Combinatorial Search

- permutations
- backtracking
- counting
- subsets
- paths in a graph

Overview

Exhaustive search. Iterate through all elements of a search space.

Applicability. Huge range of problems (include intractable ones).

Caveat. Search space is typically exponential in size ⇒ effectiveness may be limited to relatively small instances.

Warmup: enumerate N-bit strings

Goal. Process all 2^N bit strings of length N.
- Maintain $a[i]$ where $a[i]$ represents bit i.
- Simple recursive method does the job.

```java
// enumerate bits in a[k] to a[N-1]
private void enumerate(int k)
{
    if (k == N)
    {  process(); return;  }
    enumerate(k+1);
    a[k] = 1;
    enumerate(k+1);
    a[k] = 0;
}
```

Remark. Equivalent to counting in binary from 0 to $2^N - 1$.

N = 4

Warmup: enumerate N-bit strings

```java
public class BinaryCounter
{
    private int N;   // number of bits
    private int[] a; // a[i] = ith bit
    public BinaryCounter(int N)
    {
        this.N = N;
        this.a = new int[N];
        enumerate(0);
    }

    private void process()
    {
        for (int i = 0; i < N; i++)
            StdOut.print(a[i] + " ");
        StdOut.println();
    }

    private void enumerate(int k)
    {
        if (k == N)
        {  process(); return;  }
        enumerate(k+1);
        a[k] = 1;
        enumerate(k+1);
        a[k] = 0;
    }
}
```

public static void main(String[] args)
{
 int N = Integer.parseInt(args[0]);
 new BinaryCounter(N);
}

% java BinaryCounter 4
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

all programs in this lecture are variations on this theme
N-rooks problem

Q. How many ways are there to place N rooks on an N-by-N board so that no rook can attack any other?

Representation. No two rooks in the same row or column ⇒ permutation.

Challenge. Enumerate all N! permutations of 0 to N-1.

Enumerating permutations

Recursive algorithm to enumerate all N! permutations of size N.
• Start with permutation a[0] to a[N-1].
• For each value of i:
 - swap a[i] into position 0
 - enumerate all (N-1)! permutations of a[1] to a[N-1]
 - clean up (swap a[i] back to original position)

```java
int[] a = { 2, 0, 1, 3, 6, 7, 4, 5 };
```

// place N-k rooks in a[k] to a[N-1]
private void enumerate(int k)
{
 if (k == N)
 { process(); return; }
 for (int i = k; i < N; i++)
 {
 exch(k, i);
 enumerate(k+1);
 exch(i, k);
 }
}

```
```
public class Rooks
{
 private int N;
 private int[] a; // bits (0 or 1)

 public Rooks(int N)
 {
 this.N = N;
 a = new int[N];
 for (int i = 0; i < N; i++)
 a[i] = i;
 enumerate(0);
 }

 private void enumerate(int k)
 { /* see previous slide */ }

 private void exch(int i, int j)
 { int t = a[i]; a[i] = a[j]; a[j] = t; }

 public static void main(String[] args)
 { int N = Integer.parseInt(args[0]);
 new Rooks(N);
 }
}

N-rooks problem: back-of-envelope running time estimate

Slow way to compute N!.

Hypothesis. Running time is about 2(N! / 8!) seconds.
Q. How many ways are there to place \(N \) queens on an \(N \times N \) board so that no queen can attack any other?

Representation. No two queens in the same row or column ⇒ permutation. Additional constraint. No diagonal attack is possible.

Challenge. Enumerate (or even count) the solutions. Unlike \(N \)-rooks problem, nobody knows answer for \(N > 30 \).

N-queens problem

int[] a = { 2, 7, 3, 6, 0, 5, 1, 4 };

4-queens search tree

Backtracking paradigm. Iterate through elements of search space.
• When there are several possible choices, make one choice and recur.
• If the choice is a dead end, backtrack to previous choice, and make next available choice.

Benefit. Identifying dead ends allows us to prune the search tree.

