
0she
3shells
5the

Follow links corresponding to each character in the key.

• Search hit: node where search ends has a non-null value.

• Search miss: reach a null link or node where search ends has null value.

7

Search in a trie

Trie search hit outcomes

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 2

get("shells")

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 2

return the value in the
node corresponding to

the last key character (0)

get("she")

return the value in the
node corresponding to

the last key character (3)

search may terminate
at an internal node

Trie search hit outcomes

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 2

get("shells")

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 2

return the value in the
node corresponding to

the last key character (0)

get("she")

return the value in the
node corresponding to

the last key character (3)

search may terminate
at an internal node

Follow links corresponding to each character in the key.

• Search hit: node where search ends has a non-null value.

• Search miss: reach a null link or node where search ends has null value.

8

Search in a trie

Trie search miss outcomes

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 2

get("shell")

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 2

no link for the o,
so return null

get("shore")

no value in the node
corresponding to the last key

character, so return null

Trie search miss outcomes

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 2

get("shell")

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 2

no link for the o,
so return null

get("shore")

no value in the node
corresponding to the last key

character, so return null

Follow links corresponding to each character in the key.

• Encounter a null link: create new node.

• Encounter the last character of the key: set value in that node.

9

Insertion into a trie

Trie insertion examples

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s

6

b

y 4

a 7

put("sea", 7)

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l 7

o

r

e

s 3

b

y 4

a 2

put("shore", 8)

node corresponding to
the last key character
exists, so set its value

nodes corresponding to
characters at the end of the

key do not exist, so create them
and set the value of the last one

Trie insertion examples

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s

6

b

y 4

a 7

put("sea", 7)

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l 7

o

r

e

s 3

b

y 4

a 2

put("shore", 8)

node corresponding to
the last key character
exists, so set its value

nodes corresponding to
characters at the end of the

key do not exist, so create them
and set the value of the last one

10

Trie construction example

s

h

e

Trie construction trace for standard indexing client

key value key value
root

one node
for each

key character

value is in node
corresponding to

last character

key is sequence
of characters from

root to value

0

t

h

e 5

s

h

e 0

e

l

l

s 1

s

h

e 0

e

l

l

s 1

a 2

s

h

e 0

e

l

l

s 1

l

l

s 3

a 2

0she

1sells

2sea

3shells

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 2

4by

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 2

5the

nodes corresponding to
characters at the end of the

key do not exist, so create them
and set the value of the last one

key value

o

r

e 7

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 6

6sea

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 6

7shore

node corresponding to
the last key character

exists, so reset its value

11

Trie representation: Java implementation

Node. A value, plus references to R nodes.

private static class Node
{
 private Object value;
 private Node[] next = new Node[R];
}

use Object instead of Value since
no generic array creation in Java

Trie representation

each node has
an array of links

and a value

characters are implicitly
defined by link index

s

h

e 0

e

l

l

s 1

a

s

h

e

e

l

l

s

a
0

1

22

12

Trie representation: Java implementation

Node. A value, plus references to R nodes.

private static class Node
{
 private Object value;
 private Node[] next = new Node[R];
}

Trie representation (R = 26)

each node has
an array of links

and a value

characters are implicitly
defined by link indexs

h

e 0

e

l

l

s 1

a

s

h

e

e

l

l

s

a

2 0
2

1

use Object instead of Value since
no generic array creation in Java

public class TrieST<Value>
{
 private static final int R = 256;
 private Node root;

 private static class Node
 { /* see previous slide */ }

 public void put(String key, Value val)
 { root = put(root, key, val, 0); }

 private Node put(Node x, String key, Value val, int d)
 {
 if (x == null) x = new Node();
 if (d == key.length()) { x.val = val; return x; }
 char c = key.charAt(d);
 x.next[c] = put(x.next[c], key, val, d+1);
 return x;
 }

}

13

R-way trie: Java implementation

extended ASCII

 public boolean contains(String key)
 { return get(key) != null; }

 public Value get(String key)
 {
 Node x = get(root, key, 0);
 if (x == null) return null;
 return (Value) x.val;
 }

 private Node get(Node x, String key, int d)
 {
 if (x == null) return null;
 if (d == key.length()) return x;
 char c = key.charAt(d);
 return get(x.next[c], key, d+1);
 }

14

R-way trie: Java implementation (continued)

Trie performance

Search miss.

• Could have mismatch on first character.

• Typical case: examine only a few characters.

Search hit. Need to examine all L characters for equality.

Space. R null links at each leaf.
(but sublinear space possible if many short strings share common prefixes)

Bottom line. Fast search hit, sublinear-time search miss, wasted space.

15

16

String symbol table implementations cost summary

R-way trie.

• Method of choice for small R.

• Too much memory for large R.

Challenge. Use less memory, e.g., 65,536-way trie for Unicode!

character accesses (typical case)character accesses (typical case)character accesses (typical case)character accesses (typical case) dedupdedup

implementation
search

hit
search
miss insert

space
(links)

moby.txt actors.txt

red-black BST L + c lg 2 N c lg 2 N c lg 2 N 4 N 1.40 97.4

hashing L L L 4 N to 16 N 0.76 40.6

R-way trie L log R N L (R+1) N 1.12 out of memory

17

Digression: out of memory?

“ 640 K ought to be enough for anybody. ”
 — attributed to Bill Gates, 1981
 (commenting on the amount of RAM in personal computers)

“ 64 MB of RAM may limit performance of some Windows XP
 features; therefore, 128 MB or higher is recommended for
 best performance. ” — Windows XP manual, 2002

“ 64 bit is coming to desktops, there is no doubt about that.
 But apart from Photoshop, I can't think of desktop applications
 where you would need more than 4GB of physical memory, which
 is what you have to have in order to benefit from this technology.
 Right now, it is costly. ” — Bill Gates, 2003

Digression: out of memory?

A short (approximate) history.

18

machine year
address

bits
addressable

memory
typical actual

memory cost

PDP-8 1960s 12 6 KB 6 KB $16K

PDP-10 1970s 18 256 KB 256 KB $1M

IBM S/360 1970s 24 4 MB 512 KB $1M

VAX 1980s 32 4 GB 1 MB $1M

Pentium 1990s 32 4 GB 1 GB $1K

Xeon 2000s 64 enough 4 GB $100

?? future 128+ enough enough $1

“ 512-bit words ought to be enough for anybody. ”
 — RS, 1995

A modest proposal

Number of atoms in the universe (estimated). ≤ 2266.
Age of universe (estimated). 14 billion years ~ 259 seconds ≤ 289 nanoseconds.

Q. How many bits address every atom that ever existed?
A. Use a unique 512-bit address for every atom at every time quantum.

Ex. Use 256-way trie to map atom to location.

• Represent atom as 64 8-bit chars (512 bits).

• 256-way trie wastes 255/256 actual memory.

• Need better use of memory.

19

atom time cushion for whatever

266 bits 89 bits 157 bits

20

‣ tries
‣ TSTs
‣ string symbol table API

21

Ternary search tries

TST. [Bentley-Sedgewick, 1997]

• Store characters and values in nodes (not keys).

• Each node has three children: smaller (left), equal (middle), larger (right).

TST. [Bentley-Sedgewick, 1997]

• Store characters and values in nodes (not keys).

• Each node has three children: smaller (left), equal (middle), larger (right).

22

Ternary search tries

TST representation of a trie

each node has
three links

link to TST for all keys
that start with s

link to TST for all keys
that start with
a letter before s

t

h

e 8

a

r

e 12

s

h u

e 10

e

l

l

s 11

l

l

s 15

r 0

e

l

y 13

o

7

r

e

b

y 4

a 14

t

h

e 8

a

r

e 12

s

h
u

e 10

e

l

l

s 11

l

l

s 15

r 0

e

l

y 13

o

7

r

e

b

y 4

a
14

Follow links corresponding to each character in the key.

• If less, take left link; if greater, take right link.

• If equal, take the middle link and move to the next key character.

Search hit. Node where search ends has a non-null value.
Search miss. Reach a null link or node where search ends has null value.

23

Search in a TST

TST search example

return value
associated with

last key character

match: take middle link,
move to next char

mismatch: take left or right link,
 do not move to next char

t

h

e 8

a

r

e 12

s

h
u

e 10

e

l

l

s 11

l

l

s 15

r

e

l

y 13

o

7

r

e

b

y 4

a14

get("sea")

26-way trie. 26 null links in each leaf.

TST. 3 null links in each leaf.

24

26-way trie vs. TST

26-way trie (1035 null links, not shown)

TST (155 null links)

now
for
tip
ilk
dim
tag
jot
sob
nob
sky
hut
ace
bet
men
egg
few
jay
owl
joy
rap
gig
wee
was
cab
wad
caw
cue
fee
tap
ago
tar
jam
dug
and

A TST node is five fields:

• A value.

• A character c.

• A reference to a left TST.

• A reference to a middle TST.

• A reference to a right TST.

25

TST representation in Java

private class Node
{
 private Value val;
 private char c;
 private Node left, mid, right;
}

Trie node representations

s

e h u

link for keys
that start with s

link for keys
that start with su

h
ue

standard array of links (R = 26) ternary search tree (TST)

s

26

TST: Java implementation

public class TST<Value>
{
 private Node root;

 private class Node
 { /* see previous slide */ }

 public void put(String key, Value val)
 { root = put(root, key, val, 0); }

 private Node put(Node x, String key, Value val, int d)
 {
 char c = s.charAt(d);
 if (x == null) { x = new Node(); x.c = c; }
 if (c < x.c) x.left = put(x.left, key, val, d);
 else if (c > x.c) x.right = put(x.right, key, val, d);
 else if (d < s.length() - 1) x.mid = put(x.mid, key, val, d+1);
 else x.val = val;
 return x;
 }

}

27

TST: Java implementation (continued)

 public boolean contains(String key)
 { return get(key) != null; }

 public Value get(String key)
 {
 Node x = get(root, key, 0);
 if (x == null) return null;
 return x.val;
 }

 private Node get(Node x, String key, int d)
 {
 if (x == null) return null;
 char c = s.charAt(d);
 if (c < x.c) return get(x.left, key, d);
 else if (c > x.c) return get(x.right, key, d);
 else if (d < key.length() - 1) return get(x.mid, key, d+1);
 else return x;
 }

28

String symbol table implementation cost summary

Remark. Can build balanced TSTs via rotations to achieve L + log N
worst-case guarantees.

Bottom line. TST is as fast as hashing (for string keys), space efficient.

character accesses (typical case)character accesses (typical case)character accesses (typical case)character accesses (typical case) dedupdedup

implementation
search

hit
search
miss insert

space
(links)

moby.txt actors.txt

red-black BST L + c lg 2 N c lg 2 N c lg 2 N 4 N 1.40 97.4

hashing L L L 4 N to 16 N 0.76 40.6

R-way trie L log R N L (R + 1) N 1.12 out of memory

TST L + ln N ln N L + ln N 4 N 0.72 38.7

29

TST with R2 branching at root

Hybrid of R-way trie and TST.

• Do R2-way branching at root.

• Each of R2 root nodes points to a TST.

Q. What about one- and two-letter words?

TST

aa

TST

ab

TST

ac

TST

zz

TST

zy

…

array of 262 roots

30

String symbol table implementation cost summary

character accesses (typical case)character accesses (typical case)character accesses (typical case)character accesses (typical case) dedupdedup

implementation
search

hit
search
miss insert

space
(links)

moby.txt actors.txt

red-black BST L + c lg 2 N c lg 2 N c lg 2 N 4 N 1.40 97.4

hashing L L L 4 N to 16 N 0.76 40.6

R-way trie L log R N L (R + 1) N 1.12 out of memory

TST L + ln N ln N L + ln N 4 N 0.72 38.7

TST with R2 L + ln N ln N L + ln N 4 N + R2 0.51 32.7

31

TST vs. hashing

Hashing.

• Need to examine entire key.

• Search hits and misses cost about the same.

• Need good hash function for every key type.

• No help for ordered symbol table operations.

TSTs.

• Works only for strings (or digital keys).

• Only examines just enough key characters.

• Search miss may only involve a few characters.

• Can handle ordered symbol table operations (plus others!).

Bottom line. TSTs are:

• Faster than hashing (especially for search misses).
More flexible than red-black trees (next).

32

‣ tries
‣ TSTs
‣ string symbol table API

Character-based operations. The string symbol table API supports several
useful character-based operations.

Prefix match. The keys with prefix "sh" are "she", "shells", and "shore".

Longest prefix. The key that is the longest prefix of "shellsort" is "shells".

Wildcard match. The key that match ".he" are "she" and "the".

33

String symbol table API

by sea sells she shells shore the

Remark. Can also add other ordered ST methods, e.g., floor() and rank().
34

String symbol table API

6476.2 ! String Symbol Tables

In summary, we will develop implementations for the following API:

public class StringST<Value>

StringST() create a symbol table with string keys

StringST(Alphabet alpha)
create a symbol table with string keys
whose characters are taken from alpha.

void put(String key, Value val)
put key-value pair into the symbol table
(remove key from table if value is null)

Value get(String key)
value paired with key
(null if key is absent)

void delete(String key) remove key (and its value) from table
boolean contains(String key) is there a value paired with key?
boolean isEmpty() is the table empty?
String longestPrefixOf(String s) return the longest key that is a pre!x of s

Iterable<String> keysWithPrefix(String s) all the keys having s as a pre!x.

Iterable<String> keysThatMatch(String s)
all the keys that match s (where .
matches any character).

int size() number of key-value pairs in the table
Iterable<String> keys() all the keys in the symbol table

API for a symbol table with string keys

This API differs from the general-purpose symbol-table API introduced in Chapter 4
in just the following aspects:

!" We replace the generic type Key with the concrete type String.
!" We add a constructor that allows clients to specify the alphabet.
!" We add three new methods, longestPrefixOf(), keysWithPrefix() and

keysThatMatch()
We retain the basic conventions of our symbol-table implementations in Chapter 4
(no duplicate or null keys and no null values). To focus on the main ideas, we con-
centrate on put() and get(), assume (as in Chapter 4) default implementations of
contains() and isEmpty() and leave implementations of size() and delete() for
exercises.

Since strings are Comparable, extending the API to also include the ordered opera-
tions defined in Chapter 4 is also possible (and worthwhile); we leave those imple-
mentations (which are generally straightforward) to exercises and booksite code.

To delete a key-value pair:

• Find the node corresponding to key and set value to null.

• If that node has all null links, remove that node (and recur).

35

Deletion in an R-way trie

Deleting a key (and its associated value) from a trie

s

h

e 0

e

l

l

s 1

l

l

s 3

a 2

delete("shells");

s

h

e 0

e

l

l

s 1

l

l

a 2

null value and links,
so remove node

(return null link)

s

h

e 0

e

l

l

s 1

l

a 2

s

h

e 0

e

l

l

s 1

a 2

non-null value
so do not remove node
(return link to node)

non-null link
so do not remove node
(return link to node)

s

h

e 0

e

l

l

s 1

a 2

s

h

e 0

e

l

l

s 1

a 2

s

h

e 0

e

l

l

s 1

a 2

set value
to null

To iterate through all keys in sorted order:

• Do inorder traversal of trie; add keys encountered to a queue.

• Maintain sequence of characters on path from root to node.

36

Ordered iteration

o

r

e 7

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 6

b
by
s

se
sea
sel
sell

sells
sh

she
shell
shells

sho
shor
shore

t
th

the

by

by sea

by sea sells

by sea sells she

by sea sells she shells

by sea sells she shells shore

by sea sells she shells shore the

Collecting the keys in a trie (trace)

key q

keysWithPrefix("");

To iterate through all keys in sorted order:

• Do inorder traversal of trie; add keys encountered to a queue.

• Maintain sequence of characters on path from root to node.

37

Ordered iteration: Java implementation

public Iterable<String> keys()
{
 Queue<String> queue = new Queue<String>();
 collect(root, "", queue);
 return queue;
}

private void collect(Node x, String prefix, Queue<String> q)
{
 if (x == null) return;
 if (x.val != null) q.enqueue(prefix);
 for (char c = 0; c < R; c++)
 collect(x.next[c], prefix + c, q);
}

sequence of characters
on path from root to x

Find all keys in symbol table starting with a given prefix.

Ex. Autocomplete in a cell phone, search bar, text editor, or shell.

• User types characters one at a time.

• System reports all matching strings.

38

Prefix matches

Find all keys in symbol table starting with a given prefix.

39

Prefix matches

o

r

e 7

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 6

find subtrie for all
keys beginning with "sh"

o

r

e 7

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 6

collect keys
in that subtrie

keysWithPrefix("sh");

Pre!x match in a trie

sh
she
shel
shell
shells

sho
shor
shore

she

she shells

she shells shore

key q

public Iterable<String> keysWithPrefix(String prefix)
{
 Queue<String> queue = new Queue<String>();
 Node x = get(root, prefix, 0);
 collect(x, prefix, queue);
 return queue;
}

root of subtrie for all strings
beginning with given prefix

40

Longest prefix

Find longest key in symbol table that is a prefix of query string.

Ex. Search IP database for longest prefix matching destination IP,
and route packets accordingly.

Q. Why isn't longest prefix match the same as floor or ceiling?

"128"
"128.112"
"128.112.055"
"128.112.055.15"
"128.112.136"
"128.112.155.11"
"128.112.155.13"
"128.222"
"128.222.136"

prefix("128.112.136.11") = "128.112.136"
prefix("128.166.123.45") = "128"

represented as 32-bit binary number
for IPv4 (instead of string)

41

Longest prefix

Find longest key in symbol table that is a prefix of query string.

• Search for query string.

• Keep track of longest key encountered.

Possibilities for longestPrefixOf()

s

h

e 0

e

l

l

s 1

l

l

s 3

a 2

"she" "shell"

search ends at
end of string

value is not null
 return she

s

h

e 0

e

l

l

s 1

l

l

s 3

a 2 search ends at
end of string
value is null
return she

(last key on path)

"shellsort"

s

h

e 0

e

l

l

s 1

l

l

s 3

a 2

search ends at
 null link

return shells
(last key on path)

search ends at
 null link

return she
(last key on path)

"shelters"

s

h

e 0

e

l

l

s 1

l

l

s 3

a 2

42

Longest prefix: Java implementation

Find longest key in symbol table that is a prefix of query string.

• Search for query string.

• Keep track of longest key encountered.

 public String longestPrefixOf(String query)
 {
 int length = search(root, query, 0, 0);
 return query.substring(0, length);
 }

 private int search(Node x, String query, int d, int length)
 {
 if (x == null) return length;
 if (x.val != null) length = d;
 if (d == query.length()) return length;
 char c = query.charAt(d);
 return search(x.next[c], query, d+1, length);
 }

43

T9 texting

Goal. Type text messages on a phone keypad.

Multi-tap input. Enter a letter by repeatedly pressing a key until the desired
letter appears.

T9 text input. ["A much faster and more fun way to enter text."]

• Find all words that correspond to given sequence of numbers.

• Press 0 to see all completion options.

Ex. hello

• Multi-tap: 4 4 3 3 5 5 5 5 5 5 6 6 6

• T9: 4 3 5 5 6

www.t9.com

44

A Letter to t9.com

To: info@t9support.com
Date: Tue, 25 Oct 2005 14:27:21 -0400 (EDT)

Dear T9 texting folks,

I enjoyed learning about the T9 text system
from your webpage, and used it as an example
in my data structures and algorithms class.
However, one of my students noticed a bug
in your phone keypad

 http://www.t9.com/images/how.gif

Somehow, it is missing the letter s. (!)

Just wanted to bring this information to
your attention and thank you for your website.

Regards,

Kevin

where’s the “s” ??

45

A world without “s” ??

To: "'Kevin Wayne'" <wayne@CS.Princeton.EDU>
Date: Tue, 25 Oct 2005 12:44:42 -0700

Thank you Kevin.

I am glad that you find T9 o valuable for your
cla. I had not noticed thi before. Thank for
writing in and letting u know.

Take care,

Brooke nyder
OEM Dev upport
AOL/Tegic Communication
1000 Dexter Ave N. uite 300
eattle, WA 98109

ALL INFORMATION CONTAINED IN THIS EMAIL IS CONSIDERED
CONFIDENTIAL AND PROPERTY OF AOL/TEGIC COMMUNICATIONS

46

Compressing a trie

Collapsing 1-way branches at bottom.
Internal node stores character; leaf node stores suffix (or full key).

Collapsing interior 1-way branches.
Node stores a sequence of characters.

1

1 2

2

put("shells", 1);
put("shellfish", 2);

Removing one-way branching in a trie

h

e

l

f

i

s

h

l

s

s s

shell

fish

internal
one-way

branching

external
one-way

branching

standard
trie

no one-way
branching

47

A classic algorithm

Patricia tries. [Practical Algorithm to Retrieve Information Coded in Alphanumeric]

• Collapse one-way branches in binary trie.

• Thread trie to eliminate multiple node types.

Applications.

• Database search.

• P2P network search.

• IP routing tables: find longest prefix match.

• Compressed quad-tree for N-body simulation.

• Efficiently storing and querying XML documents.

Implementation. One step beyond this lecture.

48

Suffix tree

Suffix tree. Threaded trie with collapsed 1-way branching for string suffixes.

Applications.

• Linear-time longest repeated substring.

• Computational biology databases (BLAST, FASTA).

Implementation. One step beyond this lecture.

49

String symbol tables summary

A success story in algorithm design and analysis.

Red-black tree.

• Performance guarantee: log N key compares.

• Supports ordered symbol table API.

Hash tables.

• Performance guarantee: constant number of probes.

• Requires good hash function for key type.

Tries. R-way, TST.

• Performance guarantee: log N characters accessed.

• Supports extensions to API based on partial keys.

Bottom line. You can get at anything by examining 50-100 bits (!!!)

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 26, 2010 8:28:00 AM

5.3 Substring Search

‣ brute force
‣ Knuth-Morris-Pratt
‣ Boyer-Moore
‣ Rabin-Karp

2

Substring search

Goal. Find pattern of length M in a text of length N.

Computer forensics. Search memory or disk for signatures,
e.g., all URLs or RSA keys that the user has entered.

typically N >> M

http://citp.princeton.edu/memory

Substring search

N E E D L E

I N A H A Y S T A C K N E E D L E I N A

match

pattern

text

3

Applications

• Parsers.

• Spam filters.

• Digital libraries.

• Screen scrapers.

• Word processors.

• Web search engines.

• Electronic surveillance.

• Natural language processing.

• Computational molecular biology.

• FBIs Digital Collection System 3000.

• Feature detection in digitized images.

• ...

4

Application: Spam filtering

Identify patterns indicative of spam.

• PROFITS

• L0SE WE1GHT

• herbal Viagra

• There is no catch.

• L0W M0RTGAGE RATES

• This is a one-time mailing.

• This message is sent in compliance with
 spam regulations.

• You're getting this message because you
 registered with one of our marketing partners.

Application: Electronic surveillance

5

Need to monitor all
internet traffic.

(security)
No way!
(privacy)

Well, we’re mainly
interested in

“ATTACK AT DAWN”

OK. Build a
machine that just

looks for that.

“ATTACK AT DAWN”
substring search

machine

 found

6

Application: Screen scraping

Goal. Extract relevant data from web page.

Ex. Find string delimited by and after first occurrence of
pattern Last Trade:.

http://finance.yahoo.com/q?s=goog

...
<tr>
<td class= "yfnc_tablehead1"
width= "48%">
Last Trade:
</td>
<td class= "yfnc_tabledata1">
<big>452.92</big>
</td></tr>
<td class= "yfnc_tablehead1"
width= "48%">
Trade Time:
</td>
<td class= "yfnc_tabledata1">
...

7

Screen scraping: Java implementation

Java library. The indexOf() method in Java's string library returns the index
of the first occurrence of a given string, starting at a given offset.

public class StockQuote
{
 public static void main(String[] args)
 {
 String name = "http://finance.yahoo.com/q?s=";
 In in = new In(name + args[0]);
 String text = in.readAll();
 int start = text.indexOf("Last Trade:", 0);
 int from = text.indexOf("", start);
 int to = text.indexOf("", from);
 String price = text.substring(from + 3, to);
 StdOut.println(price);
 }
}

% java StockQuote goog
256.44

% java StockQuote msft
19.68

8

‣ brute force
‣ Knuth-Morris-Pratt
‣ Boyer-Moore
‣ Rabin-Karp

Check for pattern starting at each text position.

9

Brute-force substring search

Brute-force substring search

 i j i+j 0 1 2 3 4 5 6 7 8 9 10

 A B A C A D A B R A C

 0 2 2 A B R A
 1 0 1 A B R A
 2 1 3 A B R A
 3 0 3 A B R A
 4 1 5 A B R A
 5 0 5 A B R A
 6 4 10 A B R A

entries in gray are
for reference only

entries in black
match the text

return i when j is M

entries in red are
mismatches

txt

pat

match

Check for pattern starting at each text position.

public static int search(String pat, String txt)
{
 int M = pat.length();
 int N = txt.length();
 for (int i = 0; i <= N - M; i++)
 {
 int j;
 for (j = 0; j < M; j++)
 if (txt.charAt(i+j) != pat.charAt(j))
 break;
 if (j == M) return i;
 }
 return N;
}

10

Brute-force substring search: Java implementation

index in text where
pattern starts

not found

Brute-force algorithm can be slow if text and pattern are repetitive.

