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Abstract 
This is a true fable about Merlin, the infinitely intelligent 
but never trusted magician; and Arthur, the reasonable 
but impatient sovereign with an occasional unorthodox 
request; about the concept o f  an efficient proof; about 
polynomials and interpolation, electronic mail, coin flip- 
ping, and the incredible power of interaction. 

About M I P ,  I P ,  # P p  PSPACE, N E X P T I M E ,  
and new techniques that  do not relativize. About fast 
progress, fierce competition, and e-mail ethics. 

1 How did Merlin end up in 
the cave? 

In the court of King Arthur’ there lived 150 knights 
and 150 ladies. “Why not 150 married couples,” the 
King contemplated one rainy afternoon, and action 
followed the thought. He asked the Royal Secret 
Agent (RSA) to draw up a diagram with all the 300 
names, indicating bonds of mutual interest between 
lady and knight by a red line; and the lack thereof, by 
a blue line. The diagram, with its 150’ = 22,500 col- 
ored lines, looked somewhat confusing, yet it should 
not confuse Merlin, the court magician, to whom it 
was subsequently presented by Arthur with the ex- 
press order to find a perfect matching consisting ex- 
clusively of red lines. 

Merlin walked away, looked at the diagram, and, 
with his unlimited intellectual ability, immediately 
recognized that none of the 150! possibilities gave an 
all-red perfect matching. He quickly completed the 
150! diagrams, highlighting the wrong blue line in 
each, and ordered the servants to  carry them into the 
throne room as evidence that Arthur had asked the 
impossible. 

‘Partially supported by NSF Grant CCR 871007. 
‘For general background we refer to [Ma] and [BaM]. 

Of course not even a tiny fraction could fit in the 
throne room, but Arthur wouldn’t even wait till the 
room filled up. He dismissed Merlin’s procedure (“ob- 
viously, you overlooked a case”) and ordered him to 
come back with a solution the next day. Arthur’s 
diaries reveal another thought that was on his mind: 
“The lifetime of the universe wouldn’t suffice to check 
all that crud. That’s how the old fox wants to fool 
me.” 

Merlin knew that he was right, and he knew also 
that Arthur was reasonable. All Merlin had to do was 
to convince him, in five minutes, that there was no 
solution. 

Fortuitously, in the cafeteria he bumped into an 
unassuming character dressed in brand new blue 
jeans. An East Bloc visitor, the man humbly intro- 
duced himself as DCnes Konig, number one expert on 
perfect matchings. “Frobenius also claims this title,” 
he added without bitterness. “Are you perhaps inter- 
ested in my mini-max theory?“ Having, at last, found 
a willing listener, the visiting scholar forgot his French 
fries and the free ketchup, and began a passionate 
lecture about bipartite graphs, maximum matchings, 
and minimum covers. His new acquaintance was not 
the least bothered by his heavy accent and large ges- 
tures. Before long, Merlin found out that all he had 
to look for was a Konig obstacle: a set of k knights 
all whose hearts burn for only (k - 1) ladies. Merlin 
immediately saw that indeed there was such an obsta- 
cle ( k  = 79). With some assistance from the hardly 
brilliant but quite reliable court astronomer, Arthur 
managed rapidly to check that the set of 79 knights 
indeed formed a Konig obstacle. Being thereby con- 
vinced of Merlin’s truth, Arthur resigned to the im- 
possibility of a perfect matching and began exploring 
other avenues to improve society. 

The chronicles report that Merlin did not have to 
wait long for his next call. 

One of Arthur’s recent innovations had been the in- 
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troduction of forks at meals. When the Round Table 
was set for dinner, the noble knights were invited to 
leave their swords and take their assigned seats. Some 
of them savored the juicy legs of mutton that they 
could reach with the sturdy forks. Others, however, 
discovered more knightly uses of the new utensils, and 
wasted no time settling scores with their neighbors. 

It seemed to Arthur that table manners could 
improve considerably with the right seating of the 
knights. As before, he proceeded to call the RSA, 
who produced a graph indicating who will sit in peace 
next to whom. Subsequently, the task of finding an 
appropriate seating arrangement (a Hamilton cycle in 
this graph, as it came to be called later) was assigned 
to Merlin. 

When Merlin saw that there was no solution, he no 
longer tried the 150! diagrams trick, he just wrote to 
Konig, but either the mail was  too slow or there was 
some other obstacle, Konig’s reply to this letter never 
arrived. Being unable to produce a solution by the 
deadline, Merlin was sentenced to the gallows. That 
sentence was immediately commuted to “eternity in 
the cave; up for parole when 1/3 served”. 

2 December 13, 1989 

The centuries passed in gray monotony. Merlin’s only 
delights were the birds chirping at his window, and 
an occasional message through e-mail. Meanwhile, he 
conducted some theoretical studies and became pro- 
ficient with MACSYMA. He heard about the Cook- 
Levin theorem through questions posted on a bulletin 
board, and came to be resigned to the recognition 
that the conjecture N P  # c o N P ,  if true, would al- 
low the possibility that there was no way for him to 
ever convince Arthur. 

At least so it seemed until December 13, 1989. 
On this historic date, the weather was unusually 

agreeable (maybe a sign of global warming), but this 
did not prevent Merlin from having a late afternoon 
nap according to his daily routine, When he awak- 
ened, he went to the workstation to check the mail, 
as had been his custom ever since his murky quarters 
were first lit by the SUN.  

The first five messages, broadcast to the entire 
Theorynet, raised profound questions of indubitable 
importance to the community at large. (‘(I am a 
graduate student, working on the problem of 
finding maximal star-like anti-snails in 
homeotoxal metagraphs in a distributed 

environment. 
theorem I could base my thesis on?” - 
“I am looking for a *simple* proof that 
there are infinitely many composite 
numbers .” - Etc.) 

But then came a message with a more limited dis- 
tribution, and Merlin was pleased to see himself listed 
among the three dozen recipients or so. It took him 
a little while to appreciate fully how pleased he ought 
to be. 

