
Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · February 23, 2010 8:21:03 AM

3.1 Symbol Tables

‣ API
‣ sequential search
‣ binary search
‣ ordered operations

2

Symbol tables

Key-value pair abstraction.

• Insert a value with specified key.

• Given a key, search for the corresponding value.

Ex. DNS lookup.

• Insert URL with specified IP address.

• Given URL, find corresponding IP address.

key

URL IP address

www.cs.princeton.edu 128.112.136.11

www.princeton.edu 128.112.128.15

www.yale.edu 130.132.143.21

www.harvard.edu 128.103.060.55

www.simpsons.com 209.052.165.60

value

3

Symbol table applications

application purpose of search key value

dictionary find definition word definition

book index find relevant pages term list of page numbers

file share find song to download name of song computer ID

financial account process transactions account number transaction details

web search find relevant web pages keyword list of page names

compiler find properties of variables variable name type and value

routing table route Internet packets destination best route

DNS find IP address given URL URL IP address

reverse DNS find URL given IP address IP address URL

genomics find markers DNA string known positions

file system find file on disk filename location on disk

API The symbol table is an abstract data type (see Chapter 2): It represents a well-
defined set values and operations on those values, enabling us to develop application-
programs (clients) and implementations separately. As usual, we precisely define the
operations by specifying an application programming interface (API) that provides the
contract between client and implementation:

public class ST<Key, Value>

ST() create a symbol table

void put(Key key, Value val)
put key-value pair into the table
(remove key from table if value is null)

Value get(Key key)
value paired with key
(null if key is absent)

void delete(Key key) remove key (and its value) from table
boolean contains(Key key) is there a value paired with key?
boolean isEmpty() is the table empty?

int size() number of key-value pairs in the table
Iterable<Key> keys() all the keys in the table

API for a generic basic symbol table

As we did with sorting, we will consider the methods without specifying the types of
the items being processed, using generics. For symbol tables, we emphasize the separate
roles played by keys and values in search by specifying the key and value types sepa-
rately instead of combining them in a single data type. After we have considered some
of the characteristics of this basic API, we will consider an extension for the typical case
when keys are Comparable, which enables numerous additional methods. We will then
consider implementations of each.

Before examining client code, we consider several design choices for our implemen-
tations to make our code consistent, compact, and useful. These are not difficult con-
ceptually, but worth examining because they anticipate the answers to questions that
would otherwise arise later.

Duplicate keys. We adopt the following conventions in all of our implementations:
!" Only one value is associated with each key (no duplicate keys in a table).
!" When a client puts a key-value pair into a table already containing that key (and

an associated value), the new value replaces the old one.

3294.1 ! Fundamentals

4

Symbol table API

Associative array abstraction. Associate one value with each key.

a[key] = val;

a[key]

5

Conventions

• Values are not null.

• Method get() returns null if key not present.

• Method put() overwrites old value with new value.

Intended consequences.

• Easy to implement contains().

• Can implement lazy version of delete().

 public boolean contains(Key key)
 { return get(key) != null; }

 public void delete(Key key)
 { put(key, null); }

6

Keys and values

Value type. Any generic type.

Key type: several natural assumptions.

• Assume keys are Comparable, use compareTo().

• Assume keys are any generic type, use equals() to test equality.

• Assume keys are any generic type, use equals() to test equality
and hashCode() to scramble key.

Best practices. Use immutable types for symbol table keys.

• Immutable in Java: String, Integer, Double, File, …

• Mutable in Java: Date, StringBuilder, Url, ...

specify Comparable in API.

built-in to Java
(stay tuned)

Seems easy

public class Record
{
 private final String name;
 private final long val;
 ...

 public boolean equals(Record y)
 {

 Record that = y;
 return (this.val == that.val) &&
 (this.name.equals(that.name));
 }
}

Implementing equals() for user-defined types

7

check that all significant
fields are the same

Seems easy, but requires some care.

public final class Record
{
 private final String name;
 private final long val;
 ...

 public boolean equals(Object y)
 {
 if (y == this) return true;

 if (y == null) return false;

 if (y.getClass() != this.getClass())
 return false;

 Record that = (Record) y;
 return (this.val == that.val) &&
 (this.name.equals(that.name));
 }
}

Implementing equals() for user-defined types

8

check for null

optimize for true object equality

no safe way to use equals() with inheritance

must be Object.
Why? Experts still debate.

objects must be in the same class

check that all significant
fields are the same

ST test client for traces

Build ST by associating value i with ith string from standard input.