Worst case. ~ M N char compares.
11

Brute-force substring search: worst case

Brute-force substring search (worst case)

 i j i+j 0 1 2 3 4 5 6 7 8 9

 A A A A A A A A A B

 0 4 4 A A A A B
 1 4 5 A A A A B
 2 4 6 A A A A B
 3 4 7 A A A A B
 4 4 8 A A A A B
 5 4 9 A A A A B

txt

pat

In typical applications, we want to avoid backup in text stream.

• Treat input as stream of data.

• Abstract model: StdIn.

Brute-force algorithm needs backup for every mismatch

Approach 1. Maintain buffer of size M (build backup into StdIn)
Approach 2. Stay tuned.

A B
 A A A A A B

Backup

12

“ATTACK AT DAWN”
substring search

machine

 found

A B
 A A A A A B

matched chars mismatch

shift pattern right one position

backup

Same sequence of char compares as previous implementation.

• i points to end of sequence of already-matched chars in text.
• j stores number of already-matched chars (end of sequence in pattern).

public static int search(String pat, String txt)
{
 int i, N = txt.length();
 int j, M = pat.length();
 for (i = 0, j = 0; i < N && j < M; i++)
 {
 if (txt.charAt(i) == pat.charAt(j)) j++;
 else { i -= j; j = 0; }
 }
 if (j == M) return i - M;
 else return N;
}

13

Brute-force substring search: alternate implementation

backup

14

Algorithmic challenges in substring search

Brute-force is often not good enough.

Theoretical challenge. Linear-time guarantee.

Practical challenge. Avoid backup in text stream. often no room or time to save text

fundamental algorithmic problem

Now is the time for all people to come to the aid of their party. Now is the time for all good people to
come to the aid of their party. Now is the time for many good people to come to the aid of their party.
Now is the time for all good people to come to the aid of their party. Now is the time for a lot of good
people to come to the aid of their party. Now is the time for all of the good people to come to the aid of
their party. Now is the time for all good people to come to the aid of their party. Now is the time for
each good person to come to the aid of their party. Now is the time for all good people to come to the aid
of their party. Now is the time for all good Republicans to come to the aid of their party. Now is the
time for all good people to come to the aid of their party. Now is the time for many or all good people to
come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now
is the time for all good Democrats to come to the aid of their party. Now is the time for all people to
come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now
is the time for many good people to come to the aid of their party. Now is the time for all good people to
come to the aid of their party. Now is the time for a lot of good people to come to the aid of their
party. Now is the time for all of the good people to come to the aid of their party. Now is the time for
all good people to come to the aid of their attack at dawn party. Now is the time for each person to come
to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is
the time for all good Republicans to come to the aid of their party. Now is the time for all good people
to come to the aid of their party. Now is the time for many or all good people to come to the aid of their
party. Now is the time for all good people to come to the aid of their party. Now is the time for all good
Democrats to come to the aid of their party.

15

‣ brute force
‣ Knuth-Morris-Pratt
‣ Boyer-Moore
‣ Rabin-Karp

Knuth-Morris-Pratt substring search

Intuition. Suppose we are searching in text for pattern BAAAAAAAAA.

• Suppose we match 5 chars in pattern, with mismatch on 6th char.

• We know previous 6 chars in text are BAAAAB.

• Don't need to back up text pointer!

Remark. It is always possible to avoid backup (!)
16

Text pointer backup in substring searching

A B A A A A B A A A A A A A A A

 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A

 B A A A A A A A A A

i

after mismatch
on sixth char

but no backup
is needed

brute-force backs
up to try this

and this

and this

and this

and this

pattern

text

assuming {A, B} alphabet

KMP substring search preprocessing (concept)

Q. What pattern char do we compare to the next text char on match?
A. Easy: compare next pattern char to next text char.

17

A A A A B B B B C C C A B A B A C ? ? ? ? ? ? ? ? ? ?
 A B A B A C Y Y

matched chars current char
is match

pat.charAt(6)

 j 0 1 2 3 4 5
pat.charAt(j) A B A B A C
 A 1 1 3 1 5 1
 dfa[][j] B 0 2 0 4 0 4
 C 0 0 0 0 0 6

current text char: c
current pattern index: j
next pattern index: dfa[c][j]

table giving pattern char to compare to the next text char

KMP substring search preprocessing (concept)

Q. What pattern char do we compare to the next text char on mismatch?
A. Check each position, working from left to right.

18

A A A A B B B B C C C A B A B A A ? ? ? ? ? ? ? ? ? ?
 A B A B A C
 A B A B A C
 A B A B A C
 A B A B A C
 A B A B A C
 A B A B A C

✘

✔

✘

✘

✘

matched chars

table giving pattern char to compare to the next text char

 j 0 1 2 3 4 5
pat.charAt(j) A B A B A C
 A 1 1 3 1 5 1
 dfa[][j] B 0 2 0 4 0 4
 C 0 0 0 0 0 6

pat.charAt(1)

current char
is mismatch

✘

KMP substring search preprocessing (concept)

Q. What pattern char do we compare to the next text char on mismatch?
A. Check each position, working from left to right.

19

A A A A B B B B C C C A B A B A B ? ? ? ? ? ? ? ? ? ?
 A B A B A C
 A B A B A C
 A B A B A C

✘

✔

matched chars

table giving pattern char to compare to the next text char

 j 0 1 2 3 4 5
pat.charAt(j) A B A B A C
 A 1 1 3 1 5 1
 dfa[][j] B 0 2 0 4 0 4
 C 0 0 0 0 0 6

pat.charAt(4)

current char
is mismatch

✘

Fill in table columns by doing computation for each possible mismatch position.

A B A B A C

A
B
 A B A B A C
C
 A B A B A C

A B
A A
 A B A B A C
A C
 A B A B A C

A B A
A B B
 A B A B A C
A B C
 A B A B A C

A B A B
A B A A
 A B A B A C
A B A C
 A B A B A C

A B A B A
A B A B B
 A B A B A C
A B A B C
 A B A B A C

A B A B A C
A B A B A A
 A B A B A C
A B A B A B
 A B A B A C

j pat. dfa[][j]
 charAt(j) A B C

0 A 1

 0

 0

1 B 2

 1

 0

2 A 3

 0

 0

3 B 4

 1

 0

4 A 5

 0

 0

5 C 6

 1

 4

Pattern backup for A B A B A C in KMP substring search

backup is length of max overlap
of beginning of pattern
with known text chars

match (move to next char)
set dfa[pat.charAt(j)][j]

to j+1

known text chars
on mismatch

text (pattern itself)

mismatch
(back up in pattern)

KMP substring search preprocessing (concept)

20

A B A B A C

A
B
 A B A B A C
C
 A B A B A C

A B
A A
 A B A B A C
A C
 A B A B A C

A B A
A B B
 A B A B A C
A B C
 A B A B A C

A B A B
A B A A
 A B A B A C
A B A C
 A B A B A C

A B A B A
A B A B B
 A B A B A C
A B A B C
 A B A B A C

A B A B A C
A B A B A A
 A B A B A C
A B A B A B
 A B A B A C

j pat. dfa[][j]
 charAt(j) A B C

0 A 1

 0

 0

1 B 2

 1

 0

2 A 3

 0

 0

3 B 4

 1

 0

4 A 5

 0

 0

5 C 6

 1

 4

Pattern backup for A B A B A C in KMP substring search

backup is length of max overlap
of beginning of pattern
with known text chars

match (move to next char)
set dfa[pat.charAt(j)][j]

to j+1

known text chars
on mismatch

text (pattern itself)

mismatch
(back up in pattern)

A B A B A C

A
B
 A B A B A C
C
 A B A B A C

A B
A A
 A B A B A C
A C
 A B A B A C

A B A
A B B
 A B A B A C
A B C
 A B A B A C

A B A B
A B A A
 A B A B A C
A B A C
 A B A B A C

A B A B A
A B A B B
 A B A B A C
A B A B C
 A B A B A C

A B A B A C
A B A B A A
 A B A B A C
A B A B A B
 A B A B A C

j pat. dfa[][j]
 charAt(j) A B C

0 A 1

 0

 0

1 B 2

 1

 0

2 A 3

 0

 0

3 B 4

 1

 0

4 A 5

 0

 0

5 C 6

 1

 4

Pattern backup for A B A B A C in KMP substring search

backup is length of max overlap
of beginning of pattern
with known text chars

match (move to next char)
set dfa[pat.charAt(j)][j]

to j+1

known text chars
on mismatch

text (pattern itself)

mismatch
(back up in pattern)

DFA is abstract string-searching machine.

• Finite number of states (including start and halt).

• Exactly one transition for each char in alphabet.

• Accept if sequence of transitions leads to halt state.

Deterministic finite state automaton (DFA)

21

If in state j reading char c:
halt if j is 6
else move to state dfa[c][j]

DFA corresponding to the string A B A B A C

match
transition

(increment)

mismatch
transition
(back up)

halt state

0 1 2 3 4 5 6A B A A

B,C

A

CB,CC

B

AB,C A

B C

 0 1 2 3 4 5
 A B A B A C
 1 1 3 1 5 1
 0 2 0 4 0 4
 0 0 0 0 0 6

dfa[][j]

pat.charAt(j)
j

A
B
C

graphical representation

internal representation

A B A B A C
 A B A B A C
 A B A B A C
 A B A B A C
 A B A B A C
 A B A B A C
 A B A B A C
 A B A B A C
 A B A B A C
 A B A B A C
 A B A B A C
 A B A B A C
 A B A B A C
 A B A B A C
 A B A B A C
 A B A B A C

Trace of KMP substring search (DFA simulation) for A B A B A C

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 B C B A A B A C A A B A B A C A A

 0 0 0 0 1 1 2 3 0 1 1 2 3 4 5 6

found
return i - M = 9

mismatch:
 set j to dfa[txt.charAt(i)][j]
 implies pattern shift to align
 pat.charAt(j) with
 txt.charAt(i+1)

match:
 set j to dfa[txt.charAt(i)][j]
 = dfa[pat.charAt(j)][j]
 = j+1

read this char

in this state

go to this state

i

txt.charAt(i)

j

KMP substring search: trace

22

DFA corresponding to the string A B A B A C

 0 1 2 3 4 5
 A B A B A C
 1 1 3 1 5 1
 0 2 0 4 0 4
 0 0 0 0 0 6

dfa[][j]

pat.charAt(j)
j

A
B
C

KMP search: Java implementation

KMP implementation. Build machine for pattern, simulate it on text.

Key differences from brute-force implementation.

• Text pointer i never decrements.

• Need to precompute dfa[][] table from pattern.

Running time.

• Simulate DFA: at most N character accesses.

• Build DFA: at most M2 R character accesses (stay tuned for better method).
23

public int search(String txt)
{
 int i, j, N = txt.length();
 for (i = 0, j = 0; i < N && j < M; i++)
 j = dfa[txt.charAt(i)][j];
 if (j == M) return i - M;
 else return N;
}

KMP search: Java implementation

Key differences from brute-force implementation.

• Text pointer i never decrements.

• Need to precompute dfa[][] table from pattern.

• Could use input stream.

24

public int search(In in)
{
 int i, j;
 for (i = 0, j = 0; !in.isEmpty() && j < M; i++)
 j = dfa[in.readChar()][j];
 if (j == M) return i - M;
 else return i;
}

A B B B B C C C A B A B A ? ? ? ? ? ? ?
 A B A B A C

Q. What state X would the DFA be in if it were restarted to correspond to
shifting the pattern one position to the right?

A. Use the (partially constructed) DFA to find X!

Consequence.

• We want the same transitions as X for the next state on mismatch.
copy dfa[][X] to dfa[][j]

• But a different transition (to j+1) on match.
set dfa[pat.charAt(j)][j] to j+1

A B B B B C C C A B A B A ? ? ? ? ? ? ?
 0 0 1 2 3

Efficiently constructing the DFA for KMP substring search

25

 j 0 1 2 3 4 5
pat.charAt(j) A B A B A C
 A 1 1 3 1 5 ?
 dfa[][j] B 0 2 0 4 0 ?
 C 0 0 0 0 0 ?

 j 0 1 2 3 4 5
pat.charAt(j) A B A B A C
 A 1 1 3 1 5 1
 dfa[][j] B 0 2 0 4 0 4
 C 0 0 0 0 0 6

matched chars next char

X

Efficiently constructing the DFA for KMP substring search

Build table by finding answer to Q for each pattern position.

Observation. No need to restart DFA.

• Remember last restart state in X.

• Use DFA to update X.

• X = dfa[pat.charAt(j)][X]

26

DFA simulations to compute
restart states for A B A B A C

 A B A B A
 0 0 1 2 3

 A B A B
 0 0 1 2

 A B A
 0 0 1

 A B
 0 0

 A
 0

restart
states

1

2

3

4

5
dfa['A'][2]

dfa['B'][1]

dfa['A'][0]

Q. What state X would the DFA be in if it were restarted to
correspond to shifting the pattern one position to the right?

DFA corresponding to the string A B A B A C

 0 1 2 3 4 5
 A B A B A C
 1 1 3 1 5 1
 0 2 0 4 0 4
 0 0 0 0 0 6

dfa[][j]

pat.charAt(j)
j

A
B
C

Constructing the DFA for KMP substring search: example

27

Constructing the DFA for KMP substring search for A B A B A C

0 1 2 3 4 5 6A B A A

B,C

A

CB,CC

B

AB,C A

B C

 0 1 2 3 4 5
 A B A B A C
 1 1 3 1 5 1
 0 2 0 4 0 4
 0 0 0 0 0 6

dfa[][j]

pat[j]
j

A
B
C

X

X j

X

X

X

X

j

j

j

j

j

0 1 2 3 4 5A B A A

B,C

A

CB,CC

B,C A

B

 0 1 2 3 4
 A B A B A
 1 1 3 1 5
 0 2 0 4 0
 0 0 0 0 0

dfa[][j]

pat[j]
j

A
B
C

X

0 1 2 3 4A B A

A

CB,CC

B,C A

B

 0 1 2 3
 A B A B
 1 1 3 1
 0 2 0 4
 0 0 0 0

dfa[][j]

pat[j]
j

A
B
C

X

0 1 2 3A B A

B,CC

B,C A

 0 1 2
 A B A
 1 1 3
 0 2 0
 0 0 0

dfa[][j]

pat[j]
j

A
B
C

X

0 1 2A B
C

B,C A 0 1
 A B
 1 1
 0 2
 0 0

dfa[][j]

pat[j]
j

A
B
C

X

0 1A

B,C 0
 A
 1
 0
 0

dfa[][j]

pat[j]
j

A
B
C

copy dfa[][X] to dfa[][j]

dfa[pat[j]][j] = j+1;

X = dfa[pat[j]][X]];

Constructing the DFA for KMP substring search for A B A B A C

0 1 2 3 4 5 6A B A A

B,C

A

CB,CC

B

AB,C A

B C

 0 1 2 3 4 5
 A B A B A C
 1 1 3 1 5 1
 0 2 0 4 0 4
 0 0 0 0 0 6

dfa[][j]
A
B
C

X

X j

X

X

X

X

j

j

j

j

j

0 1 2 3 4 5A B A A

B,C

A

CB,CC

B,C A

B

 0 1 2 3 4
 A B A B A
 1 1 3 1 5
 0 2 0 4 0
 0 0 0 0 0

dfa[][j]
A
B
C

X

0 1 2 3 4A B A

A

CB,CC

B,C A

B

 0 1 2 3
 A B A B
 1 1 3 1
 0 2 0 4
 0 0 0 0

dfa[][j]
A
B
C

X

0 1 2 3A B A

B,CC

B,C A

 0 1 2
 A B A
 1 1 3
 0 2 0
 0 0 0

dfa[][j]
A
B
C

X

0 1 2A B
C

B,C A 0 1
 A B
 1 1
 0 2
 0 0

dfa[][j]
A
B
C

X

0 1A

B,C 0
 A
 1
 0
 0

dfa[][j]

pat.charAt(j)
j

pat.charAt(j)
j

pat.charAt(j)
j

pat.charAt(j)
j

pat.charAt(j)
j

pat.charAt(j)
j

A
B
C

copy dfa[][X] to dfa[][j]

dfa[pat.charAt(j)][j] = j+1;

X = dfa[pat.charAt(j)][X]];

Constructing the DFA for KMP substring search: example

28

Constructing the DFA for KMP substring search for A B A B A C

0 1 2 3 4 5 6A B A A

B,C

A

CB,CC

B

AB,C A

B C

 0 1 2 3 4 5
 A B A B A C
 1 1 3 1 5 1
 0 2 0 4 0 4
 0 0 0 0 0 6

dfa[][j]
A
B
C

X

X j

X

X

X

X

j

j

j

j

j

0 1 2 3 4 5A B A A

B,C

A

CB,CC

B,C A

B

 0 1 2 3 4
 A B A B A
 1 1 3 1 5
 0 2 0 4 0
 0 0 0 0 0

dfa[][j]
A
B
C

X

0 1 2 3 4A B A

A

CB,CC

B,C A

B

 0 1 2 3
 A B A B
 1 1 3 1
 0 2 0 4
 0 0 0 0

dfa[][j]
A
B
C

X

0 1 2 3A B A

B,CC

B,C A

 0 1 2
 A B A
 1 1 3
 0 2 0
 0 0 0

dfa[][j]
A
B
C

X

0 1 2A B
C

B,C A 0 1
 A B
 1 1
 0 2
 0 0

dfa[][j]
A
B
C

X

0 1A

B,C 0
 A
 1
 0
 0

dfa[][j]

pat.charAt(j)
j

pat.charAt(j)
j

pat.charAt(j)
j

pat.charAt(j)
j

pat.charAt(j)
j

pat.charAt(j)
j

A
B
C

copy dfa[][X] to dfa[][j]

dfa[pat.charAt(j)][j] = j+1;

X = dfa[pat.charAt(j)][X]];

Constructing the DFA for KMP substring search: Java implementation

For each j:

• Copy dfa[][X] to dfa[][j] for mismatch case.

• Set dfa[pat.charAt(j)][j] to j+1 for match case.

• Update X.

Running time. M character accesses.
29

public KMP(String pat)
{
 this.pat = pat;
 M = pat.length();
 dfa = new int[R][M];
 dfa[pat.charAt(0)][0] = 1;
 for (int X = 0, j = 1; j < M; j++)
 {
 for (int c = 0; c < R; c++)
 dfa[c][j] = dfa[c][X];
 dfa[pat.charAt(j)][j] = j+1;
 X = dfa[pat.charAt(j)][X];
 }
}

copy mismatch cases
set match case
update restart state

30

KMP substring search analysis

Proposition. KMP substring search accesses no more than M + N chars
to search for a pattern of length M in a text of length N.

Pf. We access each pattern char once when constructing the DFA,
and each text char once (in the worst case) when simulating the DFA.

Remark. Takes time and space proportional to R M to construct dfa[][],
but with cleverness, can reduce time and space to M.

31

Knuth-Morris-Pratt: brief history

Brief history.

• Inspired by esoteric theorem of Cook.

• Discovered in 1976 independently by two theoreticians and a hacker.

- Knuth: discovered linear-time algorithm
- Pratt: made running time independent of alphabet

- Morris: trying to build a text editor

• Theory meets practice.

Don Knuth Vaughan PrattJim MorrisStephen Cook

32

‣ brute force
‣ Knuth-Morris-Pratt
‣ Boyer-Moore
‣ Rabin-Karp

Robert Boyer J. Strother Moore

Intuition.

• Scan characters in pattern from right to left.

• Can skip M text chars when finding one not in the pattern.

Boyer-Moore: mismatched character heuristic

33

Mismatched character heuristic for right-to-left (Boyer-Moore) substring search

 i j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 H A Y S T A C K N E E D L E I N A
 0 5 N E E D L E
 6 5 N E E D L E
 8 5 N E E D L E
 8 0
 return i = 8

 pattern

 text

Boyer-Moore: mismatched character heuristic

Intuition.

• Scan characters in pattern from right to left.

• Can skip M text chars when finding one not in the pattern.

34

 txt[]
 i j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

 A A A B B A A B A B A A A B B A G Y
 5 6 S Y Z Y G Y
 11 6 S Y Z Y G Y
 15 3 S Y Z Y G Y

 return i = 18 (no match)

not in pattern

Boyer-Moore: mismatched character heuristic

Q. How much to skip?
A. Compute right[c] = rightmost occurrence of character c in pat[].

35

 right = new int[R];
 for (int c = 0; c < R; c++)
 right[c] = -1;
 for (int j = 0; j < M; j++)
 right[pat.charAt(j)] = j;

Boyer-Moore skip table computation

c right[c]

 N E E D L E
 0 1 2 3 4 5
A -1 -1 -1 -1 -1 -1 -1 -1
B -1 -1 -1 -1 -1 -1 -1 -1
C -1 -1 -1 -1 -1 -1 -1 -1
D -1 -1 -1 -1 3 3 3 3
E -1 -1 1 2 2 2 5 5
... -1
L -1 -1 -1 -1 -1 4 4 4
M -1 -1 -1 -1 -1 -1 -1 -1
N -1 0 0 0 0 0 0 0
... -1

Boyer-Moore: mismatched character heuristic

Q. How much to skip?
A. Compute right[c] = rightmost occurrence of character c in pat[].

36

Mismatched character heuristic (mismatch in pattern)

 increment i by j - right[’N’]
 to line up text with N in pattern

 reset j to M-1

. N L E
 N E E D L E

i

j

j

 reset j to M-1
j

i+j

. N L E
 N E E D L E

i

basic idea

 lining up text with rightmost E
would shift pattern left

 could do better with
KMP-like table

 could do better with
KMP-like table

. E L E
 N E E D L E

i

j

i+j

. E L E
 N E E D L E

 so increment i by 1

. E L E
 N E E D L E

i

heuristic is no help

Boyer-Moore: mismatched character heuristic

Q. How much to skip?
A. Compute right[c] = rightmost occurrence of character c in pat[].

Easy fix. Set right[c] to -1 for characters not in pattern.
37

Mismatched character heuristic (mismatch not in pattern)

 increment i by j+1

 reset j to M-1

. T L E
 N E E D L E

i

j

j

i+j

. T L E
 N E E D L E

i
 could do better with

KMP-like table

Boyer-Moore: mismatched character heuristic

Q. How much to skip?
A. Compute right[c] = rightmost occurrence of character c in pat[].

38

Mismatched character heuristic (mismatch in pattern)

 increment i by j - right[’N’]
 to line up text with N in pattern

 reset j to M-1

. N L E
 N E E D L E

i

j

j

 reset j to M-1
j

i+j

. N L E
 N E E D L E

i

basic idea

 lining up text with rightmost E
would shift pattern left

 could do better with
KMP-like table

 could do better with
KMP-like table

. E L E
 N E E D L E

i

j

i+j

. E L E
 N E E D L E

 so increment i by 1

. E L E
 N E E D L E

i

heuristic is no help

Boyer-Moore: Java implementation

39

 public int search(String txt)
 {
 int N = txt.length();
 int M = pat.length();
 int skip;
 for (int i = 0; i <= N-M; i += skip)
 {
 skip = 0;
 for (int j = M-1; j >= 0; j--)
 if (pat.charAt(j) != txt.charAt(i+j))
 {
 skip = Math.max(1, j - right[txt.charAt(i+j)]);
 break;
 }
 if (skip == 0) return i;
 }
 return N;
}

compute skip value

match

Boyer-Moore: analysis

Property. Substring search with the Boyer-Moore mismatched character
heuristic takes about ~ N/M character compares to search for a pattern of
length M in a text of length N.

Worst-case. Can be as bad as ~ M N.

Boyer-Moore variant. Can improve worst case to ~ 3 N by adding a
KMP-like rule to guard against repetitive patterns.

40

sublinear

Boyer-Moore-Horspool substring search (worst case)

 i skip 0 1 2 3 4 5 6 7 8 9

 B B B B B B B B B B

 0 0 A B B B B
 1 1 A B B B B
 2 1 A B B B B
 3 1 A B B B B
 4 1 A B B B B
 5 1 A B B B B

txt

pat

41

‣ brute force
‣ Knuth-Morris-Pratt
‣ Boyer-Moore
‣ Rabin-Karp

Michael Rabin, Turing Award '76
and Dick Karp, Turing Award '85

Rabin-Karp fingerprint search

Basic idea.

• Compute a hash of pattern characters 0 to M-1.

• For each i, compute a hash of text characters i to M+i-1.

• If pattern hash = text substring hash, check for a match.

42

Basis for Rabin-Karp substring search

 txt.charAt(i)
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3

0 3 1 4 1 5 % 997 = 508

1 1 4 1 5 9 % 997 = 201

2 4 1 5 9 2 % 997 = 715

3 1 5 9 2 6 % 997 = 971

4 5 9 2 6 5 % 997 = 442

5 9 2 6 5 3 % 997 = 929

6 2 6 5 3 5 % 997 = 613

 pat.charAt(i)
i 0 1 2 3 4

 2 6 5 3 5 % 997 = 613

 return i = 6

 match

Modular hash function. Using the notation ti for txt.charAt(i),
we wish to compute

Intuition. M-digit, base-R integer, modulo Q.

Horner's method. Linear-time method to evaluate degree-M polynomial.