Would anyone mind proving a 

Date: Wed, 13 Dec 89 13:38:05 -0800 
From: fortnow0gargoyle.uchicago.edu (Lance J. 
To: condon0cs.wisc.edu, Jf0coma.att.com, ode 

shafi0theory.lcs.mit.edu, tompa0cs.w 
shamir0wisdom.weizmann.ac.i1, sipser 
watanabe0cs.titech.ac.jp, rackoff0th 
merlinQcave.nyneve.gov, avi0hujics.h 

boyar@daimi.dk, aiello0flash.bellcor 
* * *  

Subject: IP contains PH 
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We will show an interactive protocol for 

31 

http://fortnow0gargoyle.uchicago.edu
http://condon0cs.wisc.edu
http://Jf0coma.att.com
http://shafi0theory.lcs.mit.edu
http://watanabe0cs.titech.ac.jp
http://merlinQcave.nyneve.gov


veri fy ing  t h e  permanent. Using the  f a c t  that  
the  permanent is  $\# P$-complete (Valiant)  we 

Repeat using $B-3$ and $A-4$ and so on u n t i l  
we have a s i n g l e  matrix $B-n$. Let 
$A^C(n-l))=B-n$. 
\think(V) Reduce $n$ by one and repeat t h i s  
process u n t i l  we have $n=1$ where the  
permanent can be e a s i l y  v e r i f i e d .  
\endCprot ocol)  
\end(document) 

* * *  

By the time the Laserwriter was done with printing 
the short document, Merlin had completed some cal- 
culations and was ready to send a message to  Arthur. 

Date: Wed, 13 Dec 89 19:42:14 BST 
From: merlinOcave 
To: arthur 

S i r e ,  
i n  a separate message I am sending you a 
matrix M of order 103,680,300, with e n t r i e s  
from ( - 1 , 0 , 1 , 2 , 3 ) .  With reference t o  
L.G. Valiant ,  TCS 8 (1979), pp.189-201, 
you w i l l  e a s i l y  v e r i f y  that  the  permanent 
of M i s  2~<43,200,000)-t imes the number of 
Hamilton c y c l e s  of the  “seat ing  graph”. 
Let me know when you have polynomial time. 
I w i l l  convince you with confidence 
1-2^(-1000) that  t h i s  permanent i s  zero.  
Please review your precalc ,  e s p e c i a l l y  
Horner’s r u l e ,  and have your d i c e  ready. 

P .S .  Thanks f o r  t h e  network hookup. 
P . P . S .  As t o  reparations,  1 ’11  s e t t l e  f o r  

Yours, Merlin 

a scholarship t o  Chicago. 

3 The LFKN protocol 
Let us recall (cf. [Mi]) that the permanent perM of 
an n x n matrix M = (mij) is defined, just as the 
determinant, as a sum of n! expansion terms 

n 

U i=l 

where the summation extends over all permutations 
U of the set {1,2,. . . , n}.  The difference is that no 
signs are attached to the expansion terms. In spite of 

the close resemblance of their algebraic expressions, 
the nature of these two functions could hardly differ 
more. The determinant is easy to compute, yet the 
evaluation of permanents even of modest size matri- 
ces is beyond hope. 

While this did not hinder Merlin in seeing the 
value of the permanent, his more difficult task was 
to convince Arthur of the validity of the result. The 
new protocol devised by Lund, Fortnow, Karloff, and 
Nisan (LFKN) gave him the clue. 

According to  the LFKN protocol, Merlin had to 
state the’permanent of the n x n matrix M first. 
Subsequently, he had to state the permanents of a 
sequence of smaller matrices computed using random 
numbers generated by Arthur. The numbers stated 
had to meet some consistency criteria always checked 
by Arthur. The last matrix in the sequence was 1 x 1, 
so the last permanent stated was easily verified by 
Arthur. The protocol was such that if Merlin always 
stated the correct values, the consistency criteria were 
automatically met. On the other hand, if Merlin 
had cheated once, the consistency criteria would force 
him with overwhelming probability to continue cheat- 
ing on smaller and smaller matrices. Eventually, he 
would be caught red-handed when falsely stating the 
value of a 1 x 1 permanent. 

Therefore, if Merlin keeps giving consistent answers 
and states a correct value for the last ( 1  x 1) perma- 
nent, this circumstance should be accepted by Arthur 
as overwhelming statistical evidence that the value of 
the permanent of M ,  initially stated by Merlin, is 
correct. Indeed, Merlin would have had negligible 
chance of getting away with a wrong answer. 

To describe the method, we first consider the fol- 
lowing situation. Suppose A and B are n x n matrices, 
and Merlin has stated the values of their permanents. 
Arthur suspects that at least one of the two values 
stated is wrong but he does not know which. How 
can he force Merlin to make a false statement of the 
permanent of a single, known n x n matrix? 

Here is the solution by Lund et al. Take the line 
D ( z )  = (1 - z ) A  + zB through A and B in the space 
of n x n matrices. The entries of D ( z )  are linear 
functions of 2; therefore perD(z) is a polynomial d(z )  
of degree 5 n. Arthur requests Merlin to reveal the 
coefficients of this polynomial. Since d(0) = perA and 
d(1) = perB (a consistency criterion), Merlin must 
cheat if he has cheated on at least one of A and B .  
He is thus forced to state a polynomial d l ( z )  which 
is different from d(z) .  Now Arthur selects a random 
member T of a set of N numbers, and records the 
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fact that Merlin has stated the value dl(r) for the 
permanent of the matrix C = D(r ) .  But the chance 
that this value is right is 5 n / N ,  for the polynomial 
d(z )  - dl(z) cannot have more than n roots. 

In a similar fashion, if Merlin states the permanents 
of the n x n matrices AI,  . . . , Ah, and one of these val- 
ues is incorrect, but Arthur does not know which one, 
he can force Merlin with large probability to falsely 
state the value of a single, known n x TI permanent. 
The procedure consists of replacing two matrices by 
one as above, and repeating this operation ( E  - 1) 
times. 

Now the protocol to verify the stated value of the 
permanent perM goes as follows. Let Mli be the 
minor of M obtained by striking the first row and 
the jth column. Then 

perM = mllperM11 + . . . + mlnperMln. (1) 

Merlin has to state the value of each permanent in 
this equation; and the equation itself is a consistency 
criterion. It follows that if the stated value of perM 
is wrong, then the stated value of the permanent of 
at least one of the ( n  - 1) x (n  - 1) matrices M1j 
must also be wrong. Replacing these n matrices by 
one as above, Merlin is forced with large probability 
to produce a single ( n  - 1) x ( n  - 1) matrix with a 
falsely stated value of the permanent. Repeating the 
process, a 1 x 1 matrix is reached in n - 1 rounds. 
The probability that the value arrived at in the end 
is correct assuming perM was stated incorrectly and 
all the consistency criteria along the way were met is 
less than n 3 / N ,  negligible if N is chosen to be large 
enough. 

4 Interactive proofs 

Merlin is at large again, perhaps sailing toward the 
New World. He will visit Yale first (he had known 
someone from that area’) before proceeding to the 
Great Lakes. 

