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We want to infer the posterior distribution of our hidden variables z1:m

conditioned on our observed variables x1:n. Last time we saw that we can
define a variational distribution q over our hidden parameters z, and that
no matter what we choose for q the following lower bound holds (due to
Jensen’s inequality):

log p(x) = log

∫
p(z)p(x|z)dz

= log

∫
p(z)p(x|z)q(z)

q(z)
dz

≥
∫
q(z) log p(x, z)dz −

∫
q(z) log q(z)dz

= Eq[log p(x, z)]− Eq[log q(z)](1)

So we can lower bound the log-likelihood of the observed data under
our model by choosing some variational distribution q. It turns out that
tightening this lower bound (i.e. maximizing the right side of equation 1)
is equivalent to minimizing the Kullback-Leibler (KL) divergence between
q(z) and p(z|x). This can be seen easily (after a little algebra) from the
definition of KL divergence:

KL(q(z)||p(z|x)) ,
∫
q(z) log

q(z)

p(z|x)
dz = Eq

[
log

q(z)

p(z|x)

]
= Eq[log q(z)]− Eq[log p(z|x)]

= Eq[log q(z)]− Eq

[
log

p(x, z)

p(x)

]
= Eq[log q(z)]− Eq[log p(x, z)]− Eq[log p(x)](2)

The third term is constant with respect to q (since Eq[log p(x)] = log p(x)),
and the first two terms are just the right side of equation 1 negated, so min-
imizing KL(q(z)||p(z|x)) with respect to q is equivalent to maximizing the
lower bound in equation 1 with respect to q.

We want to choose a form for q that is reasonably powerful (so that we
can get a reasonable approximation to p(z|x)), but also easy to work with
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(so that we can actually compute the expectations in equation 1). A popular
approach is to use a fully factorized form for q:

(3) q(z|ν) = q(z1|ν1)q(z2|ν2) . . . q(zm|νm).

If q(zi|νi) is in the exponential family, then this becomes

(4) q(zi|νi) = h(zi) exp{νT
i zi − a(νi)}.

This form will be useful later, especially if q(zi) is of the same form as
p(zi|z−i, x).

We want to maximize our objective function

(5) L = Eq log p(z1:m, x1:n)− Eq[log q(z1:m)].

By the chain rule, this becomes:

(6) L = log p(x1:n) +
∑

i=1:m

Eq[log p(zi|z1:i−1, x1:n)]− Eq[log q(z1:m)].

Note that we can move the expectations inside of the summations because
we have chosen q to be fully factorized.

We will do coordinate ascent over each νi on the objective function. We
can put whichever zi we’re working on at the end of the sum in equation 6
because the chain rule works regardless of order. Doing so, we define

(7) li = Eq[log p(zi|z−i, x1:n)]− Eq[log q(zi|νi)].

Since li is the only part of L that depends on zi (once we’ve reordered the
sum in equation 6), we only need to optimize li when updating νi.

Assuming that q is in the exponential family, we have

li = Eq [log p(zi|z−i, x1:n)]− Eq[log h(zi) + νT
i zi − a(νi)]

= Eq [log p(zi|z−i, x1:n)]−
(
Eq[log h(zi)] + νT

i a
′(νi)− a(νi)

)
.

This holds because for all exponential family distributions q(zi|νi) the ex-
pectation of the random variable zi is the first derivative of the log normal-
izer term a(νi).

Take the derivative of li with respect to νi,

(8)
∂li
∂νi

=
∂

∂νi

Eq [log p(zi|z−i, x1:n)] − ∂

∂νi

Eq[log h(zi)]− νT
i a
′′(νi).

Set the above equation to zero:

(9) νi = a′′(νi)
−1

(
∂

∂νi

Eq [log p(zi|z−i, x1:n)]− ∂

∂νi

Eq [log h(zi)]

)
We assume the conditionals p(zi|z−i, x1:n) are in the exponential family.

Moreover, we assume they are in the same exponential family as q(zi|νi),
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that is,

(10) p(zi|z−i, x1:n) = h(zi) exp{gi(z−i, x1:n)T zi − a(gi(z−i, x1:n))}.
gi(z−i, x1:n) is the natural parameter to the (exponential family) posterior
distribution over zi.

Therefore,
(11)
Eq [log p(zi|z−i, x1:n)] = Eq [log h(zi)]+Eq

[
gi(z−i, x1:n)T zi

]
−Eq [a(gi(z−i, x1:n))] .

We observe two facts: (1) gi doesn’t depend on zi; (2) gi is independent
with zi. Therefore,

(12) Eq

[
gi(z−1, x1:n)T zi

]
= Eq

[
gi(z−i, x1:n)T

]
a′(νi).

It follows that
(13)
∂

∂νi

Eq [log p(zi|z−i, x1:n)] =
∂

∂νi

Eq [log h(zi)] + Eq [gi(z−i, x1:n)]T a′′(νi).

Substitue above to equation 9. we have

(14) νi = Eq

[
gi(z−i, x1:n)T

]
Thus we have obtained the update equation for each iteration—we simply
set νi to be the expectation under q of the natural parameter of the posterior
distribution of zi|z−i, x1:n. (The updates do not typically have such a simple
form in a non-conjugate setting.)

It is instructive to compare these updates with Gibbs sampling. In Gibbs
sampling, we sampled from the conditional distribution p(zi|z−i, x1:n), whereas
in mean-field variational inference we just set νi equal to the conditional
expectation of the natural parameter of p(zi|z−i, x1:n) under q. A crucial
difference is that in Gibbs sampling we set the hidden variables zi to spe-
cific values, whereas in variational inference we only consider distributions
over them.