Efficiently computing the hash function

43

// Compute hash for M-digit key
private int hash(String key)
{
 int h = 0;
 for (int i = 0; i < M; i++)
 h = (R * h + key.charAt(j)) % Q;
 return h;
}

xi = ti R M-1 + ti+1 R M-2 + … + ti+M-1 R 0 (mod Q)

Computing the hash value for the pattern with Horner’s method

 pat.charAt(i)
 i 0 1 2 3 4
 2 6 5 3 5

 0 2 % 997 = 2

 1 2 6 % 997 = (2*10 + 6) % 997 = 26

 2 2 6 5 % 997 = (26*10 + 5) % 997 = 265

 3 2 6 5 3 % 997 = (265*10 + 3) % 997 = 659

 4 2 6 5 3 5 % 997 = (651*10 + 5) % 997 = 613

QR

Challenge. How to efficiently compute xi+1 given that we know xi.

Key property. Can do it in constant time!

Efficiently computing the hash function

44

xi = ti R M–1 + ti+1 R M–2 + … + ti+M–1 R0

xi+1 = ti+1 R M–1 + ti+2 R M–2 + … + ti+M R0

xi+1 = (xi – ti R M-1) R + ti+M

Key computation in Rabin-Karp substring search
(move right one position in the text)

 i ... 2 3 4 5 6 7 ...
 1 4 1 5 9 2 6 5
 4 1 5 9 2 6 5

 4 1 5 9 2
 - 4 0 0 0 0
 1 5 9 2
 * 1 0
 1 5 9 2 0
 + 6
 1 5 9 2 6

current value

subtract leading digit

multiply by radix

add new trailing digit

new value

current value
new value

 text

Rabin-Karp: Java implementation

45

public class RabinKarp {
 private String pat; // the pattern
 private int patHash; // pattern hash value
 private int M; // pattern length
 private int Q = 8355967; // modulus
 private int R; // radix
 private int RM; // R^(M-1) % Q

 public RabinKarp(String pat) {
 this.R = 256;
 this.pat = pat;
 this.M = pat.length;

 RM = 1;
 for (int i = 1; i <= M-1; i++)
 RM = (R * RM) % Q;
 patHash = hash(pat);
 }

 private int hash(String key)
 { /* as before */ }

 public int search(String txt)
 { /* see next slide */ }
}

precompute RM-1 (mod Q)

a large prime, but small enough
to avoid 32-bit integer overflow

Rabin-Karp: Java implementation (continued)

46

public int search(String txt)
{
 int N = txt.length();
 if (N < M) return N;
 int offset = hashSearch(txt);
 if (offset == N) return N;

 for (int i = 0; i < M; i++)
 if (pat.charAt(i) != txt.charAt(offset + i))
 return N;
 return offset;
}

private int hashSearch(String txt)
{
 int N = txt.length();
 int txtHash = hash(txt);
 if (patHash == txtHash) return 0;
 for (int i = M; i < N; i++)
 {
 txtHash = (txtHash + Q - RM*txt.charAt(i-M) % Q) % Q;
 txtHash = (txtHash*R + txt.charAt(i)) % Q;
 if (patHash == txtHash) return i - M + 1;
 }
 return N;
}

check if hash collision
corresponds to a match

check for hash collision
using rolling hash function

Rabin-Karp substring search example

47

Rabin-Karp substring search example

 i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3

 0 3 % 997 = 3

 1 3 1 % 997 = (3*10 + 1) % 997 = 31

 2 3 1 4 % 997 = (31*10 + 4) % 997 = 314

 3 3 1 4 1 % 997 = (314*10 + 1) % 997 = 150

 4 3 1 4 1 5 % 997 = (150*10 + 5) % 997 = 508

 5 1 4 1 5 9 % 997 = ((508 + 3*(997 - 30))*10 + 9) % 997 = 201

 6 4 1 5 9 2 % 997 = ((201 + 1*(997 - 30))*10 + 2) % 997 = 715

 7 1 5 9 2 6 % 997 = ((715 + 4*(997 - 30))*10 + 6) % 997 = 971

 8 5 9 2 6 5 % 997 = ((971 + 1*(997 - 30))*10 + 5) % 997 = 442

 9 9 2 6 5 3 % 997 = ((442 + 5*(997 - 30))*10 + 3) % 997 = 929

10 2 6 5 3 5 % 997 = ((929 + 9*(997 - 30))*10 + 5) % 997 = 613

Q

RM R

 return i-M+1 = 6

 match

Rabin-Karp analysis

Proposition. Rabin-Karp substring search is extremely likely to be linear-time.

Worst-case. Takes time proportional to MN.

• In worst case, all substrings hash to same value.

• Then, need to check for match at each text position.

Theory. If Q is a sufficiently large random prime (about MN2), then
probability of a false collision is about 1/N ⇒ expected running time is linear.

Practice. Choose Q to avoid integer overflow. Under reasonable assumptions,
probability of a collision is about 1/Q ⇒ linear in practice.

48

Rabin-Karp fingerprint search

Advantages.

• Extends to 2D patterns.

• Extends to finding multiple patterns.

Disadvantages.

• Arithmetic ops slower than char compares.

• Poor worst-case guarantee.

• Requires backup.

Q. How would you extend Rabin-Karp to efficiently search for any one of P
possible patterns in a text of length N?

49

Cost of searching for an M-character pattern in an N-character text.

50

Substring search cost summary

6276.3 ! Substring Search

Summary The table at the bottom of the page summarizes the four algorithms
that we have considered for substring search. As is often the case when we have several
algorithms for the same task, each of them has attractive features. Brute force search is
easy to implement and works well in typical cases (Java’s String.indexOf() method
uses brute-force search); Knuth-Morris-Pratt is guaranteed linear-time with no backup
in the input; Boyer-Moore is sublinear (by a factor of M) in typical situations; and
Rabin-Karp is constant-time and constant-space even when M is large. Each also has
drawbacks: brute-force might require time proportional to MN; Knuth-Morris-Pratt
and Boyer-Moore use extra space; and Rabin-Karp has a relatively long inner loop (sev-
eral arithmetic operations, as opposed to character comparisons in the other methods.
These characteristics are summarized in the table below.

algorithm
(data structure)

operation count backup
in input?

space
grows
withguarantee typical

brute force M N 1.1 N yes 1

Knuth-Morris-Pratt
(full DFA) 2 N 1.1 N no MR

Knuth-Morris-Pratt
(mismatch transitions only) 3 N 1.1 N no M

Boyer-Moore 3 N N / M yes R

Boyer-Moore
(mismatched character heuristic only) M N N / M yes R

Rabin-Karp† 7 N † 7 N no 1

† probabilisitic guarantee, with uniform hash function

Cost summary for substring-search implementations

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 26, 2010 8:37:11 AM

5.4 Pattern Matching

‣ regular expressions
‣ REs and NFAs
‣ NFA simulation
‣ NFA construction
‣ applications

2

‣ regular expressions
‣ NFAs
‣ NFA simulation
‣ NFA construction
‣ applications

3

Pattern matching

Substring search. Find a single string in text.
Pattern matching. Find one of a specified set of strings in text.

Ex. [genomics]

• Fragile X syndrome is a common cause of mental retardation.

• Human genome contains triplet repeats of CGG or AGG,
bracketed by GCG at the beginning and CTG at the end.

• Number of repeats is variable, and correlated with syndrome.

pattern

text

GCG(CGG|AGG)*CTG

GCGGCGTGTGTGCGAGAGAGTGGGTTTAAAGCTGGCGCGGAGGCGGCTGGCGCGGAGGCTG

4

Pattern matching: applications

Test if a string matches some pattern.

• Process natural language.

• Scan for virus signatures.

• Access information in digital libraries.

• Filter text (spam, NetNanny, Carnivore, malware).

• Validate data-entry fields (dates, email, URL, credit card).

• Search for markers in human genome using PROSITE patterns.

Parse text files.

• Compile a Java program.

• Crawl and index the Web.

• Read in data stored in ad hoc input file format.

• Automatically create Java documentation from Javadoc comments.

5

Regular expressions

A regular expression is a notation to specify a (possibly infinite) set of strings.

a “language”

operation example RE matches does not match

concatenation AABAAB AABAAB every other string

or AA | BAAB AA
BAAB every other string

closure AB*A AA
ABBBBBBBBA

AB
ABABA

parentheses

A(A|B)AAB AAAAB
ABAAB every other string

parentheses
(AB)*A A

ABABABABABA
AA

ABBA

6

Regular expression shortcuts

Additional operations are often added for convenience.

Ex. [A-E]+ is shorthand for (A|B|C|D|E)(A|B|C|D|E)*

operation example RE matches does not match

wildcard .U.U.U. CUMULUS
JUGULUM

SUCCUBUS
TUMULTUOUS

at least 1 A(BC)+DE ABCDE
ABCBCDE

ADE
BCDE

character classes [A-Za-z][a-z]* word
Capitalized

camelCase
4illegal

exactly k [0-9]{5}-[0-9]{4} 08540-1321
19072-5541

111111111
166-54-111

complement [^AEIOU]{6} RHYTHM DECADE

7

Regular expression examples

Notation is surprisingly expressive

and plays a well-understood role in the theory of computation.

regular expression matches does not match

.*SPB.*

(contains the trigraph spb)
RASPBERRY
CRISPBREAD

SUBSPACE
SUBSPECIES

[0-9]{3}-[0-9]{2}-[0-9]{4}

(Social Security numbers)
166-11-4433
166-45-1111

11-55555555
8675309

[a-z]+@([a-z]+\.)+(edu|com)

(valid email addresses)
wayne@princeton.edu
rs@princeton.edu spam@nowhere

[$_A-Za-z][$_A-Za-z0-9]*

(valid Java identifiers)
ident3

PatternMatcher
3a

ident#3

8

Regular expressions to the rescue

http://xkcd.com/208/

9

Can the average web surfer learn to use REs?

Google. Supports * for full word wildcard and | for union.

10

Can the average programmer learn to use REs?

Perl RE for valid RFC822 email addresses

(?:(?:\r\n)?[\t])*(?:(?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:
\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[
\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\
](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:
(?:\r\n)?[\t])*))*|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)
?[\t])*)*\<(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[
 \t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t]
)*))*(?:,@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*
)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*)
:(?:(?:\r\n)?[\t]))?(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r
\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t
]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](
?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?
:\r\n)?[\t])*))*\>(?:(?:\r\n)?[\t])*)|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?
[\t]))*"(?:(?:\r\n)?[\t])*)*:(?:(?:\r\n)?[\t])*(?:(?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|
\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"
(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\
".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[
\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(
?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)*\<(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([
^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\
]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*(?:,@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\
r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]
|\\.)*\](?:(?:\r\n)?[\t])*))*)*:(?:(?:\r\n)?[\t])*)?(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\
.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?
:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".
\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]
]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*\>(?:(?:\r\n)?[\t])*)(?:,\s*(?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\
".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[
\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t
])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|
\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\
]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)*\<(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["
()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>
@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*(?:,@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,
;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\
".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*)*:(?:(?:\r\n)?[\t])*)?(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".
\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\[
"()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])
+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z
|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*\>(?:(?:\r\n)?[\t])*))*)?;\s*)

http http://www.ex-parrot.com/~pdw/Mail-RFC822-Address.html

11

Regular expression caveat

Writing a RE is like writing a program.

• Need to understand programming model.

• Can be easier to write than read.

• Can be difficult to debug.

Bottom line. REs are amazingly powerful and expressive,
but using them in applications can be amazingly complex and error-prone.

“ Some people, when confronted with a problem, think
 'I know I'll use regular expressions.' Now they have
 two problems. ”
 — Jamie Zawinski (flame war on alt.religion.emacs)

12

‣ regular expressions
‣ NFAs
‣ NFA simulation
‣ NFA construction
‣ applications

Pattern matching implementation: basic plan (first attempt)

Overview is the same as for KMP!

• No backup in text input stream.

• Linear-time guarantee.

Underlying abstraction. Deterministic finite state automata (DFA).

Basic plan.

• Build DFA from RE.

• Simulate DFA with text as input.

Bad news. Basic plan is infeasible (DFA may have exponential number of states).
13

DFA for pattern
(A * B | A C) D

accept
pattern

matches text

reject
pattern does not

match text

text

A A A A B D

Ken Thompson

Pattern matching implementation: basic plan (revised)

Overview is similar to KMP.

• No backup in text input stream.

• Quadratic-time guarantee (linear-time typical).

Underlying abstraction. Nondeterministic finite state automata (NFA).

Basic plan.

• Build NFA from RE.

• Simulate NFA with text as input.

14

Ken Thompson

NFA for pattern
(A * B | A C) D

accept
pattern

matches text

reject
pattern does not

match text

text

A A A A B D

15

Nondeterministic finite-state automata

Pattern matching NFA.

• Pattern enclosed in parentheses.

• One state per pattern character (start = 0, accept = M).

• Red ε-transition (change state, but don't scan input).

• Black match transition (change state and scan to next char).

• Accept if any sequence of transitions ends in accept state.

Nondeterminism.

• One view: machine can guess the proper sequence of state transitions.

• Another view: sequence is a proof that the machine accepts the text.

NFA corresponding to the pattern ((A * B | A C) D)

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

accept state

16

Nondeterministic finite-state automata

Ex. Is AAAABD matched by NFA?

NFA corresponding to the pattern ((A * B | A C) D)

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

accept state

Stalling sequences for ((A * B | A C) D) NFA

no way out
of state 4

no way out
of state 4

 A A A

0 1 2 3 2 3 4

no way out
of state 7

wrong guess if input is
A A A A B D

 A

0 1 6 7

 A A A A C

0 1 2 3 2 3 2 3 2 3 4

17

Nondeterministic finite-state automata

Ex. Is AAAABD matched by NFA?

Finding a pattern with ((A * B | A C) D) NFA

 A A A A B D

0 1 2 3 2 3 2 3 2 3 4 5 8 9 10 11

accept state reached:
pattern found

match transition:
scan to next input character

and change state

!-transition:
change state

with no match

NFA corresponding to the pattern ((A * B | A C) D)

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

accept state

yes!

Note: any sequence of legal transitions that ends in state 11 is a proof.

Ex. Is AAAAC matched by NFA?

18

Nondeterministic finite-state automata

Stalling sequences for ((A * B | A C) D) NFA

no way out
of state 4

no way out
of state 4

 A A A

0 1 2 3 2 3 4

no way out
of state 7

wrong guess if input is
A A A A B D

 A

0 1 6 7

 A A A A C

0 1 2 3 2 3 2 3 2 3 4

NFA corresponding to the pattern ((A * B | A C) D)

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

accept state

no

Note: this is not a complete proof!
(need to mention the infinite number of sequences involving ε-transitions between 2 and 3)

19

Nondeterminism

Q. How to determine whether a string is recognized by an automaton?

DFA. Deterministic ⇒ exactly one applicable transition.

NFA. Nondeterministic ⇒ can be several applicable transitions;
need to select the right one!

Q. How to simulate NFA?
A. Systematically consider all possible transition sequences.

NFA corresponding to the pattern ((A * B | A C) D)

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

accept state

Pattern matching implementation: basic plan (revised)

Overview is similar to KMP.

• No backup in text input stream.

• Quadratic-time guarantee (linear-time typical).

Underlying abstraction. Nondeterministic finite state automata (NFA).

Basic plan.

• Build NFA from RE.

• Simulate NFA with text as input.

20

Ken Thompson

NFA for pattern
(A * B | A C) D

accept
pattern

matches text

reject
pattern does not

match text

text

A A A A B D

21

‣ regular expressions
‣ NFAs
‣ NFA simulation
‣ NFA construction
‣ applications

22

NFA representation

State names. Integers from 0 to M.

Match-transitions. Keep regular expression in array re[].

ε-transitions. Store in a digraph G.

• 0→1, 1→2, 1→6, 2→3, 3→2, 3→4, 5→8, 8→9, 10→11

NFA corresponding to the pattern ((A * B | A C) D)

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

accept state

23

NFA simulation

Q. How to efficiently simulate an NFA?
A. Maintain set of all possible states that NFA could be in
 after reading in the first i text characters.

Q. How to perform reachability?

24

Digraph reachability

Find all vertices reachable from a given set of vertices.

public class DFS
{
 private SET<Integer> marked;
 private Digraph G;

 public DFS(Digraph G)
 { this.G = G; }

 private void search(int v)
 {
 marked.add(v);
 for (int w : G.adj(v))
 if (!marked.contains(w)) search(w);
 }

 public SET<Integer> reachable(SET<Integer> s)
 {
 marked = new SET<Integer>();
 for (int v : s) search(v);
 return marked;
 }
}

25

NFA simulation example

Simulation of ((A * B | A C) D) NFA for input A A B D

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 6 : set of states reachable via !-transitions from start

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

 3 7 : set of states reachable after matching A

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

2 3 4 7 : set of states reachable via !-transitions after matching A

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

 3 : set of states reachable after matching A A

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

 2 3 4 : set of states reachable via !-transitions after matching A A

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

 5 : set of states reachable after matching A A B

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

 5 8 9 : set of states reachable via !-transitions after matching A A B

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

 10 : set of states reachable after matching A A B D

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

 10 11 : set of states reachable via !-transitions after matching A A B D

accept !

Simulation of ((A * B | A C) D) NFA for input A A B D

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 6 : set of states reachable via !-transitions from start

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

 3 7 : set of states reachable after matching A

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

2 3 4 7 : set of states reachable via !-transitions after matching A

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

 3 : set of states reachable after matching A A

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

 2 3 4 : set of states reachable via !-transitions after matching A A

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

 5 : set of states reachable after matching A A B

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

 5 8 9 : set of states reachable via !-transitions after matching A A B

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

 10 : set of states reachable after matching A A B D

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

 10 11 : set of states reachable via !-transitions after matching A A B D

accept !

26

NFA simulation example

Simulation of ((A * B | A C) D) NFA for input A A B D

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 6 : set of states reachable via !-transitions from start

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

 3 7 : set of states reachable after matching A

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

2 3 4 7 : set of states reachable via !-transitions after matching A

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

 3 : set of states reachable after matching A A

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

 2 3 4 : set of states reachable via !-transitions after matching A A

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

 5 : set of states reachable after matching A A B

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

 5 8 9 : set of states reachable via !-transitions after matching A A B

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

 10 : set of states reachable after matching A A B D

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

 10 11 : set of states reachable via !-transitions after matching A A B D

accept !

public boolean recognizes(String txt)
{
 DFS dfs = new DFS(G);

 SET<Integer> pc = new dfs.reachable(0);

 for (int i = 0; i < txt.length(); i++)
 {
 SET<Integer> match = new SET<Integer>();
 for (int v : pc) {
 if (v == M) continue;
 if ((re[v] == txt.charAt(i)) || re[v] == '.')
 match.add(v+1);
 }

 pc = dfs.reachable(match);
 }

 return pc.contains(M);
}

27

NFA simulation: Java implementation

states reachable from
start by ε-transitions

all possible states
after scanning past
txt.charAt(i)

follow ε-transitions

accept if you can
end in state M

28

NFA simulation: analysis

Proposition 1. Determining whether an N-character text string is recognized
by the NFA corresponding to an M-character pattern takes time proportional
to NM in the worst case.

Pf. For each of the N text characters, we iterate through a set of states of
size no more than M and run DFS on the graph of ε-transitions.
(The construction we consider ensures the number of edges is at most M.)

NFA corresponding to the pattern ((A * B | A C) D)

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

accept state

29

‣ regular expressions
‣ NFAs
‣ NFA simulation
‣ NFA construction
‣ applications

NFA corresponding to the pattern ((A * B | A C) D)

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

accept state

States. Include a state for each symbol in the RE, plus an accept state.

30

Building an NFA corresponding to an RE

Concatenation. Add match-transition edge from state corresponding
to letters in the alphabet to next state.

Alphabet. A B C D
Metacharacters. () . * |

31

Building an NFA corresponding to an RE

NFA corresponding to the pattern ((A * B | A C) D)

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

accept state

Parentheses. Add ε-transition edge from parentheses to next state.

32

Building an NFA corresponding to an RE

NFA corresponding to the pattern ((A * B | A C) D)

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

accept state

Closure. Add three ε-transition edges for each * operator.

33

Building an NFA corresponding to an RE

NFA corresponding to the pattern ((A * B | A C) D)

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

accept state

NFA construction rules

(|)

A *

iorlp

G.addEdge(i, i+1);
G.addEdge(i+1, i);

G.addEdge(lp, i+1);
G.addEdge(i+1, lp);

lp i i+1

i i+1

(. . .

... ...

) *

single-character closure

closure expression

G.addEdge(lp, or+1);
G.addEdge(or, i);

or expression NFA construction rules

(|)

A *

iorlp

G.addEdge(i, i+1);
G.addEdge(i+1, i);

G.addEdge(lp, i+1);
G.addEdge(i+1, lp);

lp i i+1

i i+1

(. . .

... ...

) *

single-character closure

closure expression

G.addEdge(lp, or+1);
G.addEdge(or, i);

or expression

Or. Add two ε-transition edges for each | operator.

34

Building an NFA corresponding to an RE

NFA construction rules

(|)

A *

iorlp

G.addEdge(i, i+1);
G.addEdge(i+1, i);

G.addEdge(lp, i+1);
G.addEdge(i+1, lp);

lp i i+1

i i+1

(. . .

... ...

) *

single-character closure

closure expression

G.addEdge(lp, or+1);
G.addEdge(or, i);

or expression

NFA corresponding to the pattern ((A * B | A C) D)

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

accept state

Goal. Write a program to build the ε-transition digraph.

Challenge. Need to remember left parentheses to implement closure and or;
need to remember | to implement or.

Solution. Maintain a stack.

• Left parenthesis: push onto stack.

• | symbol: push onto stack.

• Right parenthesis: add edges for closure and or.

35

NFA construction: implementation

NFA corresponding to the pattern ((A * B | A C) D)

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

accept state

36

NFA construction: example

Building the NFA corresponding to ((A * B | A C) D)

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10

((A * B | A C) D
0 1 2 3 4 5 6 7 8 9

((A * B | A C)
0 1 2 3 4 5 6 7 8

((A * B | A C
0 1 2 3 4 5 6 7

((A * B | A
0 1 2 3 4 5 6

((A * B |
0 1 2 3 4 5

((A * B
0 1 2 3 4

((A *
0 1 2 3

((A
0 1 2

((
0 1

(
0

0

stack for
indices of
(s and |s
(ops[])

i
0
1

0
1

0
1

0
1

0
1
5

0
1
5

0
1
5

0

0

Building the NFA corresponding to ((A * B | A C) D)

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10

((A * B | A C) D
0 1 2 3 4 5 6 7 8 9

((A * B | A C)
0 1 2 3 4 5 6 7 8

((A * B | A C
0 1 2 3 4 5 6 7

((A * B | A
0 1 2 3 4 5 6

((A * B |
0 1 2 3 4 5

((A * B
0 1 2 3 4

((A *
0 1 2 3

((A
0 1 2

((
0 1

(
0

0

stack for
indices of
(s and |s
(ops[])

i
0
1

0
1

0
1

0
1

0
1
5

0
1
5

0
1
5

0

0

37

NFA construction: example

Building the NFA corresponding to ((A * B | A C) D)

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10

((A * B | A C) D
0 1 2 3 4 5 6 7 8 9

((A * B | A C)
0 1 2 3 4 5 6 7 8

((A * B | A C
0 1 2 3 4 5 6 7

((A * B | A
0 1 2 3 4 5 6

((A * B |
0 1 2 3 4 5

((A * B
0 1 2 3 4

((A *
0 1 2 3

((A
0 1 2

((
0 1

(
0

0

stack for
indices of
(s and |s
(ops[])

i
0
1

0
1

0
1

0
1

0
1
5

0
1
5

0
1
5

0

0

Building the NFA corresponding to ((A * B | A C) D)

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10

((A * B | A C) D
0 1 2 3 4 5 6 7 8 9

((A * B | A C)
0 1 2 3 4 5 6 7 8

((A * B | A C
0 1 2 3 4 5 6 7

((A * B | A
0 1 2 3 4 5 6

((A * B |
0 1 2 3 4 5

((A * B
0 1 2 3 4

((A *
0 1 2 3

((A
0 1 2

((
0 1

(
0

0

stack for
indices of
(s and |s
(ops[])

i
0
1

0
1

0
1

0
1

0
1
5

0
1
5

0
1
5

0

0

38

NFA construction: Java implementation

public NFA(String regexp) {
 Stack<Integer> ops = new Stack<Integer>();
 this.re = re.toCharArray();
 M = re.length;
 G = new Digraph(M+1);
 for (int i = 0; i < M; i++) {
 int lp = i;

 if (re[i] == '(' || re[i] == '|') ops.push(i);

 else if (re[i] == ')') {
 int or = ops.pop();
 if (re[or] == '|') {
 lp = ops.pop();
 G.addEdge(lp, or+1);
 G.addEdge(or, i);
 }
 else lp = or;
 }

 if (i < M-1 && re[i+1] == '*') {
 G.addEdge(lp, i+1);
 G.addEdge(i+1, lp);
 }

 if (re[i] == '(' || re[i] == '*' || re[i] == ')')
 G.addEdge(i, i+1);
 }
}

closure
(needs lookahead)

or

metasymbols

left parentheses and |

39

NFA construction: analysis

Proposition 2. Building the NFA corresponding to an M-character pattern
takes time and space proportional to M in the worst case.

Pf. For each of the M characters in the pattern, we add one or
two ε-transitions and perhaps execute one or two stack operations.