Wishing him fair winds and ample random inter- 
action, we leave his tale and turn to a real story. 

* * *  

Two versions of interactive proof systems have been 
proposed independently in the mid 80’s by Gold- 
wasser, Micali, Rackoff [GMR] and this author [Ba]. 

2See [Cl]. 

An interactive proof is a game between two play- 
ers: an all-powerful Prover (Merlin), and a random- 
izing polynomial time Verifier (Arthur). The play- 
ers take turns writing strings of polynomial length 
on a tape. Merlin’s strategy is described by a (de- 
terministic) function of the input string 2 and the 
strings previously printed on the tape. Arthur’s 
moves are computed in polynomial time from the in- 
put, the strings previously printed on the tape, and 
the random bits currently and previously generated 
by Arthur. Within a polynomial number of moves, 
Arthur is required to  enter one of two states: “Merlin 
wins“, or “Arthur wins”. This terminates the game. 

The difference between the two systems is whether 
Arthur employs private coin flips [GMR] or public 
ones [Ba]. In the latter case, all Arthur has to do is 
flip the coins; and at the end, evaluate the game in 
deterministic polynomial time. 

The proof protocol (the set of rules of the game) 
is correct if winning chances are bounded away from 
1/2: for every input string 2 ,  either Merlin has at 
least 2/3 chance of winning (if he plays optimally), or 
he has no more than 1/3 chance of winning (no matter 
what his strategy). The language defined by such a 
protocol consists of those strings where Merlin is the 
favored player. The advantage can be amplified to 
make the uncertainty exponentially small by playing 
the game several times on the same input and picking 
the majority winner. 

The class of languages defined by correct interac- 
tive proof protocols (the languages for which mem- 
bership has interactive proofs) is denoted by IP .  

If we interpret N P  as the class of languages admit- 
ting ef ic ieni  formal  proofs of membership (formal in 
the sense of the Pn‘nczpia [WR]), then I P  can be 
viewed as the class of languages admitting efficient 
proofs of membership by overwhelming statistical ev- 
idence. In this sense, I P  seems like a “slight” ran- 
domized extension of N P .  

5 More complexity classes 
When the game is limited to t (n)  moves on inputs 
of length n, we obtain the language class AM(t(n)) 
if Arthur moves first, and MA(t(n)) if Merlin moves 
first. We use the self-explanatory notation AMA = 
AM(3), M A M A  = MA(4), etc. Clearly A = 
AM(1) = BPP, and M = MA(1) = N P .  It was 
proved in [Ba] that for any fixed E 2 2, AM(B) = 
M A ( k  + 1) = A M  (Collapse Theorem), so the class 
A M  seems particularly robust. The Collapse The- 
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orem was extended in [BaM] to unbounded Arthur- 
Merlin alternation: for any (polynomially bounded) 
function t (n)  2 2, we have AM(2t(n)) = AM(t(n)). 

The AM(t(n)) notation was originally introduced 
for the public-coin version, and one can use IP(t(n))  
for the analogously defined classes with private coins 
with Arthur moving first. Goldwasser and Sipser [GS] 
proved the surprising result that the two systems are 
equivalent for every t (n ) :  IP(t (n))  = AM(t(n)). In 
particular, the class denoted by AM(po1y) in [Ba] 
and defined as Uk,l AM(nk) is identical with IP. 

It was noted in-[Ba] that AM C II; and MA 
E: n II;. The class MA has a special place in the 
philosophy of efficient proofs since arguably it repre- 
sents the languages with efficient publishable proofs 
of membership (no direct interaction between Merlin 
and Arthur is required; Arthur can flip the coins at 
any later date). 

It was noted by Boppana, Hhtad ,  and Zachos 
[BHZ], that AM does not contain coNP, unless 
the polynomial time hierarchy collapses to PH = 
E r  = II; = AM. Indeed, the proof of this follows 
immediately from the Collapse Theorem: Assume 
AM 2 coNP. Let L E E;. Then (Vx)((z E L )  
(3py)((z,y) E L I ) ) ,  where L1 E coNP C_ AM. It fol- 
lows by definition that L E M A M  (Merlin starts with 
guessing y). By the Collapse Theorem, we infer that 
L E AM C II;. Summarizing: E; C AM E II;, 
hence E: = AM = Il; = P H .  Q.e.d. 

6 Relat ivized separation: 
building the emotional bar- 
rier 

Just what is the power of interactive proofs? An 
earlier result of Papadimitriou [Pa] implies that 
IP C P S P A C E .  In reality, IP looked substantially 
smaller than P S P A C E ;  indeed it seemed plausible 
to this author that it did not include coNP. 

At least AM 2 coNP, unless the polynomial 
time hierarchy collapses. But could more interaction 
(more rounds) help? 

Bounded rounds cannot. But Aiello, Goldwasser, 
and H h t a d  [AGH] constructed an oracle C such that 
IPc (and actually A M ( t ( n ) )  for any unbounded, 
polynomial time computable t (n) )  did not contain 
PHC. Comparing this with the inclusion AMC C 
II?‘, true under every oracle C ,  we see that at least 
in a relativized world, more interaction may achieve 
more. 

But then, Fortnow and Sipser [FS] came up with 
an oracle D such that IPD 2 coNPD. So, more 
interaction did not seem to suffice to  conquer coNP. 

Perhaps more provers could help. Interactive 
proofs with multiple provers have been introduced 
by Ben-Or, Goldwasser, Kilian, and Wigderson 
[BGKW]. In this model, several provers interact with 
a verifier. The provers are separated and have no 
knowledge of the interaction of the verifier with other 
provers. Formally, each verifier is a (determinis 
tic) function which, when applied to the information 
available to the prover at a given time, outputs that 
prover’s next move. As before, the verifier is a polyno- 
mial time bounded randomizing Turing machine. For 
every input string, the acceptance probability must 
be bounded away from 1/2; i.e. either at least 2/3 for 
honest provers, or at most 1/3 for arbitrary provers. 
The set of languages thus recognized is denoted by 
M I P ,  a further extension of the concept of what is 
“efficiently provable”. 

Only a polynomial number of provers can inter- 
act with the verifier. [BGKW] show that actually, 
two provers always suffice. Fortnow, Rompel, and 
Sipser [FRS] observe that M I P  E N E X P T I M E :  
guess the strategies of the provers (i.e. the func- 
tions describing them; these are exponentially long 
tables), and check for all possible sequences of coin 
tosses of the verifier. (Here, N E X P T I M E  = 
Uk2l NTIME(2”* 1.1 

Can multiple provers really accomplish more than 
a single prover? In a sense they can. [BGKW] show 
that in this model, all languages in N P  have zero 
knowledge proofs, a statement that is false in the sin- 
gle prover model, unless the polynomial time hierar- 
chy collapses (Fortnow [Fol]). 

