
1

1

Debugging

The material for this lecture is drawn, in part, from
The Practice of Programming (Kernighan & Pike) Chapter 5

2

Goals of this Lecture

• Help you learn about:
•  Strategies and tools for debugging your code

• Why?
•  Debugging large programs can be difficult
•  A power programmer knows a wide variety of debugging strategies
•  A power programmer knows about tools that facilitate debugging

•  Debuggers
•  Version control systems

3

Testing vs. Debugging

• Testing
•  What should I do to try to break my program?

• Debugging
•  What should I do to try to fix my program?

2

Debugging Observations
•  Most bugs are reproducible

•  Focus of inspection can be narrowed
•  Narrow by code path or by time

•  Bugs are mismatches between expectation & execution
•  Can add more checks on expectations
•  Deviations detected early can prevent bugs

•  Program flow can be watched
•  Printing & logging (especially high-volume)
•  Source-level debugging

•  Not all bugs visibly manifested
•  But unmanifested bugs still exist
•  Classic cause of “the bug just went away”
•  Nothing ever just “goes away” in a deterministic world

4

5

Debugging Heuristics

Debugging Heuristic When Applicable
(1) Understand error messages Build-time
(2) Think before writing

Run-time

(3) Look for familiar bugs
(4) Divide and conquer
(5) Add more internal tests
(6) Display output
(7) Use a debugger
(8) Focus on recent changes

6

Understand Error Messages
Debugging at build-time is easier than debugging at run-
time, if and only if you…

(1)  Understand the error messages!!!

#include <stdioo.h>
int main(void)
/* Print "hello, world" to stdout and
 return 0.
{
 printf("hello, world\n");
 return 0;
}

What are the
error(s)? (No
fair looking at
the next slide!)

3

7

Understand Error Messages (cont.)
(1) Understand the error messages (cont.)

#include <stdioo.h>
int main(void)
/* Print "hello, world" to stdout and
 return 0.
{
 printf("hello, world\n");
 return 0;
}

Which tool
(preprocessor,
compiler, or
linker) reports
the error(s)?

$ gcc217 hello.c -o hello
hello.c:1:20: stdioo.h: No such file or directory
hello.c:3:1: unterminated comment
hello.c:2: error: syntax error at end of input

8

Understand Error Messages (cont.)
(1) Understand the error messages (cont.)

#include <stdio.h>
int main(void)
/* Print "hello, world" to stdout and
 return 0. */
{
 printf("hello, world\n")
 retun 0;
}

What are the
error(s)? (No
fair looking at
the next slide!)

9

Understand Error Messages (cont.)
(1) Understand the error messages (cont.)

#include <stdio.h>
int main(void)
/* Print "hello, world" to stdout and
 return 0. */
{
 printf("hello, world\n")
 retun 0;
}

Which tool
(preprocessor,
compiler, or
linker) reports
the error(s)?

$ gcc217 hello.c -o hello
hello.c: In function `main':
hello.c:7: error: `retun' undeclared (first use in this
function)
hello.c:7: error: (Each undeclared identifier is reported
only once
hello.c:7: error: for each function it appears in.)
hello.c:7: error: syntax error before numeric constant

4

10

Understand Error Messages (cont.)
(1) Understand error messages (cont.)

#include <stdio.h>
int main(void)
/* Print "hello, world" to stdout and
 return 0. */
{
 prinf("hello, world\n")
 return 0;
}

What are the
error(s)? (No
fair looking at
the next slide!)

11

Understand Error Messages (cont.)
(1) Understand error messages (cont.)

#include <stdio.h>
int main(void)
/* Print "hello, world" to stdout and
 return 0. */
{
 prinf("hello, world\n")
 return 0;
}

Which tool
(preprocessor,
compiler, or
linker) reports
the error(s)?

$ gcc217 hello.c -o hello
hello.c: In function `main':
hello.c:6: warning: implicit declaration of function
`prinf'
/tmp/cc43ebjk.o(.text+0x25): In function `main':
: undefined reference to `prinf'
collect2: ld returned 1 exit status

12

Think Before Writing
Inappropriate changes could make matters worse, so…

(2) Think before writing
•  Draw pictures of the data structures

•  Take a break
•  Sleep on it!
•  Start early so you can!!!