NFA corresponding to the pattern ((A * B | A C) D)

((A * B | A C) D)
0 1 2 3 4 5 6 7 8 9 10 11

accept state

40

‣ regular expressions
‣ NFAs
‣ NFA simulation
‣ NFA construction
‣ applications

41

Generalized regular expression print

Grep. Takes a pattern as a command-line argument and prints the lines from
standard input having some substring that is matched by the pattern.

Bottom line. Worst-case for grep (proportional to MN) is the same as for
elementary exact substring match.

public class GREP
{
 public static void main(String[] args)
 {
 String regexp = "(.*" + args[0] + ".*)";
 while (!StdIn.isEmpty())
 {
 String line = StdIn.readLine();
 NFA nfa = new NFA(regexp);
 if (nfa.recognizes(line))
 StdOut.println(line);
 }
 }
}

find lines containing
RE as a substring

Typical grep application

Crossword puzzle

42

% grep s..ict.. words.txt
constrictor
stricter
stricture

% more words.txt
a
aback
abacus
abalone
abandon
...

dictionary
(standard in UNIX)

also on booksite

43

Industrial-strength grep implementation

To complete the implementation:

• Add character classes.

• Handling metacharacters.

• Add capturing capabilities.

• Extend the closure operator.

• Error checking and recovery.

• Greedy vs. reluctant matching.

Ex. Which substring(s) should be matched by the RE <blink>.*</blink> ?

 < b l i n k > t e x t < / b l i n k > s o m e t e x t < b l i n k > m o r e t e x t < / b l i n k >

greedy

reluctant reluctant

44

Regular expressions in other languages

Broadly applicable programmer's tool.

• Originated in Unix in the 1970s

• Many languages support extended regular expressions.

• Built into grep, awk, emacs, Perl, PHP, Python, JavaScript.

PERL. Practical Extraction and Report Language.

print all lines containing NEWLINE which occurs
in any file with a .java extension

% grep NEWLINE */*.java

% egrep '^[qwertyuiop]*[zxcvbnm]*$' dict.txt | egrep '...........'

replace all occurrences of from
with to in the file input.txt

% perl -p -i -e 's|from|to|g' input.txt

% perl -n -e 'print if /^[A-Za-z][a-z]*$/' dict.txt

do for each line

print all uppercase words

Validity checking. Does the input match the regexp?
Java string library. Use input.matches(regexp) for basic RE matching.

% java Validate "[$_A-Za-z][$_A-Za-z0-9]*" ident123
true

% java Validate "[a-z]+@([a-z]+\.)+(edu|com)" rs@cs.princeton.edu
true

% java Validate "[0-9]{3}-[0-9]{2}-[0-9]{4}" 166-11-4433
true

45

Regular expressions in Java

legal Java identifier

valid email address
(simplified)

Social Security number

public class Validate
{
 public static void main(String[] args)
 {
 String regexp = args[0];
 String input = args[1];
 StdOut.println(input.matches(regexp));
 }
}

46

Harvesting information

Goal. Print all substrings of input that match a RE.

% java Harvester "gcg(cgg|agg)*ctg" chromosomeX.txt
gcgcggcggcggcggcggctg
gcgctg
gcgctg
gcgcggcggcggaggcggaggcggctg

% java Harvester "http://(\\w+\\.)*(\\w+)" http://www.cs.princeton.edu
http://www.princeton.edu
http://www.google.com
http://www.cs.princeton.edu/news

harvest links from website

harvest patterns from DNA

RE pattern matching is implemented in Java’s Pattern and Matcher classes.

import java.util.regex.Pattern;
import java.util.regex.Matcher;

public class Harvester
{
 public static void main(String[] args)
 {
 String regexp = args[0];
 In in = new In(args[1]);
 String input = in.readAll();
 Pattern pattern = Pattern.compile(regexp);
 Matcher matcher = pattern.matcher(input);
 while (matcher.find())
 StdOut.println(matcher.group());
 }
}

47

Harvesting information

compile() creates a
Pattern (NFA) from RE

matcher() creates a
Matcher (NFA simulator)
from NFA and text

find() looks for
the next match

group() returns
the substring most
recently found by find()

48

Algorithmic complexity attacks

Warning. Typical implementations do not guarantee performance!

SpamAssassin regular expression.

• Takes exponential time on pathological email addresses.

• Troublemaker can use such addresses to DOS a mail server.

% java Validate "(a|aa)*b" aaaaaaaaaaaaaaaaaaaaaaaaaaaaaac 1.6 seconds
% java Validate "(a|aa)*b" aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac 3.7 seconds
% java Validate "(a|aa)*b" aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac 9.7 seconds
% java Validate "(a|aa)*b" aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac 23.2 seconds
% java Validate "(a|aa)*b" aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac 62.2 seconds
% java Validate "(a|aa)*b" aac 161.6 seconds

% java RE "[a-z]+@[a-z]+([a-z\.]+\.)+[a-z]+" spammer@x......................

Unix grep, Java, Perl

49

Not-so-regular expressions

Back-references.

• \1 notation matches sub-expression that was matched earlier.

• Supported by typical RE implementations.

Some non-regular languages.

• Set of strings of the form ww for some string w: beriberi.

• Set of bitstrings with an equal number of 0s and 1s: 01110100.

• Set of Watson-Crick complemented palindromes: atttcggaaat.

Remark. Pattern matching with back-references is intractable.

% java Harvester "\b(.+)\1\b" dictionary.txt
beriberi
couscous word boundary

50

Context

Abstract machines, languages, and nondeterminism.

• basis of the theory of computation

• intensively studied since the 1930s

• basis of programming languages

Compiler. A program that translates a program to machine code.

• KMP string ⇒ DFA.
• grep RE ⇒ NFA.

• javac Java language ⇒ Java byte code.

KMP grep Java

pattern

parser

compiler output

simulator

string RE program

unnecessary check if legal check if legal

DFA NFA byte code

DFA simulator NFA simulator JVM

51

Summary of pattern-matching algorithms

Programmer.

• Implement exact pattern matching via DFA simulation.

• Implement RE pattern matching via NFA simulation.

Theoretician.

• RE is a compact description of a set of strings.

• NFA is an abstract machine equivalent in power to RE.

• DFAs and REs have limitations.

You. Practical application of core CS principles.

Example of essential paradigm in computer science.

• Build intermediate abstractions.

• Pick the right ones!

• Solve important practical problems.

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 26, 2010 8:42:01 AM

5.5 Data Compression

‣ basics
‣ run-length encoding
‣ Huffman compression
‣ LZW compression

2

Data compression

Compression reduces the size of a file:

• To save space when storing it.

• To save time when transmitting it.

• Most files have lots of redundancy.

Who needs compression?

• Moore's law: # transistors on a chip doubles every 18-24 months.

• Parkinson's law: data expands to fill space available.

• Text, images, sound, video, …

Basic concepts ancient (1950s), best technology recently developed.

“ All of the books in the world contain no more information than is
 broadcast as video in a single large American city in a single
 year. Not all bits have equal value. ” — Carl Sagan

3

Applications

Generic file compression.

• Files: GZIP, BZIP, BOA.

• Archivers: PKZIP.

• File systems: NTFS.

Multimedia.

• Images: GIF, JPEG.

• Sound: MP3.

• Video: MPEG, DivX™, HDTV.

Communication.

• ITU-T T4 Group 3 Fax.

• V.42bis modem.

Databases. Google.

Message. Binary data B we want to compress.
Compress. Generates a "compressed" representation C(B).
Expand. Reconstructs original bitstream B.

Compression ratio. Bits in C(B) / bits in B.

Ex. 50-75% or better compression ratio for natural language.

4

Lossless compression and expansion

uses fewer bits (you hope)

Basic model for data compression

Compress Expand
bitstream B

0110110101...

original bitstream B

0110110101...

compressed version C(B)

1101011111...

5

Food for thought

Data compression has been omnipresent since antiquity:

• Number systems.

• Natural languages.

• Mathematical notation.

has played a central role in communications technology,

• Braille.

• Morse code.

• Telephone system.

and is part of modern life.

• MP3.

• MPEG.

Q. What role will it play in the future?

6

‣ binary I/O
‣ genomic encoding
‣ run-length encoding
‣ Huffman compression
‣ LZW compression

Binary standard input and standard output. Libraries to read and write bits
from standard input and to standard output.

7

Reading and writing binary data

664 CHAPTER 6 Strings

Binary input and output. Most systems nowadays, including Java, base their I/O on
8-bit bytestreams, so we might decide to read and write bytestreams to match I/O for-
mats with the internal representations of primitive types, encoding an 8-bit char with
1 byte, a 16-bit short with 2 bytes, a 32-bit int with 4 bytes, and so forth. Since bit-
streams are the primary abstraction for data compression, we go a bit further to allow
clients to read and write individual bits, intermixed with data of various types (primi-
tive types and String). The goal is to minimize the necessity for type conversion in
client programs and also to take care of operating-system conventions for representing
data.We use the following API for reading a bitstream from standard input:

public class BinaryStdIn

boolean readBoolean() read 1 bit of data and return as a boolean value
char readChar() read 8 bits of data and return as a char value

char readChar(int r) read r bits of data and return as a char value

[similar methods for byte (8 bits); short (16 bits); int (32 bits); long and double (64 bits)]

boolean isEmpty() is the bitstream empty?

void close() close the bitstream

API for static methods that read from a bitstream on standard input

A key feature of the abstraction is that, in marked constrast to StdIn, the data on stan-
dard input is not necessarily aligned on byte boundaries. If the input stream is a single
byte, a client could read it 1 bit at a time with 8 calls to readBoolean(). The close()
method is not essential, but, for clean termination, clients should call close() to in-
dicate that no more bits are to be read. As with StdIn/StdOut, we use the following
complementary API for writing bitstreams to standard output:

public class BinaryStdOut

void write(boolean b) write the speci!ed bit
void write(char c) write the speci!ed 8-bit char

void write(char c, int r) write the r least signi!cant bits of the speci!ed char
[similar methods for byte (8 bits); short (16 bits); int (32 bits); long and double (64 bits)]

void close() close the bitstream

API for static methods that write to a bitstream on standard output

664 CHAPTER 6 Strings

Binary input and output. Most systems nowadays, including Java, base their I/O on
8-bit bytestreams, so we might decide to read and write bytestreams to match I/O for-
mats with the internal representations of primitive types, encoding an 8-bit char with
1 byte, a 16-bit short with 2 bytes, a 32-bit int with 4 bytes, and so forth. Since bit-
streams are the primary abstraction for data compression, we go a bit further to allow
clients to read and write individual bits, intermixed with data of various types (primi-
tive types and String). The goal is to minimize the necessity for type conversion in
client programs and also to take care of operating-system conventions for representing
data.We use the following API for reading a bitstream from standard input:

public class BinaryStdIn

boolean readBoolean() read 1 bit of data and return as a boolean value
char readChar() read 8 bits of data and return as a char value

char readChar(int r) read r bits of data and return as a char value

[similar methods for byte (8 bits); short (16 bits); int (32 bits); long and double (64 bits)]

boolean isEmpty() is the bitstream empty?

void close() close the bitstream

API for static methods that read from a bitstream on standard input

A key feature of the abstraction is that, in marked constrast to StdIn, the data on stan-
dard input is not necessarily aligned on byte boundaries. If the input stream is a single
byte, a client could read it 1 bit at a time with 8 calls to readBoolean(). The close()
method is not essential, but, for clean termination, clients should call close() to in-
dicate that no more bits are to be read. As with StdIn/StdOut, we use the following
complementary API for writing bitstreams to standard output:

public class BinaryStdOut

void write(boolean b) write the speci!ed bit
void write(char c) write the speci!ed 8-bit char

void write(char c, int r) write the r least signi!cant bits of the speci!ed char
[similar methods for byte (8 bits); short (16 bits); int (32 bits); long and double (64 bits)]

void close() close the bitstream

API for static methods that write to a bitstream on standard output

8

Writing binary data

Date representation. Different ways to represent 12/31/1999.

Four ways to put a date onto standard output

110011111011111001111000

A 4-bit !eld, a 5-bit !eld, and a 12-bit !eld (BinaryStdOut)

BinaryStdOut.write(month, 4);
BinaryStdOut.write(day, 5);
BinaryStdOut.write(year, 12);

Two chars and a short (BinaryStdOut)

BinaryStdOut.write((char) month);
BinaryStdOut.write((char) day);
BinaryStdOut.write((short) year);

000000000000000000000000000011000000000000000000000000000001111100000000000000000000011111001111

Three ints (BinaryStdOut)

BinaryStdOut.write(month);
BinaryStdOut.write(day);
BinaryStdOut.write(year);

A character stream (StdOut)

StdOut.print(month + "/" + day + "/" + year);

00001100000111110000011111001111

12 31 1999

00110001001100100010111100110111001100010010111100110001001110010011100100111001

1 2 / 3 1 / 1 9 9 9

12 31 1999 12 31 1999

80 bits

32 bits 21 bits (+ 3 bits for byte alignment at close)

96 bits

9

Binary dumps

Q. How to examine the contents of a bitstream?

Four ways to look at a bitstream

Standard character stream

Bitstream represented as 0 and 1 characters

Bitstream represented with hex digits

Bitstream represented as pixels in a Picture

16-by-6 pixel
window, magnified

% more abra.txt
ABRACADABRA!

% java PictureDump 16 < abra.txt

96 bits

% java BinaryDump 16 < abra.txt
0100000101000010
0101001001000001
0100001101000001
0100010001000001
0100001001010010
0100000100100001
96 bits

% java HexDump 4 < abra.txt
41 42 52 41
43 41 44 41
42 52 41 21
96 bits

6676.5 Data Compression

ASCII encoding. When you HexDump a bit-
stream that contains ASCII-encoded charac-
ters, the table at right is useful for reference.
Given a 2-digit hex number, use the first hex
digit as a row index and the second hex digit
as a column reference to find the character
that it encodes. For example, 31 encodes the
digit 1, 4A encodes the letter J, and so forth.
This table is for 7-bit ASCII, so the first hex
digit must be 7 or less. Hex numbers starting
with 0 and 1 (and the numbers 20 and 7F)
correspond to non-printing control charac-
ters. Many of the control characters are left over from the days when physical devices
like typewriters were controlled by ASCII input; the table highlights a few that you
might see in dumps. For example SP is the space character, NUL is the null character, LF
is line-feed, and CR is carriage-return.

In summary, working with data compression requires us to reorient our thinking about
standard input and standard output to include binary encoding of data. BinaryStdIn
and BinaryStdOut provide the methods that we need. They provide a way for you to
make a clear distinction in your client programs between writing out information in-
tended for file storage and data transmission (that will be read by programs) and print-
ing information (that is likely to be read by humans).

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 SP ! “ # $ % & ‘ () * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [\] ^ _

6 ` a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

Hexadecimal to ASCII conversion table

10

‣ binary I/O
‣ limitations
‣ genomic encoding
‣ run-length encoding
‣ Huffman compression
‣ LZW compression

11

Universal data compression

US Patent 5,533,051 on "Methods for Data Compression", which is capable of
compression all files.

Slashdot reports of the Zero Space Tuner™ and BinaryAccelerator™.

“ ZeoSync has announced a breakthrough in data compression
that allows for 100:1 lossless compression of random data. If
this is true, our bandwidth problems just got a lot smaller.… ”

12

Universal data compression

Proposition. No algorithm can compress every bitstring.

Pf 1. [by contradiction]

• Suppose you have a universal data compression algorithm U
that can compress every bitstream.

• Given bintstring B0, compress it to get smaller bitstring B1.

• Compress B1 to get a smaller bitstring B2.

• Continue until reaching bitstring of size 0.

• Implication: all bitstrings can be compressed with 0 bits!

Pf 2. [by counting]

• Suppose your algorithm that can compress all 1,000-bit strings.

• 21000 possible bitstrings with 1000 bits.

• Only 1 + 2 + 4 + … + 2998 + 2999 can be encoded with ≤ 999 bits.

• Similarly, only 1 in 2499 bitstrings can be encoded with ≤ 500 bits! Universal
data compression?

.

.

.

U

U

U

U

U

U

!

13

Perpetual motion machines

Universal data compression is the analog of perpetual motion.

Closed-cycle mill by Robert Fludd, 1618 Gravity engine by Bob Schadewald

Reference: Museum of Unworkable Devices by Donald E. Simanek
http://www.lhup.edu/~dsimanek/museum/unwork.htm

14

Undecidability

A di!cult "le to compress: one million (pseudo-) random bits

% java RandomBits | java PictureDump 2000 500

1000000 bits

public class RandomBits
{
 public static void main(String[] args)
 {
 int x = 11111;
 for (int i = 0; i < 1000000; i++)
 {
 x = x * 314159 + 218281;
 BinaryStdOut.write(x > 0);
 }
 BinaryStdOut.close();
 }
}

15

Rdenudcany in Enlgsih lnagugae

Q. How much redundancy is in the English language?

A. Quite a bit.

“ ... randomising letters in the middle of words [has] little or no
effect on the ability of skilled readers to understand the text. This is
easy to denmtrasote. In a pubiltacion of New Scnieitst you could
ramdinose all the letetrs, keipeng the first two and last two the
same, and reibadailty would hadrly be aftcfeed. My ansaylis did not
come to much beucase the thoery at the time was for shape and
senqeuce retigcionon. Saberi's work sugsegts we may have some
pofrweul palrlael prsooscers at work. The resaon for this is suerly
that idnetiyfing coentnt by paarllel prseocsing speeds up
regnicoiton. We only need the first and last two letetrs to spot
chganes in meniang. ” — Graham Rawlinson

16

‣ genomic encoding
‣ run-length encoding
‣ Huffman compression
‣ LZW compression

17

Genomic code

Genome. String over the alphabet { A, C, T, G }.

Goal. Encode an N-character genome: ATAGATGCATAG...

Standard ASCII encoding.

• 8 bits per char.

• 8N bits.

Amazing but true. Initial genomic databases in 1990s did not use such a code!
Fixed-length code. k-bit code supports alphabet of size 2k.

char hex binary

A 41 01000001

C 43 01000011

T 54 01010100

G 47 01000111

Two-bit encoding encoding.

• 2 bits per char.

• 2N bits.

char binary

A 00

C 01

T 10

G 11

18

Genomic code

public class Genome {

 public static void compress() {
 Alphabet DNA = new Alphabet("ACTG");
 String s = BinaryStdIn.readString();
 int N = s.length();
 BinaryStdOut.write(N);
 for (int i = 0; i < N; i++) {
 int d = DNA.toIndex(s.charAt(i));
 BinaryStdOut.write(d, 2);
 }
 BinaryStdOut.close();
 }

 public static void expand() {
 Alphabet DNA = new Alphabet("ACTG");
 int N = BinaryStdIn.readInt();
 for (int i = 0; i < N; i++) {
 char c = BinaryStdIn.readChar(2);
 BinaryStdOut.write(DNA.toChar(c));
 }
 BinaryStdOut.close();
 }
}

read genomic string from stdin;
write to stdout using 2-bit code

read 2-bit code from stdin;
write genomic string to stdout

Alphabet data type converts
between symbols { A, C, T, G }
and integers 0―3.

19

Genomic code: test client and sample execution

public static void main(String[] args)
{
 if (args[0].equals("-")) compress();
 if (args[0].equals("+")) expand();
}

Compressing and expanding genomic sequences with 2-bit encoding

An actual virus (50000 bits)

Tiny test case (264 bits)

% java PictureDump 512 100 < genomeVirus.txt

50000 bits

% java Genome - < genomeVirus.txt | java PictureDump 512 25

12536 bits

% more genomeTiny.txt
ATAGATGCATAGCGCATAGCTAGATGTGCTAGC

java BitsDump 64 < genomeTiny.txt
0100000101010100010000010100011101000001010101000100011101000011
0100000101010100010000010100011101000011010001110100001101000001
0101010001000001010001110100001101010100010000010100011101000001
0101010001000111010101000100011101000011010101000100000101000111
01000011
264 bits

% java Genome - < genomeTiny.txt
??

% java Genome - < genomeTiny.txt | java BinaryDump 64
0000000000000000000000000010000100100011001011010010001101110100
1000110110001100101110110110001101000000
104 bits

% java Genome - < genomeTiny.txt | java HexDump 8
00 00 00 21 23 2d 23 74
8d 8c bb 63 40
104 bits

% java Genome - < genomeTiny.txt | java Genome +
ATAGATGCATAGCGCATAGCTAGATGTGCTAGC

cannot see bitstream on standard output

compress-expand cycle
produces original input

20

‣ genomic encoding
‣ run-length encoding
‣ Huffman compression
‣ LZW compression

21

Run-length encoding

Simple type of redundancy in a bitstream. Long runs of repeated bits.

Representation. Use 4-bit counts to represent alternating runs of 0s and 1s:
15 0s, then 7 1s, then 7 0s, then 11 1s.

Q. How many bits to store the counts?
A. We'll use 8.

Q. What to do when run length exceeds max count?
A. If longer than 255, intersperse runs of length 0.

Applications. JPEG, ITU-T T4 Group 3 Fax, ...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1

15 7 7 11

16 bits (instead of 40)

22

Run-length encoding: Java implementation

public class RunLength
{
 private final static int R = 256;

 public static void compress()
 { /* see textbook */ }

 public static void expand()
 {
 boolean b = false;
 while (!BinaryStdIn.isEmpty())
 {
 char run = BinaryStdIn.readChar();
 for (int i = 0; i < run; i++)
 BinaryStdOut.write(b);
 b = !b;
 }
 BinaryStdOut.close();
 }

}

write 1 bit to standard output

read 8-bit count from standard input

An application: compress a bitmap

Typical black-and-white-scanned image.

• 300 pixels/inch.

• 8.5-by-11 inches.

• 300 × 8.5 × 300 × 11 = 8.415 million bits.

Observation. Bits are mostly white.

Typical amount of text on a page.
40 lines × 75 chars per line = 3,000 chars.

23

A typical bitmap, with run lengths for each row

7 1s
% java BinaryDump 32 < q32x48.bin
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000011111110000000000
00000000000011111111111111100000
00000000001111000011111111100000
00000000111100000000011111100000
00000001110000000000001111100000
00000011110000000000001111100000
00000111100000000000001111100000
00001111000000000000001111100000
00001111000000000000001111100000
00011110000000000000001111100000
00011110000000000000001111100000
00111110000000000000001111100000
00111110000000000000001111100000
00111110000000000000001111100000
00111110000000000000001111100000
00111110000000000000001111100000
00111110000000000000001111100000
00111110000000000000001111100000
00111110000000000000001111100000
00111111000000000000001111100000
00111111000000000000001111100000
00011111100000000000001111100000
00011111100000000000001111100000
00001111110000000000001111100000
00001111111000000000001111100000
00000111111100000000001111100000
00000011111111000000011111100000
00000001111111111111111111100000
00000000011111111111001111100000
00000000000011111000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000011111110000
00000000000000000011111111111100
00000000000000000111111111111110
00000000000000000000000000000000
00000000000000000000000000000000

1536 bits

32
32
15 7 10
12 15 5
10 4 4 9 5
 8 4 9 6 5
 7 3 12 5 5
 6 4 12 5 5
 5 4 13 5 5
 4 4 14 5 5
 4 4 14 5 5
 3 4 15 5 5
 2 5 15 5 5
 2 5 15 5 5
 2 5 15 5 5
 2 5 15 5 5
 2 5 15 5 5
 2 5 15 5 5
 2 5 15 5 5
 2 5 15 5 5
 2 5 15 5 5
 2 6 14 5 5
 2 6 14 5 5
 3 6 13 5 5
 3 6 13 5 5
 4 6 12 5 5
 4 7 11 5 5
 5 7 10 5 5
 6 8 7 6 5
 7 20 5
 9 11 2 5 5
22 5 5
22 5 5
22 5 5
22 5 5
22 5 5
22 5 5
22 5 5
22 5 5
22 5 5
22 5 5
22 5 5
22 5 5
21 7 4
18 12 2
17 14 1
32
32

17 0s

24

‣ genomic encoding
‣ run-length encoding
‣ Huffman compression
‣ LZW compression

Use different number of bits to encode different chars.

Ex. Morse code: • • • − − − • • •

Issue. Ambiguity.
SOS ?
IAMIE ?
EEWNI ?
V7 ?

In practice. Use a medium gap to
separate codewords.

25

Variable-length codes

codeword for S is a prefix
of codeword for V

Q. How do we avoid ambiguity?
A. Ensure that no codeword is a prefix of another.

Ex 1. Fixed-length code.
Ex 2. Append special stop char to each codeword.
Ex 3. General prefix-free code.

26

Variable-length codes

Two pre!x-free codes

011111110011001000111111100101
A B RA CA DA B RA !

101
0
1111
110
100
1110

!
A
B
C
D
R

key value

D !

00 11

C

A

R B

00 11

00 11

00 11

00 11

30 bits

11000111101011100110001111101
 A B R A C A D A B R A !

101
11
00
010
100
011

!
A
B
C
D
R

key value

C R

AB

00 11

00 1100 11

00 11

D !

00 11

29 bits

Trie representationCodeword table

Trie representationCodeword table

Compressed bitstring

Compressed bitstring

Two pre!x-free codes

011111110011001000111111100101
A B RA CA DA B RA !

101
0
1111
110
100
1110

!
A
B
C
D
R

key value

D !