9

public static void main(String[] args)
{
 ST<String, Integer> st = new ST<String, Integer>();
 String[] a = StdIn.readAll().split("\\s+");
 for (int i = 0; i < a.length; i++)
 st.put(a[i], i);
 for (String s : st.keys())
 StdOut.println(s + " " + st.get(s));
}

Keys, values, and output for test client

STunordered output
(one possibility) ST output

keys

values

S E A R C H E X A M P L E

0 1 2 3 4 5 6 7 8 9 10 11 12

L 11
P 10
M 9
X 7
H 5
C 4
R 3
A 8
E 12
S 0

A 8
C 4
E 12
H 5
L 9
M 11
P 10
R 3
S 0
X 7

Keys, values, and output for test client

STunordered output
(one possibility) ST output

keys

values

S E A R C H E X A M P L E

0 1 2 3 4 5 6 7 8 9 10 11 12

L 11
P 10
M 9
X 7
H 5
C 4
R 3
A 8
E 12
S 0

A 8
C 4
E 12
H 5
L 9
M 11
P 10
R 3
S 0
X 7

keys

values

output

ST test client for analysis

Frequency counter. Read a sequence of strings from standard input
and print out one that occurs with highest frequency.

10

% more tinyTale.txt
it was the best of times
it was the worst of times
it was the age of wisdom
it was the age of foolishness
it was the epoch of belief
it was the epoch of incredulity
it was the season of light
it was the season of darkness
it was the spring of hope
it was the winter of despair

% java FrequencyCounter 1 < tinyTale.txt
it 10

% java FrequencyCounter 8 < tale.txt
business 122

% java FrequencyCounter 10 < leipzig1M.txt
government 24763

tiny example (60 words, 20 distinct)

real example (135,635 words, 10,769 distinct)

real example (21,191,455 words, 534,580 distinct)

public class FrequencyCounter
{
 public static void main(String[] args)
 {
 int minlen = Integer.parseInt(args[0]);
 ST<String, Integer> st = new ST<String, Integer>();
 while (!StdIn.isEmpty())
 {
 String word = StdIn.readString();
 if (word.length() < minlen) continue;
 if (!st.contains(word)) st.put(word, 1);
 else st.put(word, st.get(word) + 1);
 }
 String max = "";
 st.put(max, 0);
 for (String word : st.keys())
 if (st.get(word) > st.get(max))
 max = word;
 StdOut.println(max + " " + st.get(max));
 }
}

11

Frequency counter implementation

read string and
update frequency

print a string
with max freq

create ST

ignore short strings

12

‣ API
‣ sequential search
‣ binary search
‣ ordered operations

Data structure. Maintain an (unordered) linked list of key-value pairs.

Search. Scan through all keys until find a match.
Insert. Scan through all keys until find a match; if no match add to front.

13

Sequential search in a linked list

Trace of linked-list ST implementation for standard indexing client

red nodes
are new

black nodes
are accessed

in search

first

S 0

S 0E 1

S 0E 1A 2

S 0E 1A 2R 3

S 0E 1A 2R 3C 4

S 0E 1A 2R 3C 4H 5

S 0E 6A 2R 3C 4H 5

S 0E 6A 2R 3C 4H 5

S 0E 6A 8R 3C 4H 5

X 7

X 7

M 9

P 10

L 11

L 11

circled entries are
changed values

gray nodes
are untouched

S 0E 6A 8R 3C 4H 5X 7

M 9 S 0E 6A 8R 3C 4H 5X 7

P 10 M 9 S 0E 6A 8R 3C 4H 5X 7

P 10 M 9 S 0E 12A 8R 3C 4H 5X 7

key value

S 0

E 1

A 2

R 3

C 4

H 5

E 6

X 7

A 8

M 9

P 10

L 11

E 12

Challenge. Efficient implementations of both search and insert.
14

Elementary ST implementations: summary

ST implementation
worst caseworst case average caseaverage case ordered

iteration?
operations

on keysST implementation
search insert search hit insert

ordered
iteration?

operations
on keys

sequential search
(unordered list)

N N N / 2 N no equals()

Costs for java FrequencyCounter 8 < tale.txt using LinkedListST

5000

2246

0

15

‣ API
‣ sequential search
‣ binary search
‣ ordered symbol table ops

16

Binary search

Data structure. Maintain an ordered array of key-value pairs.