•  Explain the code to:
•  Yourself
•  Someone else
•  A teddy bear!
•  A giant wookie!!!

5

13

Look for Familiar Bugs
(3) Look for familiar bugs

•  Some of our favorites: int i;
…
scanf("%d", i);

char c;
…
c = getchar();

switch (i) {
 case 0:
 …
 break;
 case 1:
 …
 case 2:
 …
}

if (i = 5)
 …

if (5 < i < 10)
 …

if (i & j)
 …

while (c = getchar() != EOF)
 …

What are
the
errors?

14

Look for Familiar Bugs
(3) Look in familiar places

•  Loop start & end conditions “off by 1” errors
•  Most loop iterations run just fine

•  Copy & pasted code
•  Brain sees main idea, not details
•  Details (like variable names) matter

•  Check scoping, re-use of variables
•  Compiler complains about uninitialized use, not re-use

15

(4) Divide and conquer

•  Incrementally find smallest/simplest input that illustrates the bug
•  Example: Program fails on large input file filex

•  Approach 1: Remove input
•  Start with filex
•  Incrementally remove lines of 

filex until bug disappears
•  Maybe in “binary search” fashion

•  Approach 2: Add input
•  Start with small subset of filex
•  Incrementally add lines of filex 

until bug appears

Divide and Conquer

6

16

Divide and Conquer (cont.)
(4) Divide and conquer (cont.)

•  Incrementally find smallest code subset that illustrates the bug
•  Example: Test client for your module fails

•  Approach 1: Remove code
•  Start with test client
•  Incrementally remove lines of test client until bug disappears

•  Approach 2: Add code
•  Start with minimal client
•  Incrementally add lines of test client until bug appears

17

Add More Internal Tests
(5) Add more internal tests

•  Internal tests help find bugs (see “Testing” lecture)

•  Internal test also can help eliminate bugs
•  Checking invariants and conservation properties can eliminate

some functions from the bug hunt

18

Display Output
(6) Display output

•  Print values of important variables at critical spots

•  Poor:

•  Maybe better:

•  Better:

printf("%d", keyvariable);

stdout is buffered;
program may crash
before output appears

printf("%d", keyvariable);
fflush(stdout);

printf("%d\n", keyvariable);

Call fflush() to flush
stdout buffer explicitly

Printing '\n' flushes
the stdout buffer, but
not if stdout is
redirected to a file

7

19

Display Output (cont.)
(6) Display output (cont.)

•  Maybe even better:

•  Maybe better still:

fprintf(stderr, "%d", keyvariable);

FILE *fp = fopen("logfile", "w");
…
fprintf(fp, "%d", keyvariable);
fflush(fp);

Write debugging
output to stderr;
debugging output
can be separated
from normal output
via redirection

Write to a log file

Bonus: stderr is
unbuffered

20

Use a Debugger
(7) Use a debugger

•  Alternative to displaying output

•  Bonuses:
•  Debugger can load “core dumps”

•  Examine state of program when it terminated
•  Debugger can “attach” to a running program

21

The GDB Debugger

•  GNU Debugger
•  Part of the GNU development environment
•  Integrated with Emacs editor
•  Allows user to:

•  Run program
•  Set breakpoints
•  Step through code one line at a time
•  Examine values of variables during run
•  Etc.

•  See Appendix 1 for details

8

22

Focus on Recent Changes
(8) Focus on recent changes

•  Corollary: Debug now, not later

Easier:

(1) Write a little
(2) Test a little
(3) Debug a little
(4) Write a little
(5) Test a little
(6) Debug a little
 …

Difficult:

(1) Write entire program
(2) Test entire program
(3) Debug entire program

23

Focus on Recent Changes (cont.)
(8) Focus on recent change (cont.)

•  Corollary: Maintain old versions

Difficult:

(1) Change code
(2) Note bug
(3) Try to remember what
 changed since last
 working version!!!

