COS513: VARIATIONAL INFERENCE CONTINUED

JIA DENG AND MATT HOFFMAN

We want to infer the posterior distribution of our hidden variables z;.,,
conditioned on our observed variables x;.,. Last time we saw that we can
define a variational distribution ¢ over our hidden parameters z, and that
no matter what we choose for ¢ the following lower bound holds (due to
Jensen’s inequality):

logp(z) = log / p(2)p(l2)dz

_ o [PEPEI2)(E)
B lg/ q(2) ¢

> / o(2) log p(z, 2)dz — / 4(2) log q(2)dz
(1) = Eyllogp(z, z)] — E,[log q(2)]

So we can lower bound the log-likelihood of the observed data under
our model by choosing some variational distribution ¢. It turns out that
tightening this lower bound (i.e. maximizing the right side of equation 1)
is equivalent to minimizing the Kullback-Leibler (KL) divergence between
q(z) and p(z|z). This can be seen easily (after a little algebra) from the
definition of KL divergence:

KL(g(2)|[p(z]z) 2 / q<Z>10gp?Z;>dZ:Eq [logpQ(Z)]

= E,[logq(z)] — E,[log p(z|7)]
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2) = Ey[logq(2)] — Eg[log p(, 2)] — Egflog p(x)]

The third term is constant with respect to ¢ (since E,[log p(z)] = log p(z)),
and the first two terms are just the right side of equation 1 negated, so min-
imizing KL(¢(z)||p(z|z)) with respect to g is equivalent to maximizing the
lower bound in equation 1 with respect to q.

We want to choose a form for ¢ that is reasonably powerful (so that we

can get a reasonable approximation to p(z|z)), but also easy to work with
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(so that we can actually compute the expectations in equation 1). A popular
approach is to use a fully factorized form for ¢:

3) q(z|v) = q(z1lm)q(zalva) - - q(zmlvm).

If ¢(z;|v;) is in the exponential family, then this becomes

4) q(zi|vi) = h(z) exp{v] 2z — a(vi)}.

This form will be useful later, especially if ¢(z;) is of the same form as
p(zi|z_i, x).

We want to maximize our objective function

(5) E = Eq logp(zlzma xl:n) - Eq[log Q(Zlm)]

By the chain rule, this becomes:

6) L =logp(zin) + Z E [log p(2i21:-1, T1:n)| — Egllog q(21:m)]-
i=1:m
Note that we can move the expectations inside of the summations because
we have chosen ¢ to be fully factorized.
We will do coordinate ascent over each v; on the objective function. We
can put whichever z; we’re working on at the end of the sum in equation 6
because the chain rule works regardless of order. Doing so, we define

(7 li = Eq[log p(zi]2—i, 21:n)] — Bg[log q(z:[vs)].

Since [; is the only part of £ that depends on z; (once we’ve reordered the
sum in equation 6), we only need to optimize /; when updating v;.
Assuming that q is in the exponential family, we have

i = E,[logp(zi|z_i, 21.)] — Byllog h(2;) + v zi — a(v;)]
= E,[logp(zi|2—i, 21.0)] — (Egllog h(z)] + v d'(v;) — a(ws)) .
This holds because for all exponential family distributions ¢(z;|v;) the ex-
pectation of the random variable z; is the first derivative of the log normal-

izer term a(v;).
Take the derivative of [; with respect to v;,

o; 0 0 T o
o a—ViEq log p(zilz—i, T1.n)] — =—Eg[log h(z;)] — v; a” (v).

8VZ‘
Set the above equation to zero:

®)

" - 0 0
9) v; = a" ()" (a—WEq log p(zi|z—i, T1.)] — 8_ViEq [log h(zz)]>

We assume the conditionals p(z;|z_;, x1.,) are in the exponential family.
Moreover, we assume they are in the same exponential family as ¢(z;|v;),
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that is,

(10) p(2i|Z—z’7I1:n) = h(Zz') eXP{gi(Z—z‘, $1;n)TZz' - a(gi(z—m%:n))}-
gi(2_i, x1.,) is the natural parameter to the (exponential family) posterior
distribution over z;.
Therefore,
(11)
E, log p(zil2—i, T1:)] = E, log h(zi)]+Eq [91’(277;, $1:n)TZ¢} —E, la(gi(2—i, T1m))] -
We observe two facts: (1) g; doesn’t depend on z;; (2) g; is independent
with z;. Therefore,

(12) E, [gi(2—1, 21n) 2] = By [gi(2—i, 21) "] @ (13).
It follows that
(13)
0
o Eq [log p(zil2—i, #1.)] = o B, [log h(2:)] + By [gi(z—i, 21)]" @ (v2).
Substitue above to equation 9. we have
(14) V; = Eq [gi(z—ia xl:n)T]

Thus we have obtained the update equation for each iteration—we simply
set v; to be the expectation under ¢ of the natural parameter of the posterior
distribution of z;|z_;, x1.,. (The updates do not typically have such a simple
form in a non-conjugate setting.)

It is instructive to compare these updates with Gibbs sampling. In Gibbs
sampling, we sampled from the conditional distribution p(z;|z_;, 1., ), Whereas
in mean-field variational inference we just set v; equal to the conditional
expectation of the natural parameter of p(z;|z_;, z1.,) under q. A crucial
difference is that in Gibbs sampling we set the hidden variables z; to spe-
cific values, whereas in variational inference we only consider distributions
over them.