Rank helper function. How many keys < k?

loop exits with lo > hi: return 7

entries in black
are a[lo..hi]

entry in red is a[m]

successful search for P

loop exits with keys[m] = P: return 6

lo hi m

unsuccessful search for Q

lo hi m

 keys[]
 0 1 2 3 4 5 6 7 8 9

0 9 4 A C E H L M P R S X
5 9 7 A C E H L M P R S X
5 6 5 A C E H L M P R S X
6 6 6 A C E H L M P R S X

0 9 4 A C E H L M P R S X
5 9 7 A C E H L M P R S X
5 6 5 A C E H L M P R S X
7 6 6 A C E H L M P R S X

Trace of binary search for rank in an ordered array

17

Binary search: Java implementation

 public Value get(Key key)
 {
 if (isEmpty()) return null;
 int i = rank(key);
 if (i < N && keys[i].compareTo(key) == 0) return vals[i];
 else return null;
 }

 private int rank(Key key)
 {
 int lo = 0, hi = N-1;
 while (lo <= hi)
 {
 int mid = lo + (hi - lo) / 2;
 int cmp = key.compareTo(keys[mid]);
 if (cmp < 0) hi = mid - 1;
 else if (cmp > 0) lo = mid + 1;
 else if (cmp == 0) return mid;
 }
 return lo;
 }

number of keys < key

18

Binary search: mathematical analysis

Proposition. Binary search uses ~ lg N compares to search any array of size N.

Def. T(N) ! number of compares to binary search in a sorted array of size N.
 " T(N / 2) + 1

Binary search recurrence. T(N) ! T(N / 2) + 1 for N > 1, with T(1) = 1.

• Not quite right for odd N.

• Same recurrence holds for many algorithms.

Solution. T(N) ~ lg N.

• For simplicity, we'll prove when N is a power of 2.

• True for all N. [see COS 340]

left or right half

Binary search recurrence. T(N) ! T(N / 2) + 1 for N > 1, with T(1) = 1.

Proposition. If N is a power of 2, then T(N) ! lg N + 1.
Pf.

19

Binary search recurrence

 T(N) ! T(N / 2) + 1

 ! T(N / 4) + 1 + 1

 ! T(N / 8) + 1 + 1 + 1

 . . .

 ! T(N / N) + 1 + 1 + … + 1

 = lg N + 1

given

apply recurrence to first term

apply recurrence to first term

stop applying, T(1) = 1

Problem. To insert, need to shift all greater keys over.

20

Binary search: trace of standard indexing client

Trace of ordered-array ST implementation for standard indexing client

 keys[] vals[]
 0 1 2 3 4 5 6 7 8 9 N 0 1 2 3 4 5 6 7 8 9

 S 0 S 1 0
 E 1 E S 2 1 0
 A 2 A E S 3 2 1 0
 R 3 A E R S 4 2 1 3 0
 C 4 A C E R S 5 2 4 1 3 0
 H 5 A C E H R S 6 2 4 1 5 3 0
 E 6 A C E H R S 6 2 4 6 5 3 0
 X 7 A C E H R S X 7 2 4 6 5 3 0 7
 A 8 A C E H R S X 7 8 4 6 5 3 0 7
 M 9 A C E H M R S X 8 8 4 6 5 9 3 0 7
 P 10 A C E H M P R S X 9 8 4 6 5 9 10 3 0 7
 L 11 A C E H L M P R S X 10 8 4 6 5 11 9 10 3 0 7
 E 12 A C E H L M P R S X 10 8 4 12 5 11 9 10 3 0 7

 A C E H L M P R S X 8 4 12 5 11 9 10 3 0 7

entries in gray
did not move circled entries are

changed values

entries in black
moved to the rightentries in red

were inserted

key value

21

Elementary ST implementations: summary

Challenge. Efficient implementations of both search and insert.

ST implementation
worst caseworst case average caseaverage case ordered operationsST implementation

search insert search hit insert
ordered

iteration?
operations

on keys

sequential search
(unordered list)

N N N / 2 N no equals()

binary search
(ordered array)

 log N N log N N / 2 yes compareTo()

Costs for java FrequencyCounter 8 < tale.txt using OrderedArrayST

5000

484
0

22

‣ API
‣ sequential search
‣ binary search
‣ ordered operations

23

Ordered symbol table API

Your signal that one of our programs is implementing this API is the presence of the
Key extends Comparable<Key> generic type variable in the class declaration, which
specifies that the code depends on keys being Comparable and implements the richer
set of operations available for symbol tables based on such keys. Together, these opera-
tions define for client programs an ordered symbol table.