Ex. [backtracking for \(N \)-queens problem]
• Dead end: a diagonal conflict.
• Pruning: backtrack and try next column when diagonal conflict found.
private boolean backtrack(int k)
{
 for (int i = 0; i < k; i++)
 {
 if ((a[i] - a[k]) == (k - i)) return true;
 if ((a[k] - a[i]) == (k - i)) return true;
 }
 return false;
}

// place N-k queens in a[k] to a[N-1]
private void enumerate(int k)
{
 if (k == N) { process(); return; }
 for (int i = k; i < N; i++)
 {
 exch(k, i);
 if (!backtrack(k)) enumerate(k+1);
 exch(i, k);
 }
}

N-queens problem: backtracking solution

Pruning the search tree leads to enormous time savings.

N-queens problem: effectiveness of backtracking

Hypothesis. Running time is about \((N! / 2.5^N) / 43,000 \) seconds.

Conjecture. \(Q(N) \approx N! / c^N \), where \(c \) is about 2.54.
Counting: Java implementation

Goal. Enumerate all N-digit base-R numbers.

Solution. Generalize binary counter in lecture warmup.

```java
define base-R numbers in a[k] to a[N-1]
private static void enumerate(int k) {
    if (k == N) {
        process(); return;
    }
    for (int r = 0; r < R; r++) {
        a[k] = r;
        enumerate(k+1);
    }
    a[k] = 0;
}
```

Counting application: Sudoku

Goal. Fill 9-by-9 grid so that every row, column, and box contains each of the digits 1 through 9.

Solution. Enumerate all 81-digit base-9 numbers (with backtracking).

```
<table>
<thead>
<tr>
<th>7</th>
<th>2</th>
<th>8</th>
<th>9</th>
<th>4</th>
<th>6</th>
<th>3</th>
<th>1</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td>8</td>
<td>2</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>7</td>
<td>5</td>
<td>9</td>
<td>3</td>
<td>8</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>9</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>9</td>
<td>5</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>5</td>
<td>8</td>
<td>2</td>
<td>4</td>
<td>9</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
```

Remark. Natural generalization is NP-complete.

Sudoku: backtracking solution

Iterate through elements of search space.
- For each empty cell, there are 9 possible choices.
- Make one choice and recur.
- If you find a conflict in row, column, or box, then backtrack.
private void enumerate(int k) {
 if (k == 81) {
 process(); return;
 }
 if (a[k] != 0) {
 enumerate(k+1); return;
 }
 for (int r = 1; r <= 9; r++) {
 a[k] = r;
 if (!backtrack(k)) enumerate(k+1);
 }
 a[k] = 0;
}

private void enumerate(int k) {
 if (k == N) {
 process(); return;
 }
 enumerate(k+1);
 a[k] = 1;
 enumerate(k+1);
 a[n] = 0;
}

Enumerating subsets: natural binary encoding

Given N items, enumerate all 2^N subsets.
- Count in binary from 0 to $2^N - 1$.
- Bit i represents item i.
- If 0, in subset; if 1, not in subset.

<table>
<thead>
<tr>
<th>i</th>
<th>binary</th>
<th>subset</th>
<th>complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 0 0 0</td>
<td>empty</td>
<td>4 3 2 1</td>
</tr>
<tr>
<td>1</td>
<td>0 0 0 1</td>
<td>1</td>
<td>4 3 2</td>
</tr>
<tr>
<td>2</td>
<td>0 0 1 0</td>
<td>2</td>
<td>4 3 1</td>
</tr>
<tr>
<td>3</td>
<td>0 0 1 1</td>
<td>2 1</td>
<td>4 3</td>
</tr>
<tr>
<td>4</td>
<td>0 1 0 0</td>
<td>3</td>
<td>4 2 1</td>
</tr>
<tr>
<td>5</td>
<td>0 1 0 1</td>
<td>3 1</td>
<td>4 2</td>
</tr>
<tr>
<td>6</td>
<td>0 1 1 0</td>
<td>3 2</td>
<td>4 1</td>
</tr>
<tr>
<td>7</td>
<td>0 1 1 1</td>
<td>3 2 1</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>1 0 0 0</td>
<td>4</td>
<td>3 2 1</td>
</tr>
<tr>
<td>9</td>
<td>1 0 0 1</td>
<td>4 1</td>
<td>3 2</td>
</tr>
<tr>
<td>10</td>
<td>1 0 1 0</td>
<td>4 2</td>
<td>3 1</td>
</tr>
<tr>
<td>11</td>
<td>1 0 1 1</td>
<td>4 2 1</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>1 1 0 0</td>
<td>4 3</td>
<td>2 1</td>
</tr>
<tr>
<td>13</td>
<td>1 1 0 1</td>
<td>4 3 1</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>1 1 1 0</td>
<td>4 3 2</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1 1 1 1</td>
<td>4 3 2 1</td>
<td>empty</td>
</tr>
</tbody>
</table>
Digression: Samuel Beckett play