But can multiple provers prove membership in a 
coNP-complete language? [ F E ]  observe that the 
oracle D of Fortnow and Sipser, separating coNP 
from IP, actually does the same for M I P :  M I P D  2 
coNPD. 

After this separation, it took considerable courage 
for anyone to even try an interactive proof for as hard 
a function as the permanent, which, since last sum- 
mer, has been known to be at least as hard as the 
polynomial time hierarchy (Toda [To]). 

The person who mustered this courage was Noam 
Nisan. He surprised a few friends with a November 
27, 1989 e-mail announcement that the permanent 
had multi-prover interactive proofs. 
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7 The cat is out of the bag 
Nisan’s result supported the view that the some- 
what esoteric model of multiple provers is, not un- 
expectedly, vastly more powerful than single provers. 
But there was a more subtle message in this: a 
method was there that d i d  not relativize, that beat 
the Fortnow-Sipser oracle. To those familiar with the 
fact that the oracle D, separating coNP from M I P ,  
was the very oracle originally constructed to separate 
coNP from I P ,  the message was even more striking: 
maybe the permanent has a single prover protocol. 

Owing to Lance Fortnow’s insistent inquiry, this 
“maybe” turned into the LFKN protocol in Chicago 
on December 11 and was announced on e-mail two 
days later. Skepticism about the relevance of multi- 
ple provers gave way to great excitement: overnight, 
I F  became known to be enormously more powerful 
than previously suspected. Why then, would # P  be 
the limit? Why couldn’t I P  actually hit the roof, 
PSPACE ? 

I don’t know how many people began feverishly 
working on this problem with the keen sense that 
there would be just one winner: the one who first 
announces the (hopeful) result on e-mail. That an- 
nouncement would instantly kill all the competition. 

There are indications that a dozen may be a mod- 
est underestimate. Of the losers of the race, only 
those who achieved worthwhile byproducts revealed 
themselves publicly. 

A more modest question to consider was to prove 
that I P  = coIP. A more ambitious question: can 
one reduce the LFKN protocol to bounded rounds 
(and thus, collapse the polynomial time hierarchy to 
A M  = C[ = n[)? We should stress that the LFKN 
protocol is the first one in the literature which seems 
i o  require an un.bounded number of rounds. 

Similar questions regarding multiple provers also 
became the targets of renewed attacks. 

8 Arithmetization of Boolean 
formulas 

It was immediately clear that Valiant’s theorem was 
not required for the proof that I P  2 P # p .  A sim- 
ple arithmetization of Boolean formulas allows one to 
adapt the LFKN protocol directly to verify the num- 
ber of satisfying assignments. 

Let c p ( z 1 , .  . . , zk) be a Boolean formula. We may 
assume it only involves ANDs and NEGATIONS (no 

ORs). We assign a polynomial @(cl,. . . , zk) to cp  in- 
ductively. We use the same symbols xi to denote the 
arithmetic variables= the Boolean variables. We set 
( l c p )  = 1 - @ and c p  h 11, = @. $. I t  is then clear that 
on any (0,l)-substitution of the variables, the Boolean 
value of c p  will agree with the arithmetic value of @. 
Hence, the number of satisfying assignments of ’p is 

. . *  @ ( * l , . . . , Z k ) .  (2) 
r l € t O , l )  r r € t O , l )  

We note that the degree of the polynomial @ is not 
greater than the length of the formula c p .  It is now 
easy to  adapt LFKN to verifying the expression (2). 
Indeed, let 

f i ( ~ 1 , .  . * , z i )  = f i + l ( z l , .  . * i ~ , O ) + f i + 1 ( 2 1 ,  .. . , t i ,  I), 
(4) 

and fo is the value of (2). Merlin states fo and the co- 
efficients of the low degree polynomial f l ( z 1 ) ;  Arthur 
checks the consistency criterion (4) for i = 0 and se- 
lects a random number r 1  to be substituted for $1.  

In the general step, Merlin states the coefficients of 
the polynomial f i + l ( q , .  . . , r i ,  q + l )  in the variable 
x i + l  where T I ,  . . . , ri are random numbers previously 
selected by Arthur. Arthur checks the consistency 
(eqn. (4)) of Merlin’s claim against the previously 
stated value of f i ( q ,  . . . , ri )  and selects the next ran- 
dom number rj+l. The protocol ends when Arthur di- 
rectly checks the value of f k ( r 1 , .  . . , rk). If the length 
of c p  is n then the probability that Merlin could get 
away with a lie is less than n k / N  assuming the ri are 
selected from a pool of N numbers. 

This completes the proof, without using perma- 
nents, of the result I P  2 P#‘. An offshoot of these 
ideas is a new characterization of # P  via certain 
straight line programs of polynomials, with conse- 
quences not related to interactive proofs. 

A positive polynomial program with binary substitu- 
tions (PPPBS) is a sequence ( P I , .  . . ,pm) of instruc- 
tions such that for every k ,  one of the following holds: 

(a) pk is O or 1 (constant polynomial); 
(b) pk = zi or pk = 1 - zi for some i 5 k;  
(c) pk = p i  + p j  for some i , j  < k ;  
(d) pk = pipj  where i + j < k (relarded 

multiplication) 
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(e) is obtained from pj by substituting the proof is an Arthur-Merlin protocol to verify the 
0 or 1 for one of its variables ( j  < k) truth of a quantified Boolean formula (QBF). 
(binary substitution). Shamir's basic approach to  arithmetizing a 

The program defines a sequence (Ej) of polynomials 
in several variables. The last of these polynomials, 
Fm, is said to be computed by the given PPPBS. 

Let PI, P2,. . . be a sequence of PPPBS's. We call 
such a sequence uniform if a polynomial time Turing 
machine, upon input l", computes the instruction 
set P,. We also use P,, to denote the polynomial 
computed by P,. We assume that P,, depends on the 
variables 21, . . . , x, only. 

With this notation, the following characterization 
of # P  holds [BaF]: 

A function f : {0,1}* + {0,1,2, .  ..} belongs to 
# P  if and only if there exists a uniform sequence 
{P,} of PPPBS's such that for every n and every 
ai E (0, I}, 

f (a1 . . . a,) = P,(a1,. . . , an). 