Easier:

(1) Backup working version
(2) Change code
(3) Note bug
(4) Compare code with
 working version to
 determine what changed

24

Maintaining Previous Versions
•  To maintain old versions

•  Approach 1: Manually copy project directory

•  Approach 1.5: use snapshot support in filesystem
•  Approach 2: Use RCS…

…
$ mkdir myproject
$ cd myproject

 Create project files here.

$ cd ..
$ cp –r myproject myprojectDateTime
$ cd myproject

 Continue creating project files here.
…

9

25

RCS
Revision Control System

•  A simple personal version control system
•  Provided with many Linux distributions

•  Available on hats
•  Allows developer to:

•  Create a source code repository
•  Check source code files into repository

•  RCS saves old versions
•  Check source code files out of repository

•  Appropriate for one-developer projects
•  Not appropriate for multi-developer projects

•  Use CVS or Subversion instead

•  See Appendix 2 for details

26

Summary

* Use GDB
** Use RCS

Debugging Heuristic When Applicable
(1) Understand error messages Build-time
(2) Think before writing

Run-time

(3) Look for familiar bugs
(4) Divide and conquer
(5) Add more internal tests
(6) Display output
(7) Use a debugger *
(8) Focus on recent changes **

27

Appendix 1: Using GDB
•  An example program

File testintmath.c:

#include <stdio.h>

int gcd(int i, int j) {
 int temp;
 while (j != 0) {
 temp = i % j;
 i = j;
 j = temp;
 }
 return i;
}

int lcm(int i, int j) {
 return (i / gcd(i, j)) * j;
}
…

The program is correct

But letʼs pretend it has a
runtime error in gcd()…

…
int main(void) {
 int iGcd;
 int iLcm;
 iGcd = gcd(8, 12);
 iLcm = lcm(8, 12);
 printf("%d %d\n", iGcd, iLcm);
 return 0;
}

Euclidʼs algorithm;
Donʼt be concerned
with details

10

28

Appendix 1: Using GDB (cont.)

•  General GDB strategy:

•  Execute the program to the point of interest
•  Use breakpoints and stepping to do that

•  Examine the values of variables at that point

29

Appendix 1: Using GDB (cont.)
•  Typical steps for using GDB:

(a) Build with –g
 gcc217 –g testintmath.c –o testintmath

•  Adds extra information to executable file that GDB uses
(b) Run Emacs, with no arguments
 emacs

(c) Run GDB on executable file from within Emacs
 <Esc key> x gdb <Enter key> testintmath <Enter key>

(d) Set breakpoints, as desired
 break main

•  GDB sets a breakpoint at the first executable line of main()
 break gcd

•  GDB sets a breakpoint at the first executable line of gcd()

30

Appendix 1: Using GDB (cont.)
•  Typical steps for using GDB (cont.):

(e) Run the program
 run

•  GDB stops at the breakpoint in main()
•  Emacs opens window showing source code
•  Emacs highlights line that is to be executed next

 continue
•  GDB stops at the breakpoint in gcd()
•  Emacs highlights line that is to be executed next

(f) Step through the program, as desired
 step (repeatedly)

•  GDB executes the next line (repeatedly)

•  Note: When next line is a call of one of your functions:
•  step command steps into the function
•  next command steps over the function, that is, executes the next line

without stepping into the function

11

31

Appendix 1: Using GDB (cont.)
•  Typical steps for using GDB (cont.):

(g) Examine variables, as desired
print i
print j
print temp
•  GDB prints the value of each variable

(h) Examine the function call stack, if desired
where
•  GBB prints the function call stack
•  Useful for diagnosing crash in large program

(i) Exit gdb
 quit

(j) Exit Emacs
 <Ctrl-x key> <Ctrl-c key>

32

Appendix 1: Using GDB (cont.)
•  GDB can do much more:

•  Handle command-line arguments
 run arg1 arg2

•  Handle redirection of stdin, stdout, stderr
 run < somefile > someotherfile

•  Print values of expressions
•  Break conditionally
•  Etc.