Quad. Starting with empty stage, 4 characters enter and exit one at a time, such that each subset of actors appears exactly once.

<table>
<thead>
<tr>
<th>code</th>
<th>subset</th>
<th>move</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0</td>
<td>empty</td>
<td></td>
</tr>
<tr>
<td>0 0 0 1</td>
<td>enter 1</td>
<td>1</td>
</tr>
<tr>
<td>0 0 1 1</td>
<td>enter 2</td>
<td>2</td>
</tr>
<tr>
<td>0 0 1 0</td>
<td>exit 1</td>
<td>3</td>
</tr>
<tr>
<td>0 1 1 0</td>
<td>enter 3</td>
<td>4</td>
</tr>
<tr>
<td>0 1 1 1</td>
<td>enter 4</td>
<td>5</td>
</tr>
<tr>
<td>1 0 1 0</td>
<td>exit 2</td>
<td>6</td>
</tr>
<tr>
<td>1 0 1 1</td>
<td>exit 3</td>
<td>7</td>
</tr>
<tr>
<td>1 1 0 0</td>
<td>enter 5</td>
<td>8</td>
</tr>
<tr>
<td>1 1 0 1</td>
<td>enter 6</td>
<td>9</td>
</tr>
<tr>
<td>1 1 1 0</td>
<td>enter 7</td>
<td>10</td>
</tr>
</tbody>
</table>

"faces, emotionless one of the far future, a world where people are born, go through prescribed movements, fear non-being even though their lives are meaningless, and then they disappear or die." — Sidney Homan

Binary reflected gray code

Def. The k-bit binary reflected Gray code is:
- the (k-1) bit code with a 0 prepended to each word, followed by
- the (k-1) bit code in reverse order, with a 1 prepended to each word.

Enumerating subsets using Gray code

Two simple changes to binary counter from warmup:
- Flip a[k] instead of setting it to 1.
- Eliminate cleanup.

```java
// all bit strings in a[k] to a[N-1]
private void enumerate(int k) {
    if (k == N) {
        process(); return;
    }
    enumerate(k+1);
    a[k] = 1;
    enumerate(k+1);
    a[k] = 0;
}
```

Gray code binary counter vs. standard binary counter (from warmup)

Advantage. Only one item in subset changes at a time.
More applications of Gray codes

- 3-bit rotary encoder
- Chinese ring puzzle
- 8-bit rotary encoder
- Towers of Hanoi

33

Scheduling

Scheduling (set partitioning). Given \(n \) jobs of varying length, divide among
two machines to minimize the makespan (time the last job finishes).

Remark. This scheduling problem is NP-complete.

34

Scheduling (full implementation)

```java
public class Scheduler {
    private int N; // Number of jobs.
    private int[] a; // Subset assignments.
    private int[] b; // Best assignment.
    private double[] jobs; // Job lengths.

    public Scheduler(double[] jobs) {
        this.N = jobs.length;
        this.jobs = jobs;
        a = new int[N];
        b = new int[N];
        enumerate(N);
    }

    public int[] best() {
        return b;
    }

    private void enumerate(int k) {
        /* Gray code enumeration. */
    }

    private void process() {
        if (cost(a) < cost(b)) {
            for (int i = 0; i < N; i++)
                b[i] = a[i];
        }
    }

    public static void main(String[] args) {
        /* create Scheduler, print results */
    }
}
```

Scheduling (larger example)

Observation. Large number of subsets
leads to remarkably low cost.
Scheduling: improvements

Many opportunities (details omitted).