A mod 2 randomized version of this result yields a 
characterization of the complexity class BP.$.P; and 
a representation of similar nature exists for the levels 
of the polynomial time hierarchy. As a consequence, 
a somewhat simplified version of Toda's proof that 
P # p  2 P H  can be given in the context of polynomial 
straight line programs [BaF]. 

These methods were insufficient to overcome the 
difficulty arising from the exponential growth of the 
degree of polynomials involved when trying to arith- 
metize quantified Boolean formulas with unbounded 
quantifier alternations. 

9 The game is over 
The date was December 26. Christmas just ended, it 
was the fourt,h day of Hanukkah. A terse phrase was 
flashing from the screen. 

From: shamir%wisdom.weizmann.ac.il(OCUNYVM.CU 
Subject : IP=PSPACE 

To those in Chicago, it was another reminder of 
how small the globe has shrunk. 

It was Adi Shamir, 6000 miles and 8 time zones 
away, who found the clever trick to remove the ob- 
stacle of rapidly growing degrees. 

Invoking the classical PSPACE-completeness re- 
sult of Stockmeyer and hleyer [SM], what we need for 

QBF is to replace, inductively, (3x1,. . . , z,)cp by 

is a partially quantified Boolean formula, and cp is its 
arithmetization. (The base step is an arithmetization 
of a quantifier free formula; the procedure described 
in the previous section will be adequate, although it 
differs slightly from Shamir's.) While it is clear that 
for a fully quantified Boolean formula cp ,  the value @ 
will be zero iff c p  is false (and positive otherwise), the 
main difficulty is that the intermediate polynomials 
may have exponentially large degree: each universal 
quantifier doubles the degree. 

Shamir thus first modifies the QBF such that no 
variable will survive more than two universal quan- 
tifiers. Immediately to the right of each occur- 
rence of a universal quantifier (Vzi), he inserts a se- 
quence of existential quantifiers serving to rename 
the variables quantified to the left of (Vxi). Working 
from left to right, suppose we have already quanti- 
fied, but not yet renamed the variables 21,. . . , zi-1. 
Next comes (Vxi). Then we insert the sequence 
(3z',, . . . ~ : - ~ ) ( x l  = z i ) .  . . (xi-l = and re- 
place each later occurrence of x, by x; ( j  < i). 
Then we proceed to the next universal quantifier. (In 
the next round, the variables to be renamed will of 
course include the new xi.) This modified quanti- 
fied Boolean formula 'p' is clearly equivalent to the 
original cp and its length is bounded by the square 
of the length of c p .  The arithmetization of cp' goes 
from right to left exactly as described before, with 
the added rule that the subformula (z i  = z j ) $  is re- 
placed by the polynomial (z iz j  + (1 - zj)(l - xj))&. 
Again, @' = 0 iff cp is false; and each intermediate 
polynomial has degree O(n) ,  where n is the length of 
cp.  

The only remaining obstacle to applying the mod- 
ified LFKN protocol, as described in the previous 
section, is that the numbers involved may blow up. 
Clearly, there is a 22" upper bound on the value of 
$ = y. Consequently (assuming n > 5), cp is true 
iff there exists a prime p < 2" such that $ 0 
(mod p ) .  Merlin should start by announcing p along 
with a primality certificate, and continue according to 
the modified LFKN protocol over the field of order p. 

Curiously, this protocol is public coin, thus it di- 
rectly proves that AM(po1y) = P S P A C E .  This im- 
plies AM(po1y) = I P  without requiring the hashing 
technique employed in [GS]. 

E,, ,..., +~€{0,1} @, and (VXi)cp by rIZ,€(O,l} @, "_hey9 
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10 Program verification 

Suppose someone presents a very complex program 
that is claimed to compute the permanent modulo p 
where p is part of the input. How can we verify this? 

First of all, given a matrix A, we can verify the 
value of perA, computed by the program, using the 
LFKN protocol with the program itself playing Mer- 
lin’s role. (To compute the polynomial perD(t), one 
uses the program to compute perD(i), i = 0,. . . , T I ,  

and interpolates.) This is an example of “instance 
checking”, in the sense of Blum and Kannan [BK]. 

The next step is to test the program on ne random 
input matrices such as to obtain statistical evidence 
that the program works correctly on a 2 1 - n-2 
fraction of the inputs. 

Finally, one can modify the program to become 
self-correctang in the sense of Blum, Luby, Rubinfeld 
[BLR]: the new, randomizing program will be correct 
on every input with probability > 1 - 2-”. This was 
discovered by Lipton [Li], following ideas of Beaver 
and Feigenbaum [BeF], and played a material role 
in guiding Nisan’s approach [Nil. The transforma- 
tion is very simple. Instead of evaluating the perma- 
nent of the input matrix A, we compute per(A+ iB), 
i = 1,. . . , n -t 1, where B is a random matrix. From 
this we interpolate the polynomial per(A + z B ) ,  and 
set z = 0 to obtain a value for perA. If indeed the 
program failed on at most an n-2 fraction of the in- 
puts, then repeating this procedure IC times and tak- 
ing a majority answer for perA, that answer will have 
probability > 1 - 2-‘“ to be correct on A. 

Shamir’s protocol can be used to obtain the anal- 
ogous results for instance checking, verification, and 
self-correction of PSPAGE-complete programs. A 
byproduct of the M I P  = N E X P T I M E  result to be 
described in the next section is that the same holds 
for E X P T I M  E-complete languages [BaFL]. 

The only nontrivial previously known example of 
instance checking was graph isomorphism [BK], us- 
ing the [GMW] interactive nonisomorphism protocol. 
Instance checking for NP-complete languages is an 
open question. These questions are closely related to 
the power of the prover(s) in interactive protocols, to 
be discussed in Section 12 (cf. [BaFL]). 

11 Multiple provers: “efficient 
proofs” for N E X P T I M E  

The LFKN announcement prompted immediate 
progress in the multiprover model as well. Jin-yi Cai 
announced on e-mail on December 28,1989, that mul- 
tiple provers can implement the LFKN protocol in a 
single round. He added at the end of his paper that he 
had just learned about Shamir’s Dec. 26 mailing and 
that his proof extended to the P S P A C E  protocol as 
well. 

The actual power of bounded round multi-prover 
protocols is still open, but without the restriction on 
the number of rounds the answer is known. Again, 
the easy upper bound turns out to be tight: M I P  = 
N E X P T I M E ,  quite an enormous complexity class 
for what might still be considered “efficiently prov- 
able”. The proof of this result is more complex than 
the previous ones; it wasn’t until Jan. 17, 1990, that 
the twenty-page manuscript hit the network. 