•  See Programming with GNU Software (Loukides and
Oram) Chapter 6

33

Appendix 2: Using RCS
•  Typical steps for using RCS:

(a) Create project directory, as usual
 mkdir helloproj
 cd helloproj

(b) Create RCS directory in project directory
 mkdir RCS

•  RCS will store its repository in that directory
(c) Create source code files in project directory

 emacs hello.c …
(d) Check in

 ci hello.c
•  Adds file to RCS repository
•  Deletes local copy (donʼt panic!)
•  Can provide description of file (1st time)
•  Can provide log message, typically describing changes

12

34

Appendix 2: Using RCS (cont.)
•  Typical steps for using RCS (cont.):

(e) Check out most recent version for reading
 co hello.c

•  Copies file from repository to project directory
•  File in project directory has read-only permissions

(f) Check out most recent version for reading/writing
 co –l hello.c

•  Copies file from repository to project directory
•  File in project directory has read/write permissions

(g) List versions in repository
 rlog hello.c

•  Shows versions of file, by number (1.1, 1.2, etc.), with
descriptions

(h) Check out a specified version
 co –l –rversionnumber hello.c

35

Appendix 2: Using RCS (cont.)
•  RCS can do much more:

•  Merge versions of files
•  Maintain distinct development branches
•  Place descriptions in code as comments
•  Assign symbolic names to versions
•  Etc.

•  See Programming with GNU Software (Loukides and
Oram) Chapter 8

•  Recommendation: Use RCS
• ci and co can become automatic!

36

Appendix 3: Debugging Mem Mgmt

•  Some debugging techniques are specific to dynamic
memory management
•  That is, to memory managed by malloc(), calloc(),
realloc(), and free()

•  Soon will be pertinent in the course

•  For future reference…

13

37

Appendix 3: Debugging Mem Mgmt (cont.)

(9) Look for familiar dynamic memory management bugs
•  Some of our favorites:

int *p; /* value of p undefined */
…
*p = somevalue;

int *p; /* value of p undefined */
…
fgets(p, 1024, stdin);

Dangling pointer

Dangling pointer

int *p;
…
p = (int*)malloc(sizeof(int));
…
free(p);
…
*p = 5;

Dangling pointer

38

Appendix 3: Debugging Mem Mgmt (cont.)

(9) Look for familiar dynamic memory management bugs
(cont.)
•  Some of our favorites (cont.):

int *p;
…
p = (int*)malloc(sizeof(int));
…
p = (int*)malloc(sizeof(int));
…

Memory leak
alias
Garbage creation

Detection: Valgrind, etc.

int *p;
…
p = (int*)malloc(sizeof(int));
…
free(p);
…
free(p);

Multiple free

Detection: man malloc,
MALLOC_CHECK_

39

Appendix 3: Debugging Mem Mgmt (cont.)

(9) Look for familiar dynamic memory management bugs
(cont.)
•  Some of our favorites (cont.):

char *s1 = "Hello";
char *s2;
s2 = (char*)malloc(strlen(s1));
strcpy(s2, s1);

double *p;
p = (double*)malloc(sizeof(double*));

char *s1 = "Hello";
char *s2;
s2 = (char*)malloc(sizeof(s1));
strcpy(s2, s1);

Allocating too few bytes

Allocating too few bytes

Allocating too few bytes

14

40

Appendix 3: Debugging Mem Mgmt (cont.)

(10)Segmentation fault? Make it happen within gdb, and
then issue the gdb where command. The output will
lead you to the line that caused the fault. (But that line
may not be where the error resides.)

(11)Manually inspect each call of malloc(), calloc(), and
realloc() in your code, making sure that it allocates
enough memory.

(12)Temporarily hardcode each call of malloc(), calloc(), and
realloc() such that it requests a large number of bytes. If
the error disappears, then you'll know that at least one of
your calls is requesting too few bytes.

41

Appendix 3: Debugging Mem Mgmt (cont.)

(13) Temporarily comment-out each call of free() in your
code. If the error disappears, then you'll know that
you're freeing memory too soon, or freeing memory that
already has been freed, or freeing memory that should
not be freed, etc.

(14)Use the Meminfo tool. Programs built with gcc217m are
much more sensitive to dynamic memory management
errors than are programs built with gcc217. So the error
might manifest itself earlier, and thereby might be easier
to diagnose.