00 11

C

A

R B

00 11

00 11

00 11

00 11

30 bits

11000111101011100110001111101
 A B R A C A D A B R A !

101
11
00
010
100
011

!
A
B
C
D
R

key value

C R

AB

00 11

00 1100 11

00 11

D !

00 11

29 bits

Trie representationCodeword table

Trie representationCodeword table

Compressed bitstring

Compressed bitstring

Q. How to represent the prefix-free code?
A. A binary trie!

• Chars in leaves.

• Codeword is path from root to leaf.

27

Prefix-free codes: trie representation

Two pre!x-free codes

011111110011001000111111100101
A B RA CA DA B RA !

101
0
1111
110
100
1110

!
A
B
C
D
R

key value

D !

00 11

C

A

R B

00 11

00 11

00 11

00 11

30 bits

11000111101011100110001111101
 A B R A C A D A B R A !

101
11
00
010
100
011

!
A
B
C
D
R

key value

C R

AB

00 11

00 1100 11

00 11

D !

00 11

29 bits

Trie representationCodeword table

Trie representationCodeword table

Compressed bitstring

Compressed bitstring

Two pre!x-free codes

011111110011001000111111100101
A B RA CA DA B RA !

101
0
1111
110
100
1110

!
A
B
C
D
R

key value

D !

00 11

C

A

R B

00 11

00 11

00 11

00 11

30 bits

11000111101011100110001111101
 A B R A C A D A B R A !

101
11
00
010
100
011

!
A
B
C
D
R

key value

C R

AB

00 11

00 1100 11

00 11

D !

00 11

29 bits

Trie representationCodeword table

Trie representationCodeword table

Compressed bitstring

Compressed bitstring

28

Compression.

• Method 1: start at leaf; follow path up to the root; print bits in reverse.

• Method 2: create ST of key-value pairs.

Expansion.

• Start at root.

• Go left if bit is 0; go right if 1.

• If leaf node, print char and return to root.

Prefix-free codes: compression and expansion

Two pre!x-free codes

011111110011001000111111100101
A B RA CA DA B RA !

101
0
1111
110
100
1110

!
A
B
C
D
R

key value

D !

00 11

C

A

R B

00 11

00 11

00 11

00 11

30 bits

11000111101011100110001111101
 A B R A C A D A B R A !

101
11
00
010
100
011

!
A
B
C
D
R

key value

C R

AB

00 11

00 1100 11

00 11

D !

00 11

29 bits

Trie representationCodeword table

Trie representationCodeword table

Compressed bitstring

Compressed bitstring

Two pre!x-free codes

011111110011001000111111100101
A B RA CA DA B RA !

101
0
1111
110
100
1110

!
A
B
C
D
R

key value

D !

00 11

C

A

R B

00 11

00 11

00 11

00 11

30 bits

11000111101011100110001111101
 A B R A C A D A B R A !

101
11
00
010
100
011

!
A
B
C
D
R

key value

C R

AB

00 11

00 1100 11

00 11

D !

00 11

29 bits

Trie representationCodeword table

Trie representationCodeword table

Compressed bitstring

Compressed bitstring

29

Huffman trie node data type

private static class Node implements Comparable<Node>
{
 private char ch; // Unused for internal nodes.
 private int freq; // Unused for expand.
 private final Node left, right;

 public Node(char ch, int freq, Node left, Node right)
 {
 this.ch = ch;
 this.freq = freq;
 this.left = left;
 this.right = right;
 }

 public boolean isLeaf()
 { return left == null && right == null; }

 public int compareTo(Node that)
 { return this.freq - that.freq; }
}

Running time. Linear in input size (constant amount of work per bit read).
30

Prefix-free codes: expansion

public void expand()
{
 Node root = readTrie();
 int N = BinaryStdIn.readInt();

 for (int i = 0; i < N; i++)
 {
 Node x = root;
 while (!x.isLeaf())
 {
 if (BinaryStdIn.readBoolean())
 x = x.left;
 else
 x = x.right;
 }
 BinaryStdOut.write(x.ch);
 }
 BinaryStdOut.close();
}

expand codeword for ith char

read in encoding trie
read in number of chars

Q. How to write the trie?
A. Write preorder traversal of trie; mark leaf and internal nodes with a bit.

Note. If message is long, overhead of transmitting trie is small.
31

Prefix-free codes: how to transmit

Using preorder traversal to encode a trie as a bitstream

preorder
traversal

D R B

!

!

C

A

01010000010010100010001000010101010000110101010010101000010

internal nodes

leaves
BRC!DA

11

22

2211 33 44 55

33

44

55

private static void writeTrie(Node x)
{
 if (x.isLeaf())
 {
 BinaryStdOut.write(true);
 BinaryStdOut.write(x.ch);
 return;
 }
 BinaryStdOut.write(false);
 writeTrie(x.left);
 writeTrie(x.right);
}

private static Node readTrie()
{
 if (BinaryStdIn.readBoolean())
 {
 char c = BinaryStdIn.readChar();
 return new Node(c, 0, null, null);
 }
 Node x = readTrie();
 Node y = readTrie();
 return new Node('\0', 0, x, y);
}

Q. How to read in the trie?
A. Reconstruct from preorder traversal of trie.

32

Prefix-free codes: how to transmit

Using preorder traversal to encode a trie as a bitstream

preorder
traversal

D R B

!

!

C

A

01010000010010100010001000010101010000110101010010101000010

internal nodes

leaves
BRC!DA

11

22

2211 33 44 55

33

44

55

33

Huffman codes

Q. How to find best prefix-free code?
A. Huffman algorithm.

Huffman algorithm (to compute optimal prefix-free code):

• Count frequency freq[i] for each char i in input.

• Start with one node corresponding to each char i (with weight freq[i]).

• Repeat until single trie formed:
- select two tries with min weight freq[i] and freq[j]

- merge into single trie with weight freq[i] + freq[j]

Applications. JPEG, MP3, MPEG, PKZIP, GZIP, …

David Huffman

Constructing a Huffman encoding trie

34

frequencies

C!

Huffman code construction for A B R A C A D A B R A !

char freq encoding

A 5

B 2

C 1

D 1

R 2

! 1 1 1

1

5

22

0

1 1 1

1 0 1 1

1 0 0

1 1 0

1 0 1 0

0 1

12

10

7

10

3

10

4

D
10

2

R B

A

private static Node buildTrie(int[] freq)
{
 MinPQ<Node> pq = new MinPQ<Node>();
 for (char i = 0; i < R; i++)
 if (freq[i] > 0)
 pq.insert(new Node(i, freq[i], null, null));

 while (pq.size() > 1)
 {
 Node x = pq.delMin();
 Node y = pq.delMin();
 Node parent = new Node('\0', x.freq + y.freq, x, y);
 pq.insert(parent);
 }

 return pq.delMin();
}

35

Constructing a Huffman encoding trie: Java implementation

not used total frequency two subtries

initialize PQ with
singleton tries

merge two
smallest tries

Proposition. [Huffman 1950s] Huffman algorithm produces an optimal
prefix-free code.
Pf. See textbook.

Implementation.

• Pass 1: tabulate char frequencies and build trie.

• Pass 2: encode file by traversing trie or lookup table.

Running time. Using a binary heap ⇒ O(N + R log R).

Q. Can we do better? [stay tuned]
36

Huffman encoding summary

no prefix-free code uses fewer bits

input
size

alphabet
size

37

‣ genomic encoding
‣ run-length encoding
‣ Huffman compression
‣ LZW compression

Jacob ZivAbraham Lempel

38

Statistical methods

Static model. Same model for all texts.

• Fast.

• Not optimal: different texts have different statistical properties.

• Ex: ASCII, Morse code.

Dynamic model. Generate model based on text.

• Preliminary pass needed to generate model.

• Must transmit the model.

• Ex: Huffman code.

Adaptive model. Progressively learn and update model as you read text.

• More accurate modeling produces better compression.

• Decoding must start from beginning.

• Ex: LZW.

A B R A C A D A B R A B R A B R AB

key value

AB 81

BR 82

RA 83

AC 84

CA 85

AD 86

39

Lempel-Ziv-Welch compression example

key value

…

A 41

B 42

C 43

D 44

…

Ainput

matches

value 41 42 52 41 43 41 44 81 83 82 88 41

A B R A C A D A B R A B R A B R A

key value

DA 87

ABR 88

RAB 89

BRA 8A

ABRA 8B

codeword table

B R A C A D A B R A B R A R A

LZW compression for ABRACADABRABRABRA

40

Lempel-Ziv-Welch compression

LZW compression.

• Create ST associating W-bit codewords with string keys.

• Initialize ST with codewords for single-char keys.

• Find longest string s in ST that is a prefix of unscanned part of input.

• Write the W-bit codeword associated with s.

• Add s + c to ST, where c is next char in the input.

LZW compression for A B R A C A D A B R A B R A B R A

A B
B R 82

A B 81 A B
B R
R A 83

A B
B R
R A
A C 84

A B
B R
R A
A C
C A 85

A B
B R
R A
A C
C A
A D 86

A B
B R
R A
A C
C A
A D
D A 87

A B
B R
R A
A C
C A
A D
D A
A B R 88

A B
B R
R A
A C
C A
A D
D A
A B R
R A B 89

A B
B R
R A
A C
C A
A D
D A
A B R
R A B
B R A
A B R A 8B

A B
B R
R A
A C
C A
A D
D A
A B R
R A C
B R A 8A

A B R A C A D A B R A B R A B R A

A B R A C A D A B R A B R A B R A

41 42 52 41 43 41 44 81 83 82 88 41 80

EOF

A B
B R
R A
A C
C A
A D
D A
A B R
R A B
B R A
A B R A

81
82
83
84
85
86
87
88
89
8A
8B

valuekey

output

input

matches

lookahead
character

codeword table

LZW
codeword

input
substring

Q. How to represent LZW code table?
A. A trie: supports efficient longest prefix match.

Remark. Every prefix of a key in encoding table is also in encoding table.
41

Representation of LZW code table

Trie representation of LZW code table

AA BB CC DD RR

RR

BB CC DD RR AA AA AA

AA BB

81 84 86 82 85 87 83

8A88

AA

8B

89

public static void compress()
{
 String input = BinaryStdIn.readString();

 TST<Integer> st = new TST<Integer>();
 for (int i = 0; i < R; i++)
 st.put("" + (char) i, i);
 int code = R+1;

 while (input.length() > 0)
 {
 String s = st.longestPrefixOf(input);
 BinaryStdOut.write(st.get(s), W);
 int t = s.length();
 if (t < input.length() && code < L)
 st.put(input.substring(0, t+1), code++);
 input = input.substring(t);
 }

 BinaryStdOut.write(R, W);
 BinaryStdOut.close();
}

42

LZW compression: Java implementation

codewords for single-
char, radix R keys

find longest prefix match s

read in input as a string

write last codeword
and close input stream

write W-bit codeword for s

scan past s in input

add new codeword

43

LZW expansion

LZW expansion.

• Create ST associating string values with W-bit keys.

• Initialize ST to contain with single-char values.

• Read a W-bit key.

• Find associated string value in ST and write it out.

• Update ST.

LZW expansion for 41 42 52 41 43 41 44 81 83 82 88 41 80

A B
B R82

A B81 A B
B R
R A83

A B
B R
R A
A C84

A B
B R
R A
A C
C A85

A B
B R
R A
A C
C A
A D86

A B
B R
R A
A C
C A
A D
D A87

A B
B R
R A
A C
C A
A D
D A
A B R88

A B
B R
R A
A C
C A
A D
D A
A B R
R A B89

A B
B R
R A
A C
C A
A D
D A
A B R
R A B
B R A8A

A B
B R
R A
A C
C A
A D
D A
A B R
R A B
B R A
A B R A8B

 A B R A C A D A B R A B R A B R A
41 42 52 41 43 41 44 81 83 82 88 41 80

A B
B R
R A
A C
C A
A D
D A
A B R
R A B
B R A
A B R A

81
82
83
84
85
86
87
88
89
8A
8B

key value

output

input

inverse codeword table

LZW
codeword input

substring

44

LZW expansion: tricky situation

Q. What to do when next codeword is not yet in ST when needed?

LZW expansion: tricky situation

A B
B A82

A B
B A
A B ?83

A B81

A B A B ?
41 42 81 83 80

A B A B A B A

A B A B A B A
41 42 81 83 80

expansion

compression

A B
B A 82

A B 81
A B
B R
A B A 83

A B
B R
A B A

81
82
83

need lookahead character
to complete entry

must be A B A
(see below)

next character in output—the lookahead character!

output

input

output

input

matches

valuekey
codeword table

LZW expansion: tricky situation

A B
B A82

A B
B A
A B ?83

A B81

A B A B ?
41 42 81 83 80

A B A B A B A

A B A B A B A
41 42 81 83 80

expansion

compression

A B
B A 82

A B 81
A B
B R
A B A 83

A B
B R
A B A

81
82
83

need lookahead character
to complete entry

must be A B A
(see below)

next character in output—the lookahead character!

output

input

output

input

matches

valuekey
codeword table

45

LZW implementation details

How big to make ST?

• How long is message?

• Whole message similar model?

• [many variations have been developed]

What to do when ST fills up?

• Throw away and start over. [GIF]

• Throw away when not effective. [Unix compress]

• [many other variations]

Why not put longer substrings in ST?

• [many variations have been developed]

46

LZW in the real world

Lempel-Ziv and friends.

• LZ77.

• LZ78.

• LZW.

• Deflate = LZ77 variant + Huffman.

PNG: LZ77.
Winzip, gzip, jar: deflate.
Unix compress: LZW.
Pkzip: LZW + Shannon-Fano.
GIF, TIFF, V.42bis modem: LZW.
Google: zlib which is based on deflate.

never expands a file

LZ77 not patented ⇒ widely used in open source
LZW patent #4,558,302 expired in US on June 20, 2003
some versions copyrighted

47

Lossless data compression benchmarks

year scheme bits / char

1967 ASCII 7.00

1950 Huffman 4.70

1977 LZ77 3.94

1984 LZMW 3.32

1987 LZH 3.30

1987 move-to-front 3.24

1987 LZB 3.18

1987 gzip 2.71

1988 PPMC 2.48

1994 SAKDC 2.47

1994 PPM 2.34

1995 Burrows-Wheeler 2.29

1997 BOA 1.99

1999 RK 1.89

data compression using Calgary corpus

next programming assignment

48

Data compression summary

Lossless compression.

• Represent fixed-length symbols with variable-length codes. [Huffman]

• Represent variable-length symbols with fixed-length codes. [LZW]

Lossy compression. [not covered in this course]

• JPEG, MPEG, MP3, …

• FFT, wavelets, fractals, …

Theoretical limits on compression. Shannon entropy.

Practical compression. Use extra knowledge whenever possible.

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 26, 2010 8:51:53 AM

6.1 Geometric Primitives

‣ primitive operations
‣ convex hull
‣ closest pair
‣ voronoi diagram

2

Geometric algorithms

Applications.

• Data mining.

• VLSI design.

• Computer vision.

• Mathematical models.

• Astronomical simulation.

• Geographic information systems.

• Computer graphics (movies, games, virtual reality).

• Models of physical world (maps, architecture, medical imaging).

History.

• Ancient mathematical foundations.

• Most geometric algorithms less than 25 years old.

http://www.ics.uci.edu/~eppstein/geom.html

airflow around an aircraft wing

3

‣ primitive operations
‣ convex hull
‣ closest pair
‣ voronoi diagram

4

Geometric primitives

Point: two numbers (x, y).
Line: two numbers a and b. [ax + by = 1]
Line segment: two points.
Polygon: sequence of points.

Primitive operations.

• Is a polygon simple?

• Is a point inside a polygon?

• Do two line segments intersect?

• What is Euclidean distance between two points?

• Given three points p1, p2, p3, is p1→p2→p3 a counterclockwise turn?

Other geometric shapes.

• Triangle, rectangle, circle, sphere, cone, …

• 3D and higher dimensions sometimes more complicated.

any line not through origin

5

Geometric intuition

Warning: intuition may be misleading.

• Humans have spatial intuition in 2D and 3D.

• Computers do not.

• Neither has good intuition in higher dimensions!

Q. Is a given polygon simple?

we think of this algorithm sees this

no crossings

x

y

1 6 5 8 7 2

7 8 6 4 2 1

x

y

1 15 14 13 12 11 10 9 8 7 6 5 4 3 2

1 2 18 4 18 4 19 4 19 4 20 3 20 2 20

x

y

1 10 3 7 2 8 8 3 4

6 5 15 1 11 3 14 2 16

Jordan curve theorem. [Jordan 1887, Veblen 1905] Any continuous simple
closed curve cuts the plane in exactly two pieces: the inside and the outside.

Q. Is a point inside a simple polygon?

Application. Draw a filled polygon on the screen.
6

Polygon inside, outside

Puzzle. Are A and B inside or outside the maze?

7

Fishy maze

http://britton.disted.camosun.bc.ca/fishmaze.pdf

8

Polygon inside, outside

Jordan curve theorem. [Jordan 1887, Veblen 1905] Any continuous simple
closed curve cuts the plane in exactly two pieces: the inside and the outside.

Q. Is a point inside a simple polygon?

Application. Draw a filled polygon on the screen.

http://www.ics.uci.edu/~eppstein/geom.html

Q. Does line segment intersect ray?

9

public boolean contains(double x0, double y0)
{
 int crossings = 0;
 for (int i = 0; i < N; i++)
 {
 double slope = (y[i+1] - y[i]) / (x[i+1] - x[i]);
 boolean cond1 = (x[i] <= x0) && (x0 < x[i+1]);
 boolean cond2 = (x[i+1] <= x0) && (x0 < x[i]);
 boolean above = (y0 < slope * (x0 - x[i]) + y[i]);
 if ((cond1 || cond2) && above) crossings++;
 }
 return crossings % 2 != 0;
 }

Polygon inside, outside: crossing number

y0 =
 yi+1 - yi

 xi+1 - xi
 (x0 - xi) + yi

xi ≤ x0 ≤ xi+1

(xi, yi)

(xi+1, yi+1)

(x0, y0)

10

CCW. Given three point a, b, and c, is a-b-c a counterclockwise turn?

• Analog of compares in sorting.

• Idea: compare slopes.

Lesson. Geometric primitives are tricky to implement.

• Dealing with degenerate cases.

• Coping with floating-point precision.

Implementing ccw

a

b

yes

a

c

no

a

b

Yes
(∞-slope)

a

b

???
(collinear)

b

a

???
(collinear)

a

c

???
(collinear)

cc b

c c b

CCW. Given three point a, b, and c, is a→b→c a counterclockwise turn?

• Determinant gives twice signed area of triangle.

• If area > 0 then a→b→c is counterclockwise.

• If area < 0, then a→b→c is clockwise.

• If area = 0, then a→b→c are collinear.

< 0> 0

11

Implementing ccw

€

2 × Area(a, b, c) =
ax ay 1
bx by 1
cx cy 1

= (bx − ax)(cy − ay) − (by − ay)(cx − ax)

(ax, ay)

(bx, by)

(cx, cy) (ax, ay)

(bx, by)

(cx, cy)

12

Immutable point data type

public class Point
{
 private final int x;
 private final int y;

 public Point(int x, int y)
 { this.x = x; this.y = y; }

 public double distanceTo(Point that)
 {
 double dx = this.x - that.x;
 double dy = this.y - that.y;
 return Math.sqrt(dx*dx + dy*dy);
 }

 public static int ccw(Point a, Point b, Point c)
 {
 int area2 = (b.x-a.x)*(c.y-a.y) - (b.y-a.y)*(c.x-a.x);
 if (area2 < 0) return -1;
 else if (area2 > 0) return +1;
 else return 0;
 }

 public static boolean collinear(Point a, Point b, Point c)
 { return ccw(a, b, c) == 0; }
}

cast to long to avoid
overflowing an int

l1.p1l2.p1

13

Intersect. Given two line segments, do they intersect?

• Idea 1: find intersection point using algebra and check.

• Idea 2: check if the endpoints of one line segment are on
different "sides" of the other line segment (4 calls to ccw).

Sample ccw client: line intersection

not handled

l1.p2 l2.p2

public static boolean intersect(LineSegment l1, LineSegment l2)
{
 int test1 = Point.ccw(l1.p1, l1.p2, l2.p1) * Point.ccw(l1.p1, l1.p2, l2.p2);
 int test2 = Point.ccw(l2.p1, l2.p2, l1.p1) * Point.ccw(l2.p1, l2.p2, l1.p2);
 return (test1 <= 0) && (test2 <= 0);
}

14

‣ primitive operations
‣ convex hull
‣ closest pair
‣ voronoi diagram

15

Convex hull

A set of points is convex if for any two points p and q in the set,
the line segment pq is completely in the set.

Convex hull. Smallest convex set containing all the points.

Properties.

• "Simplest" shape that approximates set of points.

• Shortest perimeter fence surrounding the points.

• Smallest area convex polygon enclosing the points.

convex not convex

convex hull

p

q

p

q

16

Mechanical solution

Mechanical convex hull algorithm. Hammer nails perpendicular to plane;
stretch elastic rubber band around points.

http://www.dfanning.com/math_tips/convexhull_1.gif

17

An application: farthest pair

Farthest pair problem. Given N points in the plane, find a pair of points with
the largest Euclidean distance between them.

Fact. Farthest pair of points are on convex hull.

18

Brute-force algorithm

Observation 1.
Edges of convex hull of P connect pairs of points in P.

Observation 2.
p-q is on convex hull if all other points are counterclockwise of pq.

O(N3) algorithm. For all pairs of points p and q:

• Compute ccw(p, q, x) for all other points x.

• p-q is on hull if all values are positive.

p

q

19

Package wrap (Jarvis march)

Package wrap.

• Start with point with smallest (or largest) y-coordinate.

• Rotate sweep line around current point in ccw direction.

• First point hit is on the hull.

• Repeat.

20

Package wrap (Jarvis march)

Implementation.

• Compute angle between current point and all remaining points.

• Pick smallest angle larger than current angle.

• Θ(N) per iteration.

21

Jarvis march: demo

http://www.cs.princeton.edu/courses/archive/fall08/cos226/demo/ah/JarvisMarch.html

22

Jarvis march: demo

http://www.cs.princeton.edu/courses/archive/fall08/cos226/demo/ah/JarvisMarch.html

23

Jarvis march: demo

http://www.cs.princeton.edu/courses/archive/fall08/cos226/demo/ah/JarvisMarch.html

24

How many points on the hull?

Parameters.

• N = number of points.

• h = number of points on the hull.

Package wrap running time. Θ(N h).

How many points on hull?

• Worst case: h = N.

• Average case: difficult problems in stochastic geometry.

- uniformly at random in a disc: h = N1/3

- uniformly at random in a convex polygon with O(1) edges: h = log N

25

Graham scan

Graham scan.

• Choose point p with smallest (or largest) y-coordinate.

• Sort points by polar angle with p to get simple polygon.

• Consider points in order, and discard those that
would create a clockwise turn.

p

26

Graham scan: demo

http://www.cs.princeton.edu/courses/archive/fall08/cos226/demo/ah/GrahamScan.html

27

Graham scan: demo

http://www.cs.princeton.edu/courses/archive/fall08/cos226/demo/ah/GrahamScan.html

28

Graham scan: implementation

Implementation.

• Input: p[1], p[2], …, p[N] are distinct points.

• Output: M and rearrangement so that p[1], p[2], …, p[M] is convex hull.

Running time. O(N log N) for sort and O(N) for rest.

// preprocess so that p[1] has smallest y-coordinate
// sort by polar angle with respect to p[1]

p[0] = p[N]; // sentinel
int M = 2;
for (int i = 3; i <= N; i++)
{
 while (Point.ccw(p[M-1], p[M], p[i]) <= 0)
 M--;
 M++;
 swap(p, M, i);
}

why?

discard points that would
create clockwise turnadd i to putative hull

29

Quick elimination

Quick elimination.

• Choose a quadrilateral Q or rectangle R with 4 points as corners.

• Any point inside cannot be on hull.

- 4 ccw tests for quadrilateral
- 4 compares for rectangle

Three-phase algorithm.

• Pass through all points to compute R.

• Eliminate points inside R.

• Find convex hull of remaining points.

In practice. Eliminates almost all points in linear time.

Q

these
points

eliminated

R

Asymptotic cost to find h-point hull in N-point set.

30

Convex hull algorithms costs summary

t assumes "reasonable" point distribution

output sensitive

algorithm running time

package wrap N h

Graham scan N log N

quickhull N log N

mergehull N log N

sweep line N log N

quick elimination N t

marriage-before-conquest N log h

output sensitive

31

Convex hull: lower bound

Models of computation.

• Compare-based: compare coordinates.
(impossible to compute convex hull in this model of computation)

• Quadratic decision tree model: compute any quadratic function
of the coordinates and compare against 0.

Proposition. [Andy Yao, 1981] In quadratic decision tree model,
any convex hull algorithm requires Ω(N log N) ops.

higher constant-degree polynomial tests
don't help either [Ben-Or, 1983]

even if hull points are not required to be
output in counterclockwise order

(a.x < b.x) || ((a.x == b.x) && (a.y < b.y)))

(a.x*b.y - a.y*b.x + a.y*c.x - a.x*c.y + b.x*c.y - c.x*b.y) < 0

32

‣ primitive operations
‣ convex hull
‣ closest pair
‣ voronoi diagram

33

Closest pair

Closest pair problem. Given N points in the plane, find a pair of points with
the smallest Euclidean distance between them.