Here I’ll try to give a brief summary of the ideas. 
There will be two provers, and the protocol will run 
in many independent phases. If the provers wanted 
to cheat, they would have a fair chance ( n - c )  of be- 
ing caught in any particular phase. So their chance 
of getting away after ne+’ phases would be exponen- 
tially small. 

In each phase, all questions are directed to Prover 
1, except the last one which is randomly selected by 
the Verifier from all the 5 nc questions he asked 
Prover 1. If Prover 2 gives a different answer, the 
provers lose. So the strategy of Prover 2 can be 
thought of as an oracle (an answer to all possible 
questions), and Prover 1 must represent the same or- 
acle if he doesn’t want to give a fair chance to being 
caught. 

We can therefore think of the protocol as a single- 
prover protocol where the Prover is a fixed (but un- 
reliable) oracle. What matters is that his answers do 
not depend on the Verifier’s previous questions. 

Following Simon [Si], 
Peterson - Reif [PR], Orponen [Or] we first derive 
the N E X P T I M E  version of the Cook-Levin NP-  
completeness theorem. For every input 2, we obtain 
a 3-CNF formula Qz with an exponential number of 
variables X ( i )  and an exponential number of clauses 
Ci (1 5 i 5 2.“) such that z E L iff Qz is satisfi- 
able. Moreover, the expression Cj is polynomial time 
computable from i. 

The basic idea is that the Prover-oracle should set 
his mind on a satisfying substitution A for the vari- 

Let L E N E X P T I M E .  
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ables X(i)  and we should somehow verify that A in- 
deed satisfies @,. Of course we cannot check all the 
clauses. 

First of all we turn the polynomial time compu- 
tation of the relation “the clause Ci is t l X ( b 1 )  v 
tzX(b2) V t3X(b3)’’ (the ti are 0 or 1,  expressing the 
presence or absence of negation in front of X(bi)) into 
3-CNF satisfiability via Cook-Levin, i.e. this relation 
holds if and only if ( ~ P z ) ( p x ( t . , ~ , t , b l , ~ 2 , ~ ) .  We call 
z a witness of this circumstance. (Here, j denotes the 
string of digits of the integer j ,  prefixedLy an appro- 
priate number of zeros. Such digits serve as Boolean 
variables and will subsequently turn into arithmetic 
variables. We use t to denote the string t l t2t3. )  

Using the arithmetization described in Section 8, 
we can thus cre- 
ate a polynomial F,(z,i, t,bl,b2,L., V I ,  212,213) which 
is nonzero precisely if z is a witness that C; has the 
form described in the preceding paragraph, and the 
substitution X(bi) = wi (i = 1,2,3) does not satisfy 
Ci. An arithmetic expression for F, can be computed 
from 2 in polynomial time. 

Let now G, be the function obtained from F, by 
substituting the values A(b;) for w;; and let H,  = 
CG:, where the summation extends over all (0,l)- 
strings z , i , t , b l , b 2 , b  of appropriate length. Let 
moreover J ,  = H, + C ( A ( i ) ( l  - A(i)))’, where the 
summation extends over all oracle queries i (1 5 i 5 
n C ) .  It is now clear that J, = 0 if and only if all val- 
ues taken by A are ( O , l ) ,  and A satisfies ax. (The 
terms added last guard against one possible cheating: 
that the values A(i) may not be Boolean.) 

This completes the arithmetization of the question 
2 E L .  In order for the “low degree polynomials” 
technique to apply, we have to turn A into a low de- 
gree polynomial. Currently, A is a Boolean function 
defined over (0 , l )”  where m = ne. There is a unique 
way to extend any Boolean function to a multilinear 
function. We thus extend A to a multilinear function 
A : Im + Z where I = {O, l , . .  . , N  - 1) for some 
large value N .  If now the oracle stores this multi- 
linear function, the LFKN protocol (as modified in 
Section 8) will work. 

One way still remains for the Prover-oracle to 
cheat: he may store a very complex function, not 
even remotely multilinear, as A. In a separate proto- 
col, of interest in its own right, we test multilinearity 
of the oracle A.  The test will certainly accept if A 
is multilinear, and very likely reject, if there is no 
multilinear function g such that A and g agree on a 
> (1 - m-‘ ) portion of their domain I”. 

The multilinearity test will randomly select a poly- 
nomial number of lines ! in each coordinate direc- 
tion in Im, and select a polynomial number of sam- 
ple points on each e,  to determine whether or not 
A restricted to the sample points on ! form a linear 
function. 

We need some more notation. Let I be as before. 
We call a function A : Im + Q 6-approximately mul- 
tilinear if it agrees with a multilinear function on a 
(1 - E )  fraction of its domain. Let 0 < e, 6 < ( l O n ~ ) - ~ .  
We call a line ! in a coordinate direction &-wrong 
with respect to A if the restriction of A to is not 
&approximately linear. 

The correctness of the multilinearity test rests on 
the following result [BaFL]: 

Assume A : I” -+ Q is a function such that the 
proportion of &-wrong lines in every coordinate direc- 
tion is < E .  Then A is A-approximately multilinear, 
where A = 3m2(c + 6 + l/N). 

The proof of this result uses combinatorial tech- 
niques including simple eigenvalue calculation to es- 
timate the expansion rate of a graph. 

12 The power of the prover(s) 
The LFKN result shows that a #P-powerful (hon- 
est) prover is sufficient for an interactive proof of # P  
functions. It is an open question whether or not mem- 
bership in coNP-complete languages can be proven 
with a prover in the polynomial time hierarchy. 

The fact that a PSPACE-prover suffices for all of 
IP has been known for some time (Feldman [Fe]); the 
LFKN-Shamir protocol gives an alternative proof. As 
a byproduct of the N E X P T I M E  protocol, we ob- 
tain that a pair of E X P T I M E  provers suffice for any 
language in E X P T I M E .  However, the exact prover 
power required for N E X P T I M E  is not known. 

13 Circuit reductions and 
publishable proofs 

The multiple prover model has natural applications 
to circuit reductions. Let L1 and L2 be languages. 
Nisan observed [Nil: 

If L1 has a multiple-prover interactive proof system 
with provers of power PLa and L2 has polynomial size 
circuits then L1 E MA. 

Indeed, Merlin just guesses the circuits that com- 
pute the strategy of each prover; then Arthur simu- 



lates the verifier using the circuits for provers. (As 
previously remarked, an MA-proof is “publishable” .) 

It follows that i f  E X P  has polynomial size circuits 
then E X P  = E: = IIr = MA. The same result with 
P#’ and P S P A C E  in the place of P S P A C E  follows 
from the LFKN and Shamir protocols, respectively. 