Minimum and maximum. Perhaps the most natural queries for a set of ordered keys
are to ask for the smallest and largest keys. We have already encountered the need for
these operations (in our discussion of priority queues in Section 3.4).

Floor and ceiling. Given a key, it is often use-
ful to be able to perform the floor operation
(find the largest key that is less than or equal to
the given key) and the ceiling operation (find
the smallest key that is greater than or equal to
the given key). The nomenclature comes from
functions defined on real numbers (the floor
of a real number x is the largest integer that is
smaller than or equal to x and the ceiling of
a real number x is the smallest integer that is
greater than or equal to x).

Rank and selection. The basic operations for
determining where a new key fits in the order
are the rank operation (find the number of
keys less than a given key) and the select opera-
tion (find the key with a given rank). To test
your understanding of their meaning, confirm
for yourself that both i = rank(select(i))
for all i between 0 and size()-1 and all keys
in the table satisfy key = select(rank(key)).
We also have already encountered the need for these operations, in our discussion of
sort applications in Section 3.5. For symbol tables, the challenge is to be able to per-
form these operations quickly, intermixed with insertions and deletions.

Range queries. How many keys fall within a given range? Which keys fall in a given
range? The two-argument size() and keys() methods that answer these questions
are useful in many applications, particularly in large databases. The capability to han-
dle such queries is one prime reason that ordered symbol tables are so widely used in
practice.

09:00:00 Chicago
09:00:03 Phoenix
09:00:13 Houston
09:00:59 Chicago
09:01:10 Houston
09:03:13 Chicago
09:10:11 Seattle
09:10:25 Seattle
09:14:25 Phoenix
09:19:32 Chicago
09:19:46 Chicago
09:21:05 Chicago
09:22:43 Seattle
09:22:54 Seattle
09:25:52 Chicago
09:35:21 Chicago
09:36:14 Seattle
09:37:44 Phoenix

keys values

get(09:00:13)

ceiling(09:30:00)

keys(09:15:00, 09:25:00)

size(09:15:00, 09:25:00) is 5
rank(09:10:25) is 7

floor(09:05:00)

min()

select(7)

max()

Examples of ordered symbol-table operations

3334.1 ! Fundamentals

24

Ordered symbol table API

Ordered symbol tables In typical applications, keys are Comparable objects, so
the option exists of using the code a.compareTo(b) to compare two keys a and b. Sev-
eral symbol-table implementations take advantage of order among the keys that is im-
plied by Comparable to provide efficient implementations of the put() and get() op-
erations. More important, in such implementations, we can think of the symbol table as
keeping the keys in order and consider a significantly expanded API that defines numer-
ous natural and useful operations involving relative key order. For example, suppose
that your keys are times. You might be interested in knowing the earliest or the latest
time, the set of keys that fall between two given times, and so forth. In most cases, such
operations are not difficult to implement with the same data structures and methods
underlying the put() and get() implementations. Specifically, for applications where
keys are Comparable, we implement in this chapter the following API:

public class ST<Key extends Comparable<Key>, Value>

ST() create an ordered symbol table

void put(Key key, Value val) put key-value pair into the table
(remove key from table if value is null)

Value get(Key key) value paired with key
(null if key is absent)

void delete(Key key) remove key (and its value) from table
boolean contains(Key key) is there a value paired with key?
boolean isEmpty() is the table empty?

int size() number of key-value pairs
Key min() smallest key
Key max() largest key
Key floor(Key key) largest key less than or equal to key
Key ceiling(Key key) smallest key greater than or equal to key
int rank(Key key) number of keys less than key
Key select(int k) key of rank k

void deleteMin() delete smallest key
void deleteMax() delete largest key
int size(Key lo, Key hi) number of keys in [lo..hi]

Iterable<Key> keys(Key lo, Key hi) keys in [lo..hi], in sorted order
Iterable<Key> keys() all keys in the table, in sorted order

API for a generic ordered symbol table

332 CHAPTER FOUR ! Searching

25

Binary search: ordered symbol table operations summary

sequential
search

binary
search

search

insert

min / max

floor / ceiling

rank

select

ordered iteration

N lg N

1 N

N 1

N lg N

N lg N

N 1

N log N N

worst-case running time of ordered symbol table operations