Fundamental geometric primitive.

• Graphics, computer vision, geographic information systems,
molecular modeling, air traffic control.

• Special case of nearest neighbor, Euclidean MST, Voronoi.

fast closest pair inspired fast algorithms for these problems

34

Closest pair

Closest pair problem. Given N points in the plane, find a pair of points with
the smallest Euclidean distance between them.

Brute force. Check all pairs with N2 distance calculations.

1-D version. Easy N log N algorithm if points are on a line.

Degeneracies complicate solutions.
[assumption for lecture: no two points have same x-coordinate]

• Divide: draw vertical line L so that ~ ½N points on each side.

35

Divide-and-conquer algorithm

L

36

Divide-and-conquer algorithm

• Divide: draw vertical line L so that ~ ½N points on each side.

• Conquer: find closest pair in each side recursively.

L

12

21

37

Divide-and-conquer algorithm

• Divide: draw vertical line L so that ~ ½N points on each side.

• Conquer: find closest pair in each side recursively.

• Combine: find closest pair with one point in each side.

• Return best of 3 solutions. seems like Θ(N2)

L

12

21
8

Find closest pair with one point in each side, assuming that distance < δ.

L

12

21

38

How to find closest pair with one point in each side?

δ = min(12, 21)

Find closest pair with one point in each side, assuming that distance < δ.

• Observation: only need to consider points within δ of line L.

39

How to find closest pair with one point in each side?

L

12

21

δ = min(12, 21)

δ

Find closest pair with one point in each side, assuming that distance < δ.

• Observation: only need to consider points within δ of line L.

• Sort points in 2δ-strip by their y coordinate.

L

12

21

δ = min(12, 21)

δ 40

How to find closest pair with one point in each side?

1

2

3

4
5

6

7

41

How to find closest pair with one point in each side?

Find closest pair with one point in each side, assuming that distance < δ.

• Observation: only need to consider points within δ of line L.

• Sort points in 2δ-strip by their y coordinate.

• Only check distances of those within 11 positions in sorted list!

L

12

21

δ = min(12, 21)

δ

1

2

3

4
5

6

7

why 11?

42

How to find closest pair with one point in each side?

Def. Let si be the point in the 2δ-strip, with

the ith smallest y-coordinate.

Claim. If |i – j| ≥ 12, then the
distance between si and sj is at least δ.

Pf.

• No two points lie in same ½δ-by-½δ box.

• Two points at least 2 rows apart
have distance ≥ 2(½δ). ▪

Fact. Claim remains true if we replace 12 with 7.

δ

27

29
30

31

28

26

25

δ

½δ

 2 rows
½δ

½δ

39

i

j

43

Divide-and-conquer algorithm

O(N log N)

2T(N / 2)

O(N)

O(N log N)

O(N)

Closest-Pair(p1, …, pn)
{
 Compute separation line L such that half the points
 are on one side and half on the other side.

 δ1 = Closest-Pair(left half)
 δ2 = Closest-Pair(right half)
 δ = min(δ1, δ2)

 Delete all points further than δ from separation line L

 Sort remaining points by y-coordinate.

 Scan points in y-order and compare distance between
 each point and next 11 neighbors. If any of these
 distances is less than δ, update δ.

 return δ.
}

44

Divide-and-conquer algorithm: analysis

Running time recurrence. T(N) ≤ 2T(N/2) + O(N log N).

Solution. T(N) = O(N (log N)2).

Remark. Can be improved to O(N log N).

Lower bound. In quadratic decision tree model, any algorithm
for closest pair requires Ω(N log N) steps.

sort by x- and y-coordinates once
(reuse later to avoid re-sorting)

(x1 - x2) 2 + (y1 - y2) 2

45

‣ primitive operations
‣ convex hull
‣ closest pair
‣ voronoi diagram

Life-or-death question.
Given a new cholera patient p, which water pump is closest to p’s home?

46

1854 cholera outbreak, Golden Square, London

http://content.answers.com/main/content/wp/en/c/c7/Snow-cholera-map.jpg

47

Voronoi diagram

Voronoi region. Set of all points closest to a given point.
Voronoi diagram. Planar subdivision delineating Voronoi regions.
Fact. Voronoi edges are perpendicular bisector segments.

Voronoi of 2 points
(perpendicular bisector)

Voronoi of 3 points
(passes through circumcenter)

48

Voronoi diagram

Voronoi region. Set of all points closest to a given point.
Voronoi diagram. Planar subdivision delineating Voronoi regions.

49

Voronoi diagram: more applications

Anthropology. Identify influence of clans and chiefdoms on geographic regions.
Astronomy. Identify clusters of stars and clusters of galaxies.
Biology, Ecology, Forestry. Model and analyze plant competition.
Cartography. Piece together satellite photographs into large "mosaic" maps.
Crystallography. Study Wigner-Setiz regions of metallic sodium.
Data visualization. Nearest neighbor interpolation of 2D data.
Finite elements. Generating finite element meshes which avoid small angles.
Fluid dynamics. Vortex methods for inviscid incompressible 2D fluid flow.
Geology. Estimation of ore reserves in a deposit using info from bore holes.
Geo-scientific modeling. Reconstruct 3D geometric figures from points.
Marketing. Model market of US metro area at individual retail store level.
Metallurgy. Modeling "grain growth" in metal films.
Physiology. Analysis of capillary distribution in cross-sections of muscle tissue.
Robotics. Path planning for robot to minimize risk of collision.
Typography. Character recognition, beveled and carved lettering.
Zoology. Model and analyze the territories of animals.
http://voronoi.com http://www.ics.uci.edu/~eppstein/geom.html

50

Scientific rediscoveries

Reference: Kenneth E. Hoff III

year discoverer discipline name

1644 Descartes astronomy "Heavens"

1850 Dirichlet math Dirichlet tesselation

1908 Voronoi math Voronoi diagram

1909 Boldyrev geology area of influence polygons

1911 Thiessen meteorology Thiessen polygons

1927 Niggli crystallography domains of action

1933 Wigner-Seitz physics Wigner-Seitz regions

1958 Frank-Casper physics atom domains

1965 Brown ecology area of potentially available

1966 Mead ecology plant polygons

1985 Hoofd et al. anatomy capillary domains

51

Fortune's algorithm

Industrial-strength Voronoi implementation.

• Sweep-line algorithm.

• O(N log N) time.

• Properly handles degeneracies.

• Properly handles floating-point computations.

Try it yourself! http://www.diku.dk/hjemmesider/studerende/duff/Fortune/

Remark. Beyond scope of this course.

algorithm preprocess query

brute 1 N

Fortune N log N log N

52

Fortune's algorithm in practice

Def. Triangulation of N points such that no point is inside
circumcircle of any other triangle.

53

Delaunay triangulation

circumcircle of 3 points

Proposition 1. It exists and is unique (assuming no degeneracy).
Proposition 2. Dual of Voronoi (connect adjacent points in Voronoi diagram).
Proposition 3. No edges cross ⇒ O(N) edges.
Proposition 4. Maximizes the minimum angle for all triangular elements.
Proposition 5. Boundary of Delaunay triangulation is convex hull.
Proposition 6. Shortest Delaunay edge connects closest pair of points.

54

Delaunay triangulation properties

Delaunay

Voronoi

55

Delaunay triangulation application: Euclidean MST

Euclidean MST. Given N points in the plane, find MST connecting them.
[distances between point pairs are Euclidean distances]

Brute force. Compute N2 / 2 distances and run Prim's algorithm.
Ingenuity.

• MST is subgraph of Delaunay triangulation.

• Delaunay has O(N) edges.

• Compute Delaunay, then use Prim (or Kruskal) to get MST in O(N log N) !

Ingenious algorithms enable solution of large instances for numerous
fundamental geometric problems.

Note. 3D and higher dimensions test limits of our ingenuity.

56

asymptotic time to solve a 2D problem with N points

Geometric algorithms summary

problem brute clever

convex hull N2 N log N

farthest pair N2 N log N

closest pair N2 N log N

Delaunay/Voronoi N4 N log N

Euclidean MST N2 N log N

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 26, 2010 8:49:21 AM

6.3 Geometric Search

‣ range search
‣ space partitioning trees
‣ intersection search

Geometric objects. Points, lines, intervals, circles, rectangles, polygons, ...
This lecture. Intersection among N objects.

Example problems.

• 1D range search.

• 2D range search.

• Find all intersections among h-v line segments.

• Find all intersections among h-v rectangles.

2

Overview

‣ range search
‣ space partitioning trees
‣ intersection search

3

4

1d range search

Extension of ordered symbol table.

• Insert key-value pair.

• Search for key k.

• Rank: how many keys less than k?

• Range search: find all keys between k1 and k2.

Application. Database queries.

Geometric interpretation.

• Keys are point on a line.

• How many points in a given interval?

insert B B

insert D B D

insert A A B D

insert I A B D I

insert H A B D H I

insert F A B D F H I

insert P A B D F H I P

count G to K 2

search G to K H I

5

1d range search: implementations

Ordered array. Slow insert, binary search for lo and hi to find range.
Hash table. No reasonable algorithm (key order lost in hash).

BST. All operations fast.

N = # keys
R = # keys that match

data structure insert rank range count range search

ordered array N log N log N R + log N

hash table 1 N N N

BST log N log N log N R + log N

Range search. Find all keys between lo and hi?

• Recursively find all keys in left subtree (if any could fall in range).

• Check key in current node.

• Recursively find all keys in right subtree (if any could fall in range).

Worst-case running time. R + log N (assuming BST is balanced).
6

1d range search: BST implementation

black keys are
in the range

red keys are used in compares
but are not in the range

A
C

E

H

L
M

P

R

S
X

searching in the range [F..T]

Range search in a BST

7

2d orthogonal range search

Extension of ordered symbol-table to 2d keys.

• Insert a 2d key.

• Search for a 2d key.

• Range search: find all keys that lie in a 2d range?

Applications. Networking, circuit design, databases.

Geometric interpretation.

• Keys are point in the plane.

• How many points in a given h-v rectangle.

rectangle is axis-aligned

8

2d orthogonal range search: grid implementation

Grid implementation.

• Divide space into M-by-M grid of squares.

• Create list of points contained in each square.

• Use 2d array to directly index relevant square.

• Insert: add (x, y) to list for corresponding square.

• Range search: examine only those squares that intersect 2d range query.

LB

RT

9

2d orthogonal range search: grid implementation costs

Space-time tradeoff.

• Space: M2 + N.

• Time: 1 + N / M2 per square examined, on average.

Choose grid square size to tune performance.

• Too small: wastes space.

• Too large: too many points per square.

• Rule of thumb: √N-by-√N grid.

Running time. [if points are evenly distributed]

• Initialize: O(N).

• Insert: O(1).

• Range: O(1) per point in range.

M ~ √N

LB

RT

Grid implementation. Fast, simple solution for well-distributed points.
Problem. Clustering a well-known phenomenon in geometric data.

Lists are too long, even though average length is short.
Need data structure that gracefully adapts to data.

10

Clustering

Grid implementation. Fast, simple solution for well-distributed points.
Problem. Clustering a well-known phenomenon in geometric data.

Ex. USA map data.

11

Clustering

half the squares are empty half the points are
in 10% of the squares

13,000 points, 1000 grid squares

‣ range search
‣ space partitioning trees
‣ intersection search

12

Use a tree to represent a recursive subdivision of 2D space.

Quadtree. Recursively divide space into four quadrants.
2d tree. Recursively divide space into two halfplanes.
BSP tree. Recursively divide space into two regions.

13

Space-partitioning trees

Grid 2D treeQuadtree BSP tree

14

Space-partitioning trees: applications

Applications.

• Ray tracing.

• 2d range search.

• Flight simulators.

• N-body simulation.

• Collision detection.

• Astronomical databases.

• Nearest neighbor search.

• Adaptive mesh generation.

• Accelerate rendering in Doom.

• Hidden surface removal and shadow casting.

Grid 2D treeQuadtree BSP tree

Idea. Recursively divide space into 4 quadrants.
Implementation. 4-way tree (actually a trie).

Benefit. Good performance in the presence of clustering.
Drawback. Arbitrary depth!

15

Quadtree

a

b

c

e

f

g h

d

public class QuadTree
{
 private Quad quad;
 private Value val;
 private QuadTree NW, NE, SW, SE;
}

(01.., 00..)

(0..., 1...)
a

b c

d e f g

h

SENW SWNE

16

Quadtree: larger example

http://en.wikipedia.org/wiki/Image:Point_quadtree.svg

17

Quadtree: 2d range search

Range search. Find all keys in a given 2D range.

• Recursively find all keys in NE quad (if any could fall in range).

• Recursively find all keys in NW quad (if any could fall in range).

• Recursively find all keys in SE quad (if any could fall in range).

• Recursively find all keys in SW quad (if any could fall in range).

Typical running time. R + log N.

a

b

c

e

f

g h

d
a

b c

d e f g

h

18

N-body simulation

Goal. Simulate the motion of N particles, mutually affected by gravity.

Brute force. For each pair of particles, compute force. F =
G m1 m2

r2

19

Subquadratic N-body simulation

Key idea. Suppose particle is far, far away from cluster of particles.

• Treat cluster of particles as a single aggregate particle.

• Compute force between particle and center of mass of aggregate particle.

20

Barnes-Hut algorithm for N-body simulation.

Barnes-Hut.

• Build quadtree with N particles as external nodes.

• Store center-of-mass of subtree in each internal node.

• To compute total force acting on a particle, traverse tree, but stop as soon
as distance from particle to quad is sufficiently large.

21

Curse of dimensionality

Range search / nearest neighbor in k dimensions?
Main application. Multi-dimensional databases.

3d space. Octrees: recursively divide 3d space into 8 octants.
100d space. Centrees: recursively divide 100d space into 2100 centrants???

Raytracing with octrees
http://graphics.cs.ucdavis.edu/~gregorsk/graphics/275.html

Recursively partition plane into two halfplanes.

22

2d tree

1

2

3

4

6

7

8

9

10

5

1

2

87

10 9

3

4 6

5

Implementation. BST, but alternate using x- and y-coordinates as key.

• Search gives rectangle containing point.

• Insert further subdivides the plane.

23

2d tree

even levels

p

points
left of p

points
right of p

p

q

points
below q

points
above q

odd levels

q

1

2

87

10 9

3

4 6

5

1
2

3

4

6

7

8

9

10

5

1

2

87

10 9

3

4 6

5

Range search. Find all points in a query axis-aligned rectangle.

• Check if point in node lies in given rectangle.

• Recursively search left/top subdivision (if any could fall in rectangle).

• Recursively search right/bottom subdivision (if any could fall in rectangle).

Typical case. R + log N
Worst case (assuming tree is balanced). R + √N.

24

2d tree: 2d range search

1

3

4

6

5

1

3

4 6

5

25

2d tree: nearest neighbor search

Nearest neighbor search. Given a query point, find the closest point.

• Check distance from point in node to query point.

• Recursively search left/top subdivision (if it could contain a closer point).

• Recursively search right/bottom subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.

Typical case. log N
Worst case (even if tree is balanced). N

1
2

3

4

6

7

8

9

10

5

1

2

87

10 9

3

4 6

5

26

Kd tree

Kd tree. Recursively partition k-dimensional space into 2 halfspaces.

Implementation. BST, but cycle through dimensions ala 2d trees.

Efficient, simple data structure for processing k-dimensional data.

• Widely used.

• Discovered by an undergrad in an algorithms class!

• Adapts well to high-dimensional and clustered data.

level ≡ i (mod k)

points
whose ith

coordinate
is less than p’s

points
whose ith

coordinate
is greater than p’s

p

‣ range search
‣ space partitioning trees
‣ intersection search

27

28

Search for intersections

Problem. Find all intersecting pairs among N geometric objects.
Applications. CAD, games, movies, virtual reality.

Simple version. 2D, all objects are horizontal or vertical line segments.

Brute force. Test all Θ(N2) pairs of line segments for intersection.

Sweep vertical line from left to right.

• x-coordinates define events.

• Left endpoint of h-segment: insert y-coordinate into ST.

29

Orthogonal segment intersection search: sweep-line algorithm

y-coordinates

1

2

3

4

Sweep vertical line from left to right.

• x-coordinates define events.

• Left endpoint of h-segment: insert y-coordinate into ST.

• Right endpoint of h-segment: remove y-coordinate from ST.

30

Orthogonal segment intersection search: sweep-line algorithm

y-coordinates

5

1

2

3

4

Sweep vertical line from left to right.

• x-coordinates define events.

• Left endpoint of h-segment: insert y-coordinate into ST.

• Right endpoint of h-segment: remove y-coordinate from ST.

• v-segment: range search for interval of y endpoints.

31

Orthogonal segment intersection search: sweep-line algorithm

y-coordinates

1d range
search

6

5

1

2

3

4

32

Orthogonal segment intersection search: sweep-line algorithm

Reduces 2D orthogonal segment intersection search to 1D range search!

Running time of sweep line algorithm.

• Put x-coordinates on a PQ (or sort). O(N log N)

• Insert y-coordinate into ST. O(N log N)

• Delete y-coordinate from ST. O(N log N)

• Range search. O(R + N log N)

Efficiency relies on judicious use of data structures.

Remark. Sweep-line solution extends to 3D and more general shapes.

N = # line segments
R = # intersections

33

Immutable h-v segment data type

public final class SegmentHV implements Comparable<SegmentHV>
{
 public final int x1, y1;
 public final int x2, y2;

 public SegmentHV(int x1, int y1, int x2, int y2)
 { ... }

 public boolean isHorizontal()
 { ... }
 public boolean isVertical()
 { ... }

 public int compareTo(SegmentHV that)
 { ... }
}

compare by x-coordinate;
break ties by y-coordinate

(x1, y) (x2, y)

horizontal segment vertical segment

(x, y1)

(x, y2)

is segment horizontal?
is segment vertical?

constructor

34

Sweep-line event subclass

private class Event implements Comparable<Event>
{
 private int time;
 private SegmentHV segment;

 public Event(int time, SegmentHV segment)
 {
 this.time = time;
 this.segment = segment;
 }

 public int compareTo(Event that)
 { return this.time - that.time; }
}

 MinPQ<Event> pq = new MinPQ<Event>();

 for (int i = 0; i < N; i++)
 {
 if (segments[i].isVertical())
 {
 Event e = new Event(segments[i].x1, segments[i]);
 pq.insert(e);
 }

 else if (segments[i].isHorizontal())
 {
 Event e1 = new Event(segments[i].x1, segments[i]);
 Event e2 = new Event(segments[i].x2, segments[i]);
 pq.insert(e1);
 pq.insert(e2);
 }
 }

35

Sweep-line algorithm: initialize events

horizontal
segment

vertical
segment

initialize PQ

36

Sweep-line algorithm: simulate the sweep line

int INF = Integer.MAX_VALUE;

SET<SegmentHV> set = new SET<SegmentHV>();

while (!pq.isEmpty())
{
 Event event = pq.delMin();
 int sweep = event.time;
 SegmentHV segment = event.segment;

 if (segment.isVertical())
 {
 SegmentHV seg1, seg2;
 seg1 = new SegmentHV(-INF, segment.y1, -INF, segment.y1);
 seg2 = new SegmentHV(+INF, segment.y2, +INF, segment.y2);
 for (SegmentHV seg : set.range(seg1, seg2))
 StdOut.println(segment + " intersects " + seg);
 }

 else if (sweep == segment.x1) set.add(segment);
 else if (sweep == segment.x2) set.remove(segment);
}

37

General line segment intersection search

Extend sweep-line algorithm

• Maintain segments that intersect sweep line ordered by y-coordinate.

• Intersections can only occur between adjacent segments.

• Add/delete line segment ⇒ one new pair of adjacent segments.

• Intersection ⇒ swap adjacent segments.

order of segments that intersect sweep line

A

C

B

ABC ACB

D

ACD CADA AB

insert segment

delete segment

intersectionACBD CA A

38

Line segment intersection: implementation

Efficient implementation of sweep line algorithm.

• Maintain PQ of important x-coordinates: endpoints and intersections.

• Maintain set of segments intersecting sweep line, sorted by y.

• O(R log N + N log N).

Implementation issues.

• Degeneracy.

• Floating point precision.

• Use PQ, not presort (intersection events are unknown ahead of time).

to support "next largest"
and "next smallest" queries

39

Rectangle intersection search

Goal. Find all intersections among h-v rectangles.

Application. Design-rule checking in VLSI circuits.

40

Microprocessors and geometry

Early 1970s. microprocessor design became a geometric problem.

• Very Large Scale Integration (VLSI).

• Computer-Aided Design (CAD).

Design-rule checking.

• Certain wires cannot intersect.

• Certain spacing needed between different types of wires.

• Debugging = rectangle intersection search.

41

Algorithms and Moore's law

"Moore’s law." Processing power doubles every 18 months.

• 197x: need to check N rectangles.

• 197(x+1.5): need to check 2N rectangles on a 2x-faster computer.

Bootstrapping. We get to use the faster computer for bigger circuits.

But bootstrapping is not enough if using a quadratic algorithm:

• 197x: takes M days.

• 197(x+1.5): takes (4M)/2 = 2M days. (!)

 Bottom line. Linearithmic CAD algorithm is necessary to sustain Moore’s Law.

2x-faster
computer

quadratic
algorithm

Sweep vertical line from left to right.

• x-coordinates of rectangles define events.

• Maintain set of y-intervals intersecting sweep line.

• Left endpoint: search set for y-interval; insert y-interval.

• Right endpoint: delete y-interval.

42

Rectangle intersection search

43

Interval search trees

(7, 10)

(5, 11)

(4, 8) (15, 18)

(17, 19)

(20, 22)

operation brute
interval search

tree
best

in theory

insert interval 1 log N log N

delete interval N log N log N

find an interval that
intersects (lo, hi) N log N log N

find all intervals that
intersects (lo, hi) N R log N R + log N

augmented red-black tree
N = # intervals
R = # intersections

44

Rectangle intersection search: costs summary

Reduces 2D orthogonal rectangle intersection search to 1D interval search!

Running time of sweep line algorithm.

• Put x-coordinates on a PQ (or sort). O(N log N)

• Insert y-interval into ST. O(N log N)

• Delete y-interval from ST. O(N log N)

• Interval search. O(R + N log N)

Efficiency relies on judicious use of data structures.

N = # rectangles
R = # intersections

Geometric search summary: algorithms of the day

45

1D range search BST

kD range search kD tree

1D interval
intersection search interval search tree

2D orthogonal line
intersection search

sweep line reduces to
1D range search

2D orthogonal rectangle
intersection search

sweep line reduces to
1D interval intersection search

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 26, 2010 8:57:56 AM

7.5 Reductions

‣ designing algorithms
‣ establishing lower bounds
‣ intractability

2

Bird’s-eye view

Desiderata. Classify problems according to computational requirements.

Frustrating news. Huge number of problems have defied classification.

complexity order of growth examples

linear N min, max, median,
Burrows-Wheeler transform, ...

linearithmic N log N sorting, convex hull,
closest pair, farthest pair, ...

quadratic N2 ???

…

exponential cN ???

3

Bird’s-eye view

Desiderata. Classify problems according to computational requirements.

Desiderata'.
Suppose we could (couldn't) solve problem X efficiently.
What else could (couldn't) we solve efficiently?

“ Give me a lever long enough and a fulcrum on which to
place it, and I shall move the world. ” — Archimedes

4

Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that
solves Y to help solve X.

Cost of solving X = total cost of solving Y + cost of reduction.

perhaps many calls to Y
on problems of different sizes

preprocessing and postprocessing

instance I
(of X)

Algorithm for X

solution to I
Algorithm

for Y

5

Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that
solves Y to help solve X.

Ex 1. [element distinctness reduces to sorting]
To solve element distinctness on N integers:

• Sort N integers.

• Check adjacent pairs for equality.

Cost of solving element distinctness. N log N + N

cost of sorting
cost of reduction

instance I
(of X)

Algorithm for X

solution to I
Algorithm

for Y

6

Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that
solves Y to help solve X.

Ex 2. [3-collinear reduces to sorting]
To solve 3-collinear instance on N points in the plane:

• For each point, sort other points by polar angle.

- check adjacent triples for collinearity

Cost of solving 3-collinear. N2 log N + N2.

cost of sorting
cost of reduction

instance I
(of X)

Algorithm for X

solution to I
Algorithm

for Y

7

‣ designing algorithms
‣ establishing lower bounds
‣ intractability

8

Reduction: design algorithms

Def. Problem X reduces to problem Y if you can use an algorithm that
solves Y to help solve X.

Design algorithm. Given algorithm for Y, can also solve X.

Ex.

• Element distinctness reduces to sorting.

• 3-collinear reduces to sorting.

• PERT reduces to topological sort. [see digraph lecture]

• h-v line intersection reduces to 1D range searching. [see geometry lecture]

• Burrows-Wheeler transform reduces to suffix sort. [see assignment 8]

Mentality. Since I know how to solve Y, can I use that algorithm to solve X?

programmer’s version: I have code for Y. Can I use it for X?

Sorting. Given N distinct integers, rearrange them in ascending order.

Convex hull. Given N points in the plane, identify the extreme points
of the convex hull (in counter-clockwise order).

Proposition. Convex hull reduces to sorting.
Pf. Graham scan algorithm.