A further application concerns deterministic simu- 
lation of B P P .  We say that a machine M weakly 
computes the language L if it computes L for in- 
finitely many input lengths. We say that L admits 
weak subexponential simulations if for every 6 > 0 
there exists an exp( ne)-time bounded Turing machine 
weakly computing L.  Combining the ideas just de- 
scribed with previous results of Nisan and Wigderson 
[NW], we obtain [BaFNW]: 

BPP admits weak subexponential simulations un- 
less E X P T I M E  = M A  = E; c Plpoly. 

14 Space bounded interactive 
proofs 

While public coins are as powerful as private coins in 
polynomial time bounded interactive protocols [GS], 
this no longer seems to be the case if a space bound 
is added. Anne Condon was the first to study simul- 
taneous time and space bounds for interactive proofs 
[CO] and proved, among other things, that with pri- 
vate coins, a polynomial time, log-space verifier can 
simulate all of I P ,  while his public coin counterpart 
will be restricted to recognizing languages in P (see 
also [Fo~]) .  

In a most recent development (March 1990), a weak 
converse of the public coin result was derived by Fort- 
now and Lund [FL]: all languages in P are recognized 
by a polynomial time, O(log2 n/ log log n)-space ver- 
ifier. Their proof builds on the arithmetization tech- 
nique and the modified LFKN protocol (Section 8). 

Although not related to the LFKN breakthrough, 
let me briefly mention some other results on space- 
bounded verifiers. 

Interactive proofs with private coins and no time 
bound become immensely powerful even if the ver- 
ifier is restricted to be a 2-way probabilistic finite 
automaton (2PFA). The are two different rejection 
rules to consider in this context. We always insist 
that if 2 E L then the verifier should accept 2 with 
probability > 2/3; but if z L,  we may either re- 
quire that the verifier reject with probability > 2/3 
(strong model), or just that it accepts with proba- 
bility < 1/3. Condon and Lipton [CL] show that 

in the weak model, all recursively enumerable lan- 
guages are recognized by a 2PFA verifier. In the 
strong model, the languages recognized by a 2PFA 
verifier are within A T I M  E(2’O‘”’) [CL] and include 
E = DTIME(2°(“)) (Dwork, Stockmeyer [DS]). 

Multiple provers add a great deal to the power of 
the strong model. Two-prover (and multi-prover) in- 
teractive proof systems with a 2PFA verifier, which 
halt on every input with probability 1, recognize pre- 
cisely the recursive languages (Feige, Shamir [FeS], 
Condon, Lipton [CL]). 

15 Conclusion 
New simulation techniques, based on low degree poly- 
nomials, have recently been introduced in structural 
complexity theory. The first consequences have been 
startling for their simplicity and unexpectedness. 
While most of the new results concern various mod- 
els of interactive proofs, some implications to more 
classical complexity classes as well as to other areas 
such as program verification have already been estab- 
lished. 

A striking feature of the new techniques is that 
they do not relativize. This fact seems to bring the 
predictive value of relativized separation results seri- 
ously in question and may carry the promise of new 
ways to attack previously intractable simulation and 
separation problems such as the long standing open 
question of BPP vs. NEXPTIME ([HIS], [He]). 

16 Some problems of e-mail 
ethics 

Mathematicians have always been eager to commu- 
nicate with one another (for no one else would listen 
or appreciate the subtleties of their thoughts), but 
this communication has for times immemorial been 
marred by rivalry, treachery, and self-protection bor- 
dering paranoia. More important than the idea itself 
has been the ego of the discoverer. Many a mathe- 
matician’s life was crushed by the real or imagined 
theft of a treasured thought. And it is often poster- 
ity, rather than the actual rival, that does the rudest 
injustice. 

Cardano tricked the formula for the third degree 
equation out of secretive Tartaglia on oath to keep it 
secret, yet published it 6 years later (1545). Although 
he frankly credited Tartaglia [Gi], the formula came 
to be called Cardano’s nonetheless. 
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JBnos Bolyai discovered the hyperbolic geometry 
around 1823, at the age of 21, and is likely to have 
completed its description by 1825. The work did 
not appear until seven years later, and then as an 
Appendix (see [Bo]) to a text by his father, Farkas 
Bolyai, himself a geometer and a professor at the Re- 
formed College of Maros-VLBrhelg in Transylvania. 
Farkas sent a copy of the Appendix to  his old friend 
from college, Carl Friedrich Gauss, just to learn that 
“all of the paper’s contents ... coincide almost com- 
pletely with my own reflections which I partly carried 
out thirty to forty-five years ago. ... I had intended to 
write it down little by little ...”( 1832). And, although 
in a letter to someone else Gauss wrote that “this 
young geometer Bolyai is a genius of first order”, he 
never accorded him any public recognition. Bolyai’s 
life was  shattered. His geometry is most often being 
referred to as Lobachevsky’s, after the simultaneous 
and independent discoverer, who was later (on Gauss’ 
suggestion) elected to the Gottingen Royal Society 
(and whom Bolyai also suspected of plagiarism - an 
unfounded charge; cf. [Leh]). 

Mathematicians invented all sorts of devices to fend 
against such misfortune. Cipher was a favorite. An- 
other method, used by Archimedes, was reminiscent 
of zero knowledge protocols. Out of Syracuse, he 
used to entertain his colleagues in Alexandria with 
lists of his recent discoveries, stated at first without 
proof. But just to forestall statements that “we had 
discovered all these ourselves”, he inserted an occa- 
sional false statement or a practically insoluble prob- 
lem among them [vdW]. The best known of these 
traps, remarkable for its computational complexity, 
was stated in a letter to Eratosthenes of Cyrene. It 
required to count “the cattle of the sun”, based on 
a system of seven linear equations in eight variables 
and two quadratic conditions, all with very small co- 
efficients. The system reduces to the Pel1 equation 

t2  - 4 ,729 ,494~’  = 1 ,  

of which the smallest positive solution has over 
206,500 digits [Ar]. 

The French Academy of the 19th century created 
the institution of depositing “secret packets” with the 
Academy, allowing members later to resolve disputes 
over priority without forcing them to come out in the 
open too early. The protection provided by the secret 
packets clearly enhanced the privileged position of the 
Academy. - But publication in an obscure place was 

almost as good as a secret packet. The overconfi- 
dent gentlemen of Paris (Cauchy in the first place) 
were dumfounded when they found out on May 24, 
1847 that all their recent brilliant advances and am- 
bitious claims (whether packeted or not) regarding 
Fermat’s Last Theorem had been greatly surpassed 
and largely devastated in an 1844 memoir by E. E. 
Kummer, published in a Festschrift dedicated by the 
University of Breslau4 to the anniversary of the Uni- 
versity of Konigsberg5 [Ed]. 