- Fix last job to be on machine 0 (quick factor-of-two improvement).
- Maintain difference in finish times (instead of recomputing from scratch).
- Backtrack when partial schedule cannot beat best known.
 (check total against goal: half of total job times)

```java
private void enumerate(int k)
{
    if (k == N-1)
    {
        process();
        return;
    }
    if (backtrack(k))
    {
        return;
    }
    enumerate(k+1);
    a[k] = 1 - a[k];
    enumerate(k+1);
}
```

- Process all 2^k subsets of last k jobs, keep results in memory,
 (reduces time to 2^{N-k} when 2^k memory available).

Enumerating all paths on a grid

Goal. Enumerate all simple paths on a grid of adjacent sites.

- **Application.** Self-avoiding lattice walk to model polymer chains.

Boggle. Find all words that can be formed by tracing a simple path of adjacent cubes (left, right, up, down, diagonal).

Pruning. Stop as soon as no word in dictionary contains string of letters on current path as a prefix ⇒ use a trie.
Boggle: Java implementation

private void dfs(String prefix, int i, int j) {
 if ((i < 0 || i >= N) ||
 (j < 0 || j >= N) ||
 visited[i][j]) ||
 !dictionary.containsAsPrefix(prefix))
 return;
 visited[i][j] = true;
 prefix = prefix + board[i][j];
 if (dictionary.contains(prefix))
 found.add(prefix);
 for (int ii = -1; ii <= 1; ii++)
 for (int jj = -1; jj <= 1; jj++)
 dfs(prefix, i + ii, j + jj);
 visited[i][j] = false;
}

Hamilton path

Goal. Find a simple path that visits every vertex exactly once.

Remark. Euler path easy, but Hamilton path is NP-complete.

Knight’s tour

Goal. Find a sequence of moves for a knight so that (starting from any desired square) it visits every square on a chessboard exactly once.

Solution. Find a Hamilton path in knight’s graph.

Hamilton path: backtracking solution

Backtracking solution. To find Hamilton path starting at \(v \):
- Add \(v \) to current path.
- For each vertex \(w \) adjacent to \(v \)
 - find a simple path starting at \(w \) using all remaining vertices
- Clean up: remove \(v \) from current path.

Q. How to implement?
A. Add cleanup to DFS (!)
Hamilton path: Java implementation

```java
public class HamiltonPath {
    private boolean[] marked; // vertices on current path
    private int count = 0;    // number of Hamiltonian paths

    public HamiltonPath(Graph G) {
        marked = new boolean[G.V()];
        for (int v = 0; v < G.V(); v++)
            dfs(G, v, 1);
    }

    private void dfs(Graph G, int v, int depth) {
        marked[v] = true;
        if (depth == G.V()) count++;
        for (int w : G.adj(v))
            if (!marked[w]) dfs(G, w, depth+1);
        marked[v] = false; // clean up
    }
}
```

Exhaustive search: summary

<table>
<thead>
<tr>
<th>problem</th>
<th>enumeration</th>
<th>backtracking</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-rooks</td>
<td>permutations</td>
<td>no</td>
</tr>
<tr>
<td>N-queens</td>
<td>permutations</td>
<td>yes</td>
</tr>
<tr>
<td>Sudoku</td>
<td>base-9 numbers</td>
<td>yes</td>
</tr>
<tr>
<td>scheduling</td>
<td>subsets</td>
<td>yes</td>
</tr>
<tr>
<td>Boggle</td>
<td>paths in a grid</td>
<td>yes</td>
</tr>
<tr>
<td>Hamilton path</td>
<td>paths in a graph</td>
<td>yes</td>
</tr>
</tbody>
</table>

That’s all, folks: Keep searching!