Cost of convex hull. N log N + N.
9

Convex hull reduces to sorting

convex hull sorting

1251432
2861534
3988818
4190745
13546464
89885444
43434213
34435312

cost of reduction
cost of sorting

Shortest path on graphs and digraphs

Proposition. Undirected shortest path (with nonnegative weights) reduces to
directed shortest path.

s

2

3

5

6 t5

10

12

15

9

12

10154

10

Shortest path on graphs and digraphs

Proposition. Undirected shortest path (with nonnegative weights) reduces to
directed shortest path.

Pf. Replace each undirected edge by two directed edges.

s

2

3

5

6 t5

10

12

15

9

12

10154

2

5

 10

12

15

9

12

 10

9

10

4

15 10

15

154

3 5 t

5

s

11

12125

Shortest path on graphs and digraphs

Proposition. Undirected shortest path (with nonnegative weights) reduces to
directed shortest path.

Cost of undirected shortest path. E log E + E.

s

2

3

5

6 t5

10

12

15

9

12

10154

12

cost of shortest
path in digraph

cost of reduction

Caveat. Reduction is invalid in networks with negative weights
(even if no negative cycles).

Remark. Can still solve shortest path problem in undirected graphs
(if no negative cycles), but need more sophisticated techniques.

13

Shortest path with negative weights

tva 7 -4

tvs 7 -4

reduction creates
negative cycles

reduces to weighted
non-bipartite matching (!)

7 -4

Some reductions involving familiar problems

14

linear
programming

element
distinctness

sorting

directed shortest paths
(nonnegative)

bipartite
matching

 maximum flow

convex hull
median

arbitrage

shortest paths
(no neg cycles)

Delaunay
triangulation

closest
pair 2d

Euclidean
MST 2d

furthest
pair 2d

undirected shortest paths
(nonnegative)

15

‣ designing algorithms
‣ linear programming
‣ establishing lower bounds
‣ establishing intractability
‣ classifying problems

16

Linear Programming

What is it? [see ORF 307]

• Quintessential tool for optimal allocation of scarce resources

• Powerful and general problem-solving method

Why is it significant?

• Widely applicable.

• Dominates world of industry.

• Fast commercial solvers available: CPLEX, OSL.

• Powerful modeling languages available: AMPL, GAMS.

• Ranked among most important scientific advances of 20th century.

Present context. Many important problems reduce to LP.

Ex: Delta claims that LP
saves $100 million per year.

17

Applications

Agriculture. Diet problem.
Computer science. Compiler register allocation, data mining.
Electrical engineering. VLSI design, optimal clocking.
Energy. Blending petroleum products.
Economics. Equilibrium theory, two-person zero-sum games.
Environment. Water quality management.
Finance. Portfolio optimization.
Logistics. Supply-chain management.
Management. Hotel yield management.
Marketing. Direct mail advertising.
Manufacturing. Production line balancing, cutting stock.
Medicine. Radioactive seed placement in cancer treatment.
Operations research. Airline crew assignment, vehicle routing.
Physics. Ground states of 3-D Ising spin glasses.
Plasma physics. Optimal stellarator design.
Telecommunication. Network design, Internet routing.
Sports. Scheduling ACC basketball, handicapping horse races.

Linear programming

Model problem as maximizing an objective function subject to constraints.

Input: real numbers aij, cj, and bi.

Output: real numbers xj.

Solutions. [see ORF 307]

• Simplex algorithm has been used for decades to solve practical LP instances.

• Newer algorithms guarantee fast solution.

18

maximize c1 x1 + c2 x2 + . . . + cn xn

subject to the
constraints

a11 x1 + a12 x2 + . . . + a1n xn ≤ b1subject to the
constraints a21 x1 + a22 x2 + . . . + a2n xn ≤ b2

...

am1 x1 + am2 x2 + . . . + amn xn ≤ bm

x1 , x2 ,... , xn ≥ 0

n variables
m

 e
qu

at
io

ns

maximize cT x

subject to the
constraints

A x ≤ bsubject to the
constraints x ≥ 0

matrix version

Linear programming

“Linear programming”

• Process of formulating an LP model for a problem.

• Solution to LP for a specific problem gives solution to the problem.

• Equivalent to “reducing the problem to LP.”

1. Identify variables.
2. Define constraints (inequalities and equations).
3. Define objective function.

Examples:

• Shortest paths

• Maximum flow.

• Bipartite matching.
 . . .

• [a very long list]
19

stay tuned (next)

Given. Weighted digraph, single source s.

Distance from s to v. Length of the shortest path from s to v .

Goal. Find distance (and shortest path) from s to every other vertex.

20

Single-source shortest-paths problem (revisited)

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

s

3

t

2

6

7

4

5

LP formulation.

• One variable per vertex, one inequality per edge.

• Interpretation: xi = length of shortest path
from s to i.

21

Single-source shortest-paths problem reduces to LP

maximize xt

subject xs + 9 ≥ x2subject
to the

constraints
xs + 14 ≥ x6

constraints xs + 15 ≥ x7

x2 + 24 ≥ x3

x3 + 2 ≥ x5

x3 + 19 ≥ xt

x4 + 6 ≥ x3

x4 + 6 ≥ xt

x5 + 11 ≥ x4

x5 + 16 ≥ xt

x6 + 18 ≥ x3

x6 + 30 ≥ x5

x6 + 5 ≥ x7

x7 + 20 ≥ x5

x7 + 44 ≥ xt

xs = 0

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

s

3

t

2

6

7

4
5

LP formulation.

• One variable per vertex, one inequality per edge.

• Interpretation: xi = length of shortest path
from s to i.

22

Single-source shortest-paths problem reduces to LP

maximize xt

subject xs + 9 ≥ x2subject
to the

constraints
xs + 14 ≥ x6

constraints xs + 15 ≥ x7

x2 + 24 ≥ x3

x3 + 2 ≥ x5

x3 + 19 ≥ xt

x4 + 6 ≥ x3

x4 + 6 ≥ xt

x5 + 11 ≥ x4

x5 + 16 ≥ xt

x6 + 18 ≥ x3

x6 + 30 ≥ x5

x6 + 5 ≥ x7

x7 + 20 ≥ x5

x7 + 44 ≥ xt

xs = 0

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

s

3

t

2

6

7

4
5

xs = 0
x2 = 9

x3 = 32
x4 = 45

solution

0

9 32

14

15 50

34

45

x5 = 34
x6 = 14
x7 = 15
xt = 50

3

3

23

Maxflow problem

Given: Weighted digraph, source s, destination t.

Interpret edge weights as capacities

• Models material flowing through network

• Ex: oil flowing through pipes

• Ex: goods in trucks on roads

• [many other examples]

Flow: A different set of edge weights

• flow does not exceed capacity in any edge

• flow at every vertex satisfies equilibrium
[flow in equals flow out]

Goal: Find maximum flow from s to t.

2 3

1

2

s

1

3 4

2

t

1 1

s

1

3 4

2

t

flow out of s is 3

flow in to t is 3

1 2

10

1 1

2 1

flow ≤ capacity
in every edge

flow in
equals

flow out
at each
vertex

Maximum flow reduces to LP

24

maximize x3t + x4t

subject xs1 ≤ 2subject
to the

constraints
xs2 ≤ 3

constraints x13 ≤ 3

x14 ≤ 1

x23 ≤ 1

x24 ≤ 1

x3t ≤ 2

x4t ≤ 3

xs1 = x13 + x14

xs2 = x23 + x24

x13 + x23 = x3t

x14 + x24 = x4t

all xij ≥ 0

One variable per edge.
One inequality per edge, one equality per vertex.

interpretation:
xij = flow in edge i-j

3

3

1

2

2

3 4

s

t

3

1

2

1 1

1 2

3 4

s

t

add dummy
edge from

t to s

equilibrium
constraints

capacity
constraints

1

2 2

11

1

2 2

Maxflow problem reduces to LP

25

xs1 = 2
xs2 = 2
x13 = 1
x14 = 1

x23 = 1

x24 = 1
x3t = 2
x4t = 2

solution

One variable per edge.
One inequality per edge, one equality per vertex.

3

3

2 3

1

2

s

1

3 4

2

t

1 1

s

1

3 4

2

t

add dummy
edge from

t to s

maximize x3t + x4t

subject xs1 ≤ 2subject
to the

constraints
xs2 ≤ 3

constraints x13 ≤ 3

x14 ≤ 1

x23 ≤ 1

x24 ≤ 1

x3t ≤ 2

x4t ≤ 3

xs1 = x13 + x14

xs2 = x23 + x24

x13 + x23 = x3t

x14 + x24 = x4t

all xij ≥ 0

interpretation:
xij = flow in edge i-j

equilibrium
constraints

capacity
constraints

Maximum cardinality bipartite matching problem

Bipartite graph. Two sets of vertices; edges
connect vertices in one set to the other.

Matching. Set of edges with no vertex
appearing twice.

Goal. Find a maximum cardinality matching.

Interpretation. Mutual preference constraints.

• Ex: people to jobs.

• Ex: Medical students to residence positions.

• Ex: students to writing seminars.

• [many other examples]

26

A B C D E F

0 1 2 3 4 5

Alice
 Adobe, Apple, Google
Bob
 Adobe, Apple, Yahoo
Carol
 Google, IBM, Sun
Dave
 Adobe, Apple
Eliza
 IBM, Sun, Yahoo
Frank
 Google, Sun, Yahoo

job offers

Adobe
 Alice, Bob, Dave
Apple
 Alice, Bob, Dave
Google
 Alice, Carol, Frank
IBM
 Carol, Eliza
Sun
 Carol, Eliza, Frank
Yahoo
 Bob, Eliza, Frank

A B C D E F

0 1 2 3 4 5

Maximum cardinality bipartite matching reduces to LP

LP formulation.

• One variable per edge, one equality per vertex.

• Interpretation: an edge is in matching iff xi = 1.

Theorem. [Birkhoff 1946, von Neumann 1953]
All extreme points of the above polyhedron have integer (0 or 1) coordinates.
Corollary. Can solve bipartite matching problem by solving LP.

27

A B C D E F

0 1 2 3 4 5

maximize
xA0 + xA1 + xA2 + xB0 + x

+ xD0 + xD1 + xE3 + xE4 +
 + xB1 + xB5 + xC2 + xC3 + xC4

E4 + xE5 + xF2 + xF4 + xF5

xA0 + xA1 + xA2 = 1 xA0 + xB0 + xD0 = 1

xB0 + xB1 + xB5 = 1 xA1 + xB1 + xD1 = 1

subject
xC2 + xC3 + xC4 = 1 xA2 + xC2 + xF2 = 1

subject
to the constraints xD0 + xD1 = 1 xC3 + xE3 = 1to the constraints

xE3 + xE4 + xE5 = 1 xC4 + xE4 + xF4 = 1

xF2 + xF4 + xF5 = 1 xB5 + xE5 + xF5 = 1

all xij ≥ 0

constraints on top vertices (left)
and bottom vertices (right)

crucial point: not always so lucky!

Maximum cardinality bipartite matching reduces to LP

LP formulation.

• One variable per edge, one equality per vertex.

• Interpretation: an edge is in matching iff xi = 1.

28

A B C D E F

0 1 2 3 4 5

maximize
xA0 + xA1 + xA2 + xB0 + x

+ xD0 + xD1 + xE3 + xE4 +
 + xB1 + xB5 + xC2 + xC3 + xC4

E4 + xE5 + xF2 + xF4 + xF5

xA0 + xA1 + xA2 = 1 xA0 + xB0 + xD0 = 1

xB0 + xB1 + xB5 = 1 xA1 + xB1 + xD1 = 1

subject
xC2 + xC3 + xC4 = 1 xA2 + xC2 + xF2 = 1

subject
to the constraints xD0 + xD1 = 1 xC3 + xE3 = 1to the constraints

xE3 + xE4 + xE5 = 1 xC4 + xE4 + xF4 = 1

xF2 + xF4 + xF5 = 1 xB5 + xE5 + xF5 = 1

all xij ≥ 0

xA1 = 1

xB5 = 1

xC2 = 1

xD0 = 1

xE3 = 1

xF4 = 1

all other xij = 0

solution

A B C D E F

0 1 2 3 4 5

Linear programming perspective

Got an optimization problem?
Ex. Shortest paths, maximum flow, matching, ….

Approach 1. Use a specialized algorithm to solve it.

• Algorithms in Java.

• Vast literature on complexity.

• Performance on real problems not always well-understood.

Approach 2. Reduce to a LP model; use a commercial solver.

• A direct mathematical representation of the problem often works.

• Immediate solution to the problem at hand is often available.

• Might miss faster specialized solution, but might not care.

Got an LP solver? Learn to use it!

29

% ampl
AMPL Version 20010215 (SunOS 5.7)
ampl: model maxflow.mod;
ampl: data maxflow.dat;
ampl: solve;
CPLEX 7.1.0: optimal solution;
objective 4;

30

‣ designing algorithms
‣ establishing lower bounds
‣ intractability

31

Bird's-eye view

Goal. Prove that a problem requires a certain number of steps.
Ex. Ω(N log N) lower bound for sorting.

Bad news. Very difficult to establish lower bounds from scratch.

Good news. Can spread Ω(N log N) lower bound to Y by reducing sorting to Y.

assuming cost of reduction
is not too high

argument must apply to all
conceivable algorithms

1251432
2861534
3988818
4190745
13546464
89885444
43434213

32

Linear-time reductions

Def. Problem X linear-time reduces to problem Y if X can be solved with:

• Linear number of standard computational steps.

• Constant number of calls to Y.

Ex. Almost all of the reductions we've seen so far. [Which one wasn't?]

Establish lower bound:

• If X takes Ω(N log N) steps, then so does Y.

• If X takes Ω(N2) steps, then so does Y.

Mentality.

• If I could easily solve Y, then I could easily solve X.

• I can’t easily solve X.

• Therefore, I can’t easily solve Y.

33

Lower bound for convex hull

Proposition. In quadratic decision tree model, any algorithm for sorting
N integers requires Ω(N log N) steps.

Proposition. Sorting linear-time reduces to convex hull.
Pf. [see next slide]

Implication. Any ccw-based convex hull algorithm requires Ω(N log N) ccw's.

allows quadratic tests of the form:
 xi < xj or (xj - xi) (xk - xi) - (xj) (xj - xi) < 0

a quadratic test

convex hullsorting

1251432
2861534
3988818
4190745
13546464
89885444
43434213

Proposition. Sorting linear-time reduces to convex hull.

• Sorting instance: x1, x2, ... , xN.

• Convex hull instance: (x1 , x12), (x2, x22), ... , (xN , xN2).

Pf.

• Region {x : x2 ≥ x} is convex ⇒ all points are on hull.

• Starting at point with most negative x, counter-clockwise order of hull
points yields integers in ascending order.

34

Sorting linear-time reduces to convex hull

f (x) = x2

(xi , xi2)

x

y

35

Lower bound for 3-COLLINEAR

3-SUM. Given N distinct integers, are there three that sum to 0?

3-COLLINEAR. Given N distinct points in the plane,
are there 3 that all lie on the same line?

3-collinear

recall Assignment 3

3-sum

1251432
-2861534
3988818
-4190745
13546464
89885444
-43434213

36

Lower bound for 3-COLLINEAR

3-SUM. Given N distinct integers, are there three that sum to 0?

3-COLLINEAR. Given N distinct points in the plane,
are there 3 that all lie on the same line?

Proposition. 3-SUM linear-time reduces to 3-COLLINEAR.
Pf. [see next 2 slide]

Conjecture. Any algorithm for 3-SUM requires Ω(N2) steps.
Implication. No sub-quadratic algorithm for 3-COLLINEAR likely.

your N2 log N algorithm was pretty good

37

3-SUM linear-time reduces to 3-COLLINEAR

Proposition. 3-SUM linear-time reduces to 3-COLLINEAR.

• 3-SUM instance: x1, x2, ... , xN .

• 3-COLLINEAR instance: (x1 , x13), (x2, x23), ... , (xN , xN3).

Lemma. If a, b, and c are distinct, then a + b + c = 0

if and only if (a, a3), (b, b3), and (c, c3) are collinear.

(1, 1)

(2, 8)

(-3, -27) -3 + 2 + 1 = 0

f (x) = x3

38

3-SUM linear-time reduces to 3-COLLINEAR

Proposition. 3-SUM linear-time reduces to 3-COLLINEAR.

• 3-SUM instance: x1, x2, ... , xN .

• 3-COLLINEAR instance: (x1 , x13), (x2, x23), ... , (xN , xN3).

Lemma. If a, b, and c are distinct, then a + b + c = 0

if and only if (a, a3), (b, b3), and (c, c3) are collinear.

Pf. Three distinct points (a, a3), (b, b3), and (c, c3) are collinear iff:

0 =

������

a a3 1
b b3 1
c c3 1

������

= a(b3 − c3)− b(a3 − c3) + c(a3 − b3)

= (a− b)(b− c)(c− a)(a + b + c)

More linear-time reductions and lower bounds

39

Delaunay

 3-sum
(conjectured N2 lower bound)

convex hull 2d

sorting 3-collinear

element distinctness
(N log N lower bound)

Euclidean MST 2d

closest pair 2d

3-concurrent

dihedral
rotation

min area triangle

Establishing lower bounds through reduction is an important tool
in guiding algorithm design efforts.

Q. How to convince yourself no linear-time convex hull algorithm exists?
A1. [hard way] Long futile search for a linear-time algorithm.
A2. [easy way] Linear-time reduction from sorting.

Q. How to convince yourself no sub-quadratic 3-COLLINEAR algorithm exists.
A1. [hard way] Long futile search for a sub-quadratic algorithm.
A2. [easy way] Linear-time reduction from 3-SUM.

Establishing lower bounds: summary

40

41

‣ designing algorithms
‣ establishing lower bounds
‣ intractability

42

Bird's-eye view

Def. A problem is intractable if it can't be solved in polynomial time.
Desiderata. Prove that a problem is intractable.

Two problems that require exponential time.

• Given a constant-size program, does it halt in at most K steps?

• Given N-by-N checkers board position, can the first player force a win?

Frustrating news. Few successes.

input size = c + lg K

using forced capture rule

43

Literal. A boolean variable or its negation.

Clause. An or of 3 distinct literals.

Conjunctive normal form. An and of clauses.

3-SAT. Given a CNF formula Φ consisting of k clauses over n literals,
does it have a satisfying truth assignment?

Applications. Circuit design, program correctness, ...

3-satisfiability

xi or ¬xi

C1 = (¬x1 ∨ x2 ∨ x3)

Φ = (C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5)

(¬T ∨ T ∨ F) ∧ (T ∨ ¬T ∨ F) ∧ (¬T ∨ ¬T ∨ ¬F) ∧ (¬T ∨ ¬T ∨ T) ∧ (¬T ∨ F ∨ T)

x1 x2 x3 x4

T T F T
yes instance

Φ = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨¬ x2 ∨ x4) ∧ (¬x2 ∨ x3 ∨ x4)

3-satisfiability is believed intractable

Q. How to solve an instance of 3-SAT with n variables?
A. Exhaustive search: try all 2n truth assignments.

Q. Can we do anything substantially more clever?

Conjecture (P ≠ NP). 3-SAT is intractable (no poly-time algorithm).

44

45

Polynomial-time reductions

Def. Problem X poly-time (Cook) reduces to problem Y if X can be solved with:

• Polynomial number of standard computational steps.

• Polynomial number of calls to Y.

Establish intractability. If 3-SAT poly-time reduces to Y, then Y is intractable.
(assuming 3-SAT is intractable)

Mentality.

• If I could solve Y in poly-time, then I could also solve 3-SAT in poly-time.

• 3-SAT is believed to be intractable.

• Therefore, so is Y.

instance I
(of X)

Algorithm for X

solution to I
Algorithm

for Y

Def. An independent set is a set of vertices, no two of which are adjacent.

IND-SET. Given a graph G and an integer k, find an independent set of size k.

Applications. Scheduling, computer vision, clustering, ...
46

Independent set

k = 9

Proposition. 3-SAT poly-time reduces to IND-SET.

Pf. Given an instance Φ of 3-SAT, create an instance G of IND-SET:

• For each clause in Φ, create 3 vertices in a triangle.

• Add an edge between each literal and its negation.

47

3-satisfiability reduces to independent set

Φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (¬x1 ∨ x3 ∨ ¬x4) ∧ (x1 ∨ x3 ∨ x4)

x3x2 x4¬x2 x3¬x4 x4x3

¬x1 x1x1 ¬x1

k = 4

Proposition. 3-SAT poly-time reduces to IND-SET.

Pf. Given an instance Φ of 3-SAT, create an instance G of IND-SET:

• For each clause in Φ, create 3 vertices in a triangle.

• Add an edge between each literal and its negation.

• G has independent set of size k ⇒ Φ satisfiable.

48

3-satisfiability reduces to independent set

set literals corresponding to vertices in independent to true;
set remaining literals in consistent manner

Φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (¬x1 ∨ x3 ∨ ¬x4) ∧ (x1 ∨ x3 ∨ x4)

x3x2 x4¬x2 x3¬x4 x4x3

¬x1 x1x1 ¬x1

k = 4

Proposition. 3-SAT poly-time reduces to IND-SET.

Pf. Given an instance Φ of 3-SAT, create an instance G of IND-SET:

• For each clause in Φ, create 3 vertices in a triangle.

• Add an edge between each literal and its negation.

• G has independent set of size k ⇒ Φ satisfiable.

• Φ satisfiable ⇒ G has independent set of size k.

49

3-satisfiability reduces to independent set

for each clause, take vertex corresponding to one true literal

Φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (¬x1 ∨ x3 ∨ ¬x4) ∧ (x1 ∨ x3 ∨ x4)

x3x2 x4¬x2 x3¬x4 x4x3

¬x1 x1x1 ¬x1

k = 4

Proposition. 3-SAT poly-time reduces to IND-SET.

Implication. Assuming 3-SAT is intractable, so is IND-SET.

50

3-satisfiability reduces to independent set

Φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (¬x1 ∨ x3 ∨ ¬x4) ∧ (x1 ∨ x3 ∨ x4)

x3x2 x4¬x2 x3¬x4 x4x3

¬x1 x1x1 ¬x1

k = 4

ILP. Given a system of linear inequalities, find an integral solution.

Context. Cornerstone problem in operations research.
Remark. Finding a real-valued solution is tractable (linear programming).

51

Integer linear programming

3x1 + 5x2 + 2x3 + x4 + 4x5 ≥ 10

5x1 + 2x2 + 4x4 + 1x5 ≤ 7

x1 + x3 + 2x4 ≤ 2

3x1 + 4x3 + 7x4 ≤ 7

 x1 + x4 ≤ 1

 x1 + x3 + x5 ≤ 1

all xi = { 0, 1 }

linear inequalities

integer variables

Proposition. IND-SET poly-time reduces to ILP.
Pf. Given an instance G, k of IND-SET, create an instance of ILP as follows:

Intuition. xi = 1 if and only if vertex vi is in independent set.

52

Independent set reduces to integer linear programming

x1 + x2 + x3 + x4 + x5 = 3

x1 + x2 ≤ 1

x2 + x3 ≤ 1

x1 + x3 ≤ 1

 x1 + x4 ≤ 1

 x3 + x5 ≤ 1

all xi = { 0, 1 }

number of vertices
selected

at most one vertex
selected from each edge

v2 v3 v5

v4v1

binary variables

is there an independent set of size 3 ?

is there a feasible solution?

Proposition. 3-SAT poly-time reduces to IND-SET.
Proposition. IND-SET poly-time reduces to ILP.

Transitivity. If X poly-time reduces to Y and Y poly-time reduces to Z,
then X-poly-time reduces to Z.

Implication. Assuming 3-SAT is intractable, so is ILP.

53

3-satisfiability reduces to integer linear programming

54

More poly-time reductions from 3-satisfiability

3-SAT

VERTEX COVER

HAM-CYCLECLIQUE

IND-SET3-COLOR

EXACT COVER

HAM-PATHSUBSET-SUM

PARTITION

ILP

KNAPSACK

Dick Karp
'85 Turing award3-SA

T reduces to ILP

TSP

BIN-PACKING

Conjecture. 3-SAT is intractable.
Implication. All of these problems are intractable.

Implications of poly-time reductions from 3-satisfiability

Establishing intractability through poly-time reduction is an important tool
in guiding algorithm design efforts.

Q. How to convince yourself that a new problem is (probably) intractable?
A1. [hard way] Long futile search for an efficient algorithm (as for 3-SAT).
A2. [easy way] Reduction from 3-SAT.

Caveat. Intricate reductions are common.

55

56

Search problems

Search problem. Problem where you can check a solution in poly-time.

Ex 1. 3-SAT.

Ex 2. IND-SET.

x1 = true, x2 = true, x3 = true, x4 = true

v2 v3 v5

v4v1

Φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (¬x1 ∨ x3 ∨ ¬x4) ∧ (x1 ∨ x3 ∨ x4)

{ v2 , x4, v5 }

k = 3

57

P vs. NP

P. Set of search problems solvable in poly-time.
Importance. What scientists and engineers can compute feasibly.

NP. Set of search problems.
Importance. What scientists and engineers aspire to compute feasibly.

Fundamental question.

Consensus opinion. No.

58

Cook’s theorem

Def. An NP is NP-complete if all problems in NP poly-time to reduce to it.