One may ask whether there are any norms or moral 
principles to follow in the area of scientific commu- 
nication, but the answer would probably just be vol- 
umes of merry or bitter stories. 

Clearly, the speed of the medium is of prime im- 
portance. The fact that the records of the French 
Academy were published instantly gave the members 
some advantage over a German college teacher (which 
they were unable to exploit). At the same time, the 
members of the Academy seemed to live in a perpet- 
ual competition. 

How is this all relevant to the effect of e-mail on 
the way the Theory of Computing is done? 

During the past twenty years, the Theory of Com- 
puting has become one of the most intensely compet- 
itive areas of mathematics. This is plainly demon- 
strated by the FedEx bill this community generates 
at FOCS/STOC deadlines. The publicity gained by 
those who get the privilege of instant FOCS/STOC 
publication puts them by two years ahead of the com- 
petition, and in spite of all the worldwide democracy 
offered by the community, this advantage is extremely 
difficult to compensate for from outside. 

Here are some of the concerns and dilemmas raised 
by the year-ends story of quick proofs via e-mail in- 
teraction. The nature of most problems is as old as 
science. It is the dimension that is new and may call 
for rethinking of some ideals. 

The ideal (?) condition for  scientific inquiry. 
E-mail is capable of creating an ultracompetitive 
atmosphere on a much grander scale than any 
medium before. Full documents are being trans- 
ferred at no cost to any number of addresses 
around the globe in minutes or hours at worst. 
No labels needed, no overhead, just add one more 
alias to your .mailrc file and hit a key. - Those 
favoring quiet work, pull the plug. 

Who receives the privileged information? 

Wrodaw. 
5Kaliningrad. 3 T i r ~  MureS. 
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Such a mailing may give unprecedented informa- 
tion advantage to a well chosen, sizable, and con- 
sequently extremely powerful elite group. The 
group of recipients, as the events described ex- 
emplify, may be fully capable of making rapid 
advances before others would even find out that 
something was happening. Although such elite 
groups belong to the very nature of the hierarchy 
of scientific research (and the elites in question 
are among the most tolerant and open bunches 
in history and, I believe, even among current 
scientific communities), their sheer intellectual 
force combined with the information advantage 
makes them look from outside like an impenetra- 
ble fortress. Among those who did not receive 
any of the mailings were Toda, Razborov, all of 
East Europe, ... 

Age of global communication: the a g e  of a global 
intellectual supermarket? 

Hungary has been accessible by e-mail since 
March 1990 (3  months too late for this compe- 
tition), although for short messages only. We 
have seen e-mail from India, and even from the 
vicinity of Tienamnen square. 

This seems like a welcome development. But 
will the diversity of thought that now exists be 
preserved in the era when intellectual fashions 
are dictated by the strongest? Shall we see 
more Levins and Razborovs come out of the Kol- 
mogorov school, bringing in so prominently dif- 
ferent, yet profoundly relevant ideas? 

Age discrimination? 

It is surely coincidental that no more than two 
of the recipients were age 40 or over. Of course, 
kindhearted students and postdocs on the mail- 
ing list are likely to have passed on the informa- 
tion to some of their (former) advisors. - Teach- 
ers, beware: if your life (or grant) depends on 
timely information, you may be a t  the mercy of 
your (former) students. 

Does an e-mail announcement to a substantial 
portion of the immediately agected experts count 
as publication? Should one refer to them the way 
one does to tech reports? 
Dates and exact texts are documented with 

it is impossible to subscribe for such announce- 
ments, even though some of them may have wide 
circulation. 

e When events proceed at such pace, one idea is 
built upon another we11 before the other had the 
slightest chance of being published, whom will 
posterity credit wiih authorship of the final prod- 
uct? 

Some believe that those who let the cat out of 
the bag prematurely can only blame themselves. 
Maybe so. After all, their move did not only 
serve the noble purpose of promoting the com- 
mon good by sharing their joy over the beauty 
of the new ideas - they also instantly killed the 
unknown competitor, for this is an unconcealed 
and recognized purpose of such large mailings. 

But one of the remarkable features of our story 
is how relatively small each step was along the 
way to the striking final result. So, gentle reader, 
also as part of posterity, how will you refer to the 
I P  = PSPACE theorem ? 

The race told in our story was triggered by the most 
gentle giant in the field [Nil. Clearly, all he meant was 
to share a new and surprising insight, and he did so 
by sending separate communications to a presumably 
modest number of colleagues. I feel fortunate to have 
been one of the addresses, and I hope he’ll keep me 
on his mailing list. 

Nisan’s mailing was not meant to dispose of com- 
petitors; it seems likely (although it cannot be said 
for certain), that he had no competition at the time. 
He could have continued quietly and conceivably 
achieved much of what has subsequently been done 
by a series of authors. 

Instead, he chose to invite an undisclosed list of 
researchers to join. But then, those joining in had no 
option anymore but to compete and announce. 

Here is the dilemma. If the initiator tells his ideas 
to his immediate colleagues only, others won’t even 
have a chance to join in. But if a critical mass of 
recipients is believed to have been reached, the race 
is called automatically. 

E-mail is there, for better or for worse. There is 
no way to  slow it down. The question is, what to 
mail, whom to send it to. Maybe the longer the list, 
the better. Science is likely to  benefit from wider 

greater accuracy than would be with many 
journals6 ([Nil, [LFKN], [Sh], [Ca], [BaFL]) -yet 

communication. 

journals, including Advances in Mathematics and Advances in 
Applied Mathematics, do not print the dates of submission. 6With blatant disregard for scholarly documentation, some 
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But even at this breathtaking pace, one might take 
a minute’s break once in a while, and think hard, how 
to be considerate. A tall order perhaps, but it might 
be worth a try. 

Acknowledgments. I am grateful to Lance Fortnow 
for his penetrating insights and an exciting collab- 
ration on the subject of this survey. I owe particular 
gratitude to Gene Luks for his comments on the fable; 
and to Noam Nisan, Adi Shamir, Jin-yi Cai, and all 
the others who have kindly kept me on their mailing 
lists. 

17 Epilogue 
1989 was an extraordinary year. A curtain ascended7, 
a wall went down, and the dominoes fell in rapid suc- 
cession. Arguably, the information revolution con- 
tributed to a real revolution. 
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