Cook's theorem. 3-SAT is NP-complete.
Corollary. 3-SAT is tractable if and only if P = NP.

Two worlds.

NP

P NPC

P ≠ NP

P = NP

P = NP

59

Implications of Cook’s theorem

3-SAT

IND-SET VERTEX COVER

HAM-CYCLECLIQUE

3-COLOR

EXACT COVER

HAM-PATHSUBSET-SUM

PARTITION

ILP

KNAPSACK

TSP

BIN-PACKING

3-COLOR

reduces to 3-SAT

Stephen Cook
'82 Turing award

All of these problems (and many, many more)
poly-time reduce to 3-SAT

60

Implications of Karp + Cook

3-SAT

VERTEX COVER

HAM-CYCLECLIQUE

3-COLOR

EXACT COVER

HAM-PATHSUBSET-SUM

PARTITION

KNAPSACK

3-SAT

reduces to 3-COLOR

TSP

BIN-PACKING

3-COLOR

reduces to 3-SAT

All of these problems are NP-complete; they are
manifestations of the same really hard problem.

IND-SET

ILP

+

61

Implications of NP-completeness

62

Birds-eye view: review

Desiderata. Classify problems according to computational requirements.

Frustrating news. Huge number of problems have defied classification.

complexity order of growth examples

linear N min, max, median,
Burrows-Wheeler transform, ...

linearithmic N log N sorting, convex hull.
closest pair, farthest pair, ...

quadratic N2 ???

…

exponential cN ???

63

Birds-eye view: revised

Desiderata. Classify problems according to computational requirements.

Good news. Can put problems in equivalence classes.

complexity order of growth examples

linear N min, max, median,
Burrows-Wheeler transform, ...

linearithmic N log N sorting, convex hull.
closest pair, farthest pair, ...

3-SUM complete probably N2 3-SUM, 3-COLLINEAR,
3-CONCURRENT, ...

…

NP-complete probably cN 3-SAT, IND-SET, ILP, ...

64

Summary

Reductions are important in theory to:

• Establish tractability.

• Establish intractability.

• Classify problems according to their computational requirements.

Reductions are important in practice to:

• Design algorithms.

• Design reusable software modules.

- stack, queue, priority queue, symbol table, set, graph
- sorting, regular expression, Delaunay triangulation

- minimum spanning tree, shortest path, maximum flow, linear programming

• Determine difficulty of your problem and choose the right tool.
- use exact algorithm for tractable problems

- use heuristics for intractable problems

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 26, 2010 9:21:13 AM

Combinatorial Search

‣ permutations
‣ backtracking
‣ counting
‣ subsets
‣ paths in a graph

2

Overview

Exhaustive search. Iterate through all elements of a search space.

Applicability. Huge range of problems (include intractable ones).

Caveat. Search space is typically exponential in size ⇒
effectiveness may be limited to relatively small instances.

Backtracking. Systematic method for examining feasible solutions
to a problem, by systematically pruning infeasible solutions.

Goal. Process all 2N bit strings of length N.

• Maintain a[i] where a[i] represents bit i.

• Simple recursive method does the job.

Remark. Equivalent to counting in binary from 0 to 2N - 1.

3

// enumerate bits in a[k] to a[N-1]
private void enumerate(int k)
{
 if (k == N)
 { process(); return; }
 enumerate(k+1);
 a[k] = 1;
 enumerate(k+1);
 a[k] = 0;
}

N = 4

Warmup: enumerate N-bit strings

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

N = 3

a[0] a[N-1]

0 0 0
0 0 1
0 0 0
0 1 0
0 1 1
0 1 0
0 0 0
1 0 0
1 0 1
1 0 0
1 1 0
1 1 1
1 1 0
1 0 0
0 0 0

clean up

public class BinaryCounter
{
 private int N; // number of bits
 private int[] a; // a[i] = ith bit

 public BinaryCounter(int N)
 {
 this.N = N;
 this.a = new int[N];
 enumerate(0);
 }

 private void process()
 {
 for (int i = 0; i < N; i++)
 StdOut.print(a[i]) + " ";
 StdOut.println();
 }

 private void enumerate(int k)
 {
 if (k == N)
 { process(); return; }
 enumerate(k+1);
 a[k] = 1;
 enumerate(k+1);
 a[k] = 0;
 }
}

4

Warmup: enumerate N-bit strings

public static void main(String[] args)
{
 int N = Integer.parseInt(args[0]);
 new BinaryCounter(N);
}

% java BinaryCounter 4
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

all programs in this
lecture are variations

on this theme

5

‣ permutations
‣ backtracking
‣ counting
‣ subsets
‣ paths in a graph

6

N-rooks problem

Q. How many ways are there to place N rooks on an N-by-N board so that
no rook can attack any other?

Representation. No two rooks in the same row or column ⇒ permutation.

Challenge. Enumerate all N! permutations of 0 to N-1.

int[] a = { 2, 0, 1, 3, 6, 7, 4, 5 };

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

7

Enumerating permutations

Recursive algorithm to enumerate all N! permutations of size N.

• Start with permutation a[0] to a[N-1].

• For each value of i:

- swap a[i] into position 0
- enumerate all (N-1)! permutations of a[1] to a[N-1]

- clean up (swap a[i] back to original position)

3 1 2 0
3 1 0 2
3 2 1 0
3 2 0 1
3 0 2 1
3 0 1 2

1 0 2 3
1 0 3 2
1 2 0 3
1 2 3 0
1 3 2 0
1 3 0 2

2 1 0 3
2 1 3 0
2 0 1 3
2 0 3 1
2 3 0 1
2 3 1 0

3 followed by
perms of 1 2 0

0 followed by
perms of 1 2 3

1 followed by
perms of 0 2 3

2 followed by
perms of 1 0 3

0 1 2
0 2 1
0 1 2
1 0 2
1 2 0
1 0 2
0 1 2
2 1 0
2 0 1
2 1 0
0 1 2

0 1
1 0
0 1

0 1 2 3
0 1 3 2
0 2 1 3
0 2 3 1
0 3 2 1
0 3 1 2

cleanup swaps that bring perm back to original

N = 2 N = 3

a[0] a[N-1]

Recursive algorithm to enumerate all N! permutations of size N.

• Start with permutation a[0] to a[N-1].

• For each value of i:

- swap a[i] into position 0
- enumerate all (N-1)! permutations of a[1] to a[N-1]

- clean up (swap a[i] back to original position)

// place N-k rooks in a[k] to a[N-1]
private void enumerate(int k)
{
 if (k == N)
 { process(); return; }

 for (int i = k; i < N; i++)
 {
 exch(k, i);
 enumerate(k+1);
 exch(i, k);
 }
}

Enumerating permutations

8

clean up

% java Rooks 4
0 1 2 3
0 1 3 2
0 2 1 3
0 2 3 1
0 3 2 1
0 3 1 2
1 0 2 3
1 0 3 2
1 2 0 3
1 2 3 0
1 3 2 0
1 3 0 2
2 1 0 3
2 1 3 0
2 0 1 3
2 0 3 1
2 3 0 1
2 3 1 0
3 1 2 0
3 1 0 2
3 2 1 0
3 2 0 1
3 0 2 1
3 0 1 2

1 followed by
perms of 0 2 3

0 followed by
perms of 1 2 3

2 followed by
perms of 1 0 3

3 followed by
perms of 1 2 0

a[0] a[N-1]

public class Rooks
{
 private int N;
 private int[] a; // bits (0 or 1)

 public Rooks(int N)
 {
 this.N = N;
 a = new int[N];
 for (int i = 0; i < N; i++)
 a[i] = i;
 enumerate(0);
 }

 private void enumerate(int k)
 { /* see previous slide */ }

 private void exch(int i, int j)
 { int t = a[i]; a[i] = a[j]; a[j] = t; }

 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 new Rooks(N);
 }
}

9

Enumerating permutations

% java Rooks 2
0 1
1 0

% java Rooks 3
0 1 2
0 2 1
1 0 2
1 2 0
2 1 0
2 0 1

initial
permutation

10

4-rooks search tree

solutions

. . .

Slow way to compute N!.

Hypothesis. Running time is about 2(N! / 8!) seconds.

% java Rooks 7 | wc -l
5040

% java Rooks 8 | wc -l
40320

% java Rooks 9 | wc -l
362880

% java Rooks 10 | wc -l
3628800

% java Rooks 25 | wc -l
...

N-rooks problem: back-of-envelope running time estimate

11

instant

1.6 seconds

15 seconds

170 seconds

forever

12

‣ permutations
‣ backtracking
‣ counting
‣ subsets
‣ paths in a graph

Q. How many ways are there to place N queens on an N-by-N board so that
no queen can attack any other?

Representation. No two queens in the same row or column ⇒ permutation.
Additional constraint. No diagonal attack is possible.

Challenge. Enumerate (or even count) the solutions.
13

N-queens problem

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

int[] a = { 2, 7, 3, 6, 0, 5, 1, 4 };

unlike N-rooks problem,
nobody knows answer for N > 30

14

4-queens search tree

diagonal conflict
on partial solution:

no point going deeper

solutions

15

4-queens search tree (pruned)

solutions

"backtrack" on
diagonal conflicts

16

Backtracking paradigm. Iterate through elements of search space.

• When there are several possible choices, make one choice and recur.

• If the choice is a dead end, backtrack to previous choice,
and make next available choice.

Benefit. Identifying dead ends allows us to prune the search tree.

Ex. [backtracking for N-queens problem]

• Dead end: a diagonal conflict.

• Pruning: backtrack and try next column when diagonal conflict found.

N-queens problem: backtracking solution

 private boolean backtrack(int k)
 {
 for (int i = 0; i < k; i++)
 {
 if ((a[i] - a[k]) == (k - i)) return true;
 if ((a[k] - a[i]) == (k - i)) return true;
 }
 return false;
 }

 // place N-k queens in a[k] to a[N-1]
 private void enumerate(int k)
 {
 if (k == N)
 { process(); return; }

 for (int i = k; i < N; i++)
 {
 exch(k, i);
 if (!backtrack(k)) enumerate(k+1);
 exch(i, k);
 }
 }

17

N-queens problem: backtracking solution

stop enumerating if
adding queen k leads to

a diagonal violation

% java Queens 4
1 3 0 2
2 0 3 1

% java Queens 5
0 2 4 1 3
0 3 1 4 2
1 3 0 2 4
1 4 2 0 3
2 0 3 1 4
2 4 1 3 0
3 1 4 2 0
3 0 2 4 1
4 1 3 0 2
4 2 0 3 1

% java Queens 6
1 3 5 0 2 4
2 5 1 4 0 3
3 0 4 1 5 2
4 2 0 5 3 1

a[0] a[N-1]

Pruning the search tree leads to enormous time savings.

N-queens problem: effectiveness of backtracking

18

N Q(N) N !

2 0 2

3 0 6

4 2 24

5 10 120

6 4 720

7 40 5,040

8 92 40,320

9 352 362,880

10 724 3,628,800

11 2,680 39,916,800

12 14,200 479,001,600

13 73,712 6,227,020,800

14 365,596 87,178,291,200

Hypothesis. Running time is about (N! / 2.5N) / 43,000 seconds.

Conjecture. Q(N) is ~ N! / cN, where c is about 2.54.

N-queens problem: How many solutions?

19

% java Queens 13 | wc -l
73712

% java Queens 14 | wc -l
365596

% java Queens 15 | wc -l
2279184

% java Queens 16 | wc -l
14772512

% java Queens 17 | wc -l
...

1.1 seconds

5.4 seconds

29 seconds

210 seconds

1352 seconds

20

‣ permutations
‣ backtracking
‣ counting
‣ subsets
‣ paths in a graph

21

Counting: Java implementation

Goal. Enumerate all N-digit base-R numbers.
Solution. Generalize binary counter in lecture warmup.

// enumerate base-R numbers in a[k] to a[N-1]
private static void enumerate(int k)
{
 if (k == N)
 { process(); return; }

 for (int r = 0; r < R; r++)
 {
 a[k] = r;
 enumerate(k+1);
 }
 a[k] = 0;
}

% java Counter 2 4
0 0
0 1
0 2
0 3
1 0
1 1
1 2
1 3
2 0
2 1
2 2
2 3
3 0
3 1
3 2
3 3

% java Counter 3 2
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

a[0] a[N-1]

cleanup not needed; why?

22

Goal. Fill 9-by-9 grid so that every row, column, and box contains
each of the digits 1 through 9.

Remark. Natural generalization is NP-complete.

Counting application: Sudoku

7 8 3

2 1

5

4 2 6

3 8

1 9

9 6 4

7 5

23

Goal. Fill 9-by-9 grid so that every row, column, and box contains
each of the digits 1 through 9.

Solution. Enumerate all 81-digit base-9 numbers (with backtracking).

Counting application: Sudoku

using digits 1 to 9

7 2 8 9 4 6 3 1 5

9 3 4 2 5 1 6 7 8

5 1 6 7 3 8 2 4 9

1 4 7 5 9 3 8 2 6

3 6 9 4 8 2 1 5 7

8 5 2 1 6 7 4 9 3

2 9 3 6 1 5 7 8 4

4 8 1 3 7 9 5 6 2

6 7 5 8 2 4 9 3 1

7 8 3 ...
0 1 2 3 4 5 6 7 8 80

a[]

24

Iterate through elements of search space.

• For each empty cell, there are 9 possible choices.

• Make one choice and recur.

• If you find a conflict in row, column, or box, then backtrack.

Sudoku: backtracking solution

7 8 3

2 1

5

4 2 6

3 8

1 9

9 6 4

7 5

backtrack on 3, 4, 5, 7, 8, 9

private void enumerate(int k)
{

 if (k == 81)
 { process(); return; }

 if (a[k] != 0)
 { enumerate(k+1); return; }

 for (int r = 1; r <= 9; r++)
 {
 a[k] = r;
 if (!backtrack(k))
 enumerate(k+1);
 }

 a[k] = 0;
}

25

Sudoku: Java implementation

clean up

unless it violates a
Sudoku constraint
(see booksite for code)

% more board.txt
7 0 8 0 0 0 3 0 0
0 0 0 2 0 1 0 0 0
5 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 2 6
3 0 0 0 8 0 0 0 0
0 0 0 1 0 0 0 9 0
0 9 0 6 0 0 0 0 4
0 0 0 0 7 0 5 0 0
0 0 0 0 0 0 0 0 0

% java Sudoku < board.txt
7 2 8 9 4 6 3 1 5
9 3 4 2 5 1 6 7 8
5 1 6 7 3 8 2 4 9
1 4 7 5 9 3 8 2 6
3 6 9 4 8 2 1 5 7
8 5 2 1 6 7 4 9 3
2 9 3 6 1 5 7 8 4
4 8 1 3 7 9 5 6 2
6 7 5 8 2 4 9 3 1

try 9 possible digits
for cell k

cell k initially filled in;
recur on next cell

found a solution

26

‣ permutations
‣ backtracking
‣ counting
‣ subsets
‣ paths in a graph

Given N items, enumerate all 2N subsets.

• Count in binary from 0 to 2N - 1.

• Bit i represents item i.

• If 0, in subset; if 1, not in subset.

27

Enumerating subsets: natural binary encoding

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

empty
1
2

2 1
3

3 1
3 2

3 2 1
4

4 1
4 2

4 2 1
4 3

4 3 1
4 3 2

 4 3 2 1

4 3 2 1
4 3 2
4 3 1
4 3

4 2 1
4 2
4 1
4

3 2 1
3 2
3 1
3

2 1
2
1

empty

i binary subset complement

28

Enumerating subsets: natural binary encoding

Given N items, enumerate all 2N subsets.

• Count in binary from 0 to 2N - 1.

• Maintain a[i] where a[i] represents item i.

• If 0, a[i] in subset; if 1, a[i] not in subset.

Binary counter from warmup does the job.

private void enumerate(int k)
{
 if (k == N)
 { process(); return; }
 enumerate(k+1);
 a[k] = 1;
 enumerate(k+1);
 a[n] = 0;
}

29

Digression: Samuel Beckett play

Quad. Starting with empty stage, 4 characters enter and exit
one at a time, such that each subset of actors appears exactly once.

ruler function

30

Digression: Samuel Beckett play

Quad. Starting with empty stage, 4 characters enter and exit
one at a time, such that each subset of actors appears exactly once.

“faceless, emotionless one of the far future, a world where people are born, go
through prescribed movements, fear non-being even though their lives are
meaningless, and then they disappear or die.” — Sidney Homan

31

Binary reflected gray code

Def. The k-bit binary reflected Gray code is:

• the (k-1) bit code with a 0 prepended to each word, followed by

• the (k-1) bit code in reverse order, with a 1 prepended to each word.

a[0] a[N-1]

32

Enumerating subsets using Gray code

Two simple changes to binary counter from warmup:

• Flip a[k] instead of setting it to 1.

• Eliminate cleanup.

Advantage. Only one item in subset changes at a time.

// all bit strings in a[k] to a[N-1]
private void enumerate(int k)
{
 if (k == N)
 { process(); return; }
 enumerate(k+1);
 a[k] = 1 - a[k];
 enumerate(k+1);
}

// all bit strings in a[k] to a[N-1]
private void enumerate(int k)
{
 if (k == N)
 { process(); return; }
 enumerate(k+1);
 a[k] = 1;
 enumerate(k+1);
 a[k] = 0;
}

standard binary counter (from warmup)Gray code binary counter

0 0 0
0 0 1
0 1 1
0 1 0
1 1 0
1 1 1
1 0 1
1 0 0

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

same values
since no cleanup

a[0] a[N-1]

33

More applications of Gray codes

3-bit rotary encoder

Chinese ring puzzle

8-bit rotary encoder

Towers of Hanoi

Scheduling (set partitioning). Given n jobs of varying length, divide among
two machines to minimize the makespan (time the last job finishes).

Remark. This scheduling problem is NP-complete.

34

Scheduling

or, equivalently, difference
between finish times

cost

0

2

1

3

0

3

1 2

machine 0

machine 1

machine 0

machine 1

job length

0 1.41

1 1.73

2 2.00

3 2.23

.09

35

Scheduling (full implementation)

% java Scheduler 4 < jobs.txt

a[] finish times cost

trace of
public class Scheduler
{
 private int N; // Number of jobs.
 private int[] a; // Subset assignments.
 private int[] b; // Best assignment.
 private double[] jobs; // Job lengths.

 public Scheduler(double[] jobs)
 {
 this.N = jobs.length;
 this.jobs = jobs;
 a = new int[N];
 b = new int[N];
 enumerate(N);
 }

 public int[] best()
 { return b; }

 private void enumerate(int k)
 { /* Gray code enumeration. */ }

 private void process()
 {
 if (cost(a) < cost(b))
 for (int i = 0; i < N; i++)
 b[i] = a[i];
 }

 public static void main(String[] args)
 { /* create Scheduler, print results */ }
}

0 0 0 0 7.38 0.00 7.38
0 0 0 1 5.15 2.24 2.91
0 0 1 1 3.15 4.24 1.09
0 0 1 0 5.38 2.00
0 1 1 0 3.65 3.73 0.08
0 1 1 1 1.41 5.97
0 1 0 1 3.41 3.97
0 1 0 0 5.65 1.73
1 1 0 0 4.24 3.15
1 1 0 1 2.00 5.38
1 1 1 1 0.00 7.38
1 1 1 0 2.24 5.15
1 0 1 0 3.97 3.41
1 0 1 1 1.73 5.65
1 0 0 1 3.73 3.65
1 0 0 0 5.97 1.41

 MACHINE 0 MACHINE 1
 1.4142135624
 1.7320508076
 2.0000000000
 2.2360679775

 3.6502815399 3.7320508076

Observation. Large number of subsets
leads to remarkably low cost.

Scheduling (larger example)

36

cost < 10 -8

% java Scheduler < jobs.txt
 MACHINE 0 MACHINE 1
 1.4142135624
 1.7320508076
 2.0000000000
 2.2360679775
 2.4494897428
 2.6457513111
 2.8284271247
 3.0000000000
 3.1622776602
 3.3166247904
 3.4641016151
 3.6055512755
 3.7416573868
 3.8729833462
 4.0000000000
 4.1231056256
 4.2426406871
 4.3588989435
 4.4721359550
 4.5825756950
 4.6904157598
 4.7958315233
 4.8989794856
 5.0000000000

 42.3168901295 42.3168901457

Scheduling: improvements

Many opportunities (details omitted).

• Fix last job to be on machine 0 (quick factor-of-two improvement).

• Maintain difference in finish times (instead of recomputing from scratch).

• Backtrack when partial schedule cannot beat best known.
(check total against goal: half of total job times)

• Process all 2k subsets of last k jobs, keep results in memory,
(reduces time to 2N-k when 2k memory available).

37

private void enumerate(int k)
{
 if (k == N-1)
 { process(); return; }
 if (backtrack(k)) return;
 enumerate(k+1);
 a[k] = 1 - a[k];
 enumerate(k+1);
}

38

‣ permutations
‣ backtracking
‣ counting
‣ subsets
‣ paths in a graph

39

Enumerating all paths on a grid

Goal. Enumerate all simple paths on a grid of adjacent sites.

Application. Self-avoiding lattice walk to model polymer chains.

no two atoms can occupy
same position at same time

40

Enumerating all paths on a grid: Boggle

Boggle. Find all words that can be formed by tracing a simple path of
adjacent cubes (left, right, up, down, diagonal).

Pruning. Stop as soon as no word in dictionary contains string of letters on
current path as a prefix ⇒ use a trie. B

BA
BAX

B A X X X

X C A C K

X K R X X

X T X X X

X X X X X

41

Boggle: Java implementation

private void dfs(String prefix, int i, int j)
{
 if ((i < 0 || i >= N) ||
 (j < 0 || j >= N) ||
 (visited[i][j]) ||
 !dictionary.containsAsPrefix(prefix))
 return;

 visited[i][j] = true;
 prefix = prefix + board[i][j];

 if (dictionary.contains(prefix))
 found.add(prefix);

 for (int ii = -1; ii <= 1; ii++)
 for (int jj = -1; jj <= 1; jj++)
 dfs(prefix, i + ii, j + jj);

 visited[i][j] = false;
}

backtrack

add current character

add to set of found words

try all possibilities

clean up

string of letters on current path to (i, j)

Goal. Find a simple path that visits every vertex exactly once.

Remark. Euler path easy, but Hamilton path is NP-complete.
42

Hamilton path

visit every edge exactly once

43

Knight's tour

Goal. Find a sequence of moves for a knight so that (starting from any
desired square) it visits every square on a chessboard exactly once.

Solution. Find a Hamilton path in knight's graph.

legal knight moves a knight's tour

44

Hamilton path: backtracking solution

Backtracking solution. To find Hamilton path starting at v:

• Add v to current path.

• For each vertex w adjacent to v

- find a simple path starting at w using all remaining vertices

• Clean up: remove v from current path.

Q. How to implement?
A. Add cleanup to DFS (!!)

45

Hamilton path: Java implementation

public class HamiltonPath
{
 private boolean[] marked; // vertices on current path
 private int count = 0; // number of Hamiltonian paths

 public HamiltonPath(Graph G)
 {
 marked = new boolean[G.V()];
 for (int v = 0; v < G.V(); v++)
 dfs(G, v, 1);
 }

 private void dfs(Graph G, int v, int depth)
 {
 marked[v] = true;
 if (depth == G.V()) count++;

 for (int w : G.adj(v))
 if (!marked[w]) dfs(G, w, depth+1);

 marked[v] = false;
 }
}

clean up

length of current path
(depth of recursion)found one

backtrack if w is
already part of path

Exhaustive search: summary

46

problem enumeration backtracking

N-rooks permutations no

N-queens permutations yes

Sudoku base-9 numbers yes

scheduling subsets yes

Boggle paths in a grid yes

Hamilton path paths in a graph yes

47

The longest path

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!

If you said P is NP tonight,
There would still be papers left to write,
I have a weakness,
I'm addicted to completeness,
And I keep searching for the longest path.

The algorithm I would like to see
Is of polynomial degree,
But it's elusive:
Nobody has found conclusive
Evidence that we can find a longest path.

I have been hard working for so long.
I swear it's right, and he marks it wrong.
Some how I'll feel sorry when it's done: GPA 2.1
Is more than I hope for.

Garey, Johnson, Karp and other men (and women)
Tried to make it order N log N.
Am I a mad fool
If I spend my life in grad school,
Forever following the longest path?

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path.

Recorded by Dan Barrett in 1988
while a student at Johns Hopkins
during a difficult algorithms final

That’s all, folks: Keep searching!

48

The world’s longest path (Chile): 8500 km

	COS226firstHalf
	01-00Intro
	01-15UnionFind
	02-14Analysis
	03-13StacksAndQueues
	04-21ElementarySorts
	05-22Mergesort
	06-23Quicksort
	07-24PriorityQueues
	08-31ElementarySymbolTables
	08-32BinarySearchTrees
	09-33BalancedTrees
	10-34HashTables
	10-35Applications

	COS226secondHalf
	12-41UndirectedGraphs
	13-42DirectedGraphs
	14-43MST
	15-44ShortestPaths
	16-51RadixSorts
	17-52Tries
	18-53SubstringSearch
	19-54PatternMatching
	20-55DataCompression
	21-61GeometricPrimitives
	22-63GeometricSearch
	23-75Reductions
	24-75CombinatorialSearch

