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1. REVIEW OF METROPOLIS ALGORITHM

We are going to start by reviewing the Metropolis algorithm. We will
assume that the proposal transition kernel is symmetric q(x′|x) = q(x|x′).
Starting with an initial random state x(0) the procedure at time t is the fol-
lowing:

• Sample x∗ from the proposal q(x|x(t−1)).
• Accept x∗ with probabilityA(x(t−1), x∗) = min(1, p(x∗)/p(x(t−1))).

If accepted, set x(t) = x∗, otherwise set x(t) = x(t−1).

Remark 1.1. As long as q(x′|x) > 0 ∀x, x′ then pm(x(t)) → p(x) as t →
∞; here we have denoted by pm(x(t)) as the marginal probability of x(t)

obtained by running the sampling algorithm.

2. THEORETICAL ASPECTS OF MARKOV CHAINS

In general an MCMC algorithm defines a Markov chain whose unique
stationary distribution is the distribution of interest. Notice that consecutive
samples obtained in an MCMC algorithm are correlated so to get indepen-
dent samples from the distribution of interest we need to collect samples at
some lag. The main question we need to address is when such a Markov
chain is going to converge to the stationary distribution, the distribution of
interest for us. Let us now shortly present the underlying theory of Markov
chains and some convergence results.

Definition 2.1. A Markov chain is defined by an initial probability distribu-
tion p0(x) and transition probability kernels for each time step m: Tm(xm, xm+1) =
p(xm+1|xm).

Definition 2.2. A Markov chain is homogenous if Tm = T ∀m.

For now we will work with a homogenous Markov chain with a discrete
state space.

Remark 2.3. A recursion formula for the marginal probability of xm+1 is
immediate: pm+1(xm+1) =

∑
xm

p(xm+1, xm) =
∑
xm

p(xm+1|xm)pm(xm).
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Definition 2.4. A distribution p∗ is invariant (stationary) with respect to
a Markov chain if each step leaves the distribution invariant: p∗(x) =∑
x′

T (x′, x)p∗(x′).

Remark 2.5. In general a Markov chain can have 0 or more invariant distri-
bution.

Proposition 2.6. A sufficient (but not necessary) condition for a distribution
to be invariant is detailed balance: p∗(x)T (x, x′) = p∗(x′)T (x′, x).

Proof.∑
x′

p∗(x′)T (x′, x) =
∑
x′

p∗(x)T (x, x′) = p∗(x)
∑
x′

p(x′|x) = p∗(x)

�

Finally, another desirable property of Markov chains is ergodicity, in the
sense that the Markov chain converges to some invariant distribution re-
gardless of the initial distribution.

Definition 2.7. A Markov chain is said to be ergodic if for all p0(x), pm(x)→
p∗(x) as m→∞ (where p∗ does not depend on p0).

Theorem 2.8. (Neal 1993) If a homogeneous Markov chain on a finite state
space with transition probabilities T has p∗ as a stationary distribution, and

ν = min
x

{
min

x′: p∗(x′)>0

T (x, x′)

p∗(x′)

}
> 0,

then the Markov chain is ergodic.
In fact the following bound on the rate of convergence holds (for all x):

|p∗(x)− pn(x)| ≤ (1− ν)n.

3. MCMC ALGORITHMS

3.1. Overview and considerations. Our goal now is to construct homoge-
neous Markov chains with stationary distribution equal to our target distri-
bution, while minimizing the computational effort required to sample from
the stationary distribution. The computational effort comes from three main
sources:

(1) Computation to simulate each transition.
(2) Time for the distribution to converge to p∗ (this is called the “burn

in”).
(3) Number of samples needed to go from one draw of p∗ to the next

(“lag”). This is required in order to get independent samples from
the stationary distribution.
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Remark 3.1. Clearly 2 and 3 are related but lag tends to be less than burn
in. These generally need to be determined empirically.

3.2. Metropolis-Hastings algorithm. Suppose our state space hasK com-
ponents X = {X1, . . . , XK}. We consider K transition matrices B1, . . . ,
BK such that each Bk affects only Xk (and holds Xj fixed for j 6= k), and
we apply each transition in turn to go from x(t) to x(t+1).

Remark 3.2. A key fact is that if detailed balance holds for each of T1, T2,
. . .TK , then it holds for their product T1T2 . . . TK .

The algorithm works as follows. Suppose we are currently in state x(t).
Transitioning to x(t+1) involves updating each component of x(t) in turn.
The following gives the procedure to update the kth component to go from
a state x to x′:

• Draw x∗ from Bk(x, x
∗) (note that this can only change xk).

• Accept x∗ (i.e. set x′ = x∗) with some probability Ak(x, x
∗); other-

wise, reject x∗ and set x′ = x.
The acceptance probability Ak is given by

Ak(x, x
′) = min

{
1,
p(x′)Bk(x

′, x)

p(x)Bk(x, x′)

}
.

Remark 3.3. Note that since we are only interested in the ratio p(x′)/p(x),
we only need to know p up to a normalization constant. We do need to be
able to compute and sample from Bk, however.

Remark 3.4. When the Bk are symmetric, this is called the Metropolis al-
gorithm.

We only need to verify detailed balance for the transition step:

p(x)Bk(x, x
′)Ak(x, x

′) = p(x)Bk(x, x
′) min

{
1,
p(x′)Bk(x

′, x)

p(x)Bk(x, x′)

}
= min {p(x)Bk(x, x

′), p(x′)Bk(x
′, x)}

= p(x′)Bk(x
′, x) min

{
p(x)Bk(x, x

′)

p(x′)Bk(x′, x)
, 1

}
= p(x′)Bk(x

′, x)Ak(x
′, x),

as desired.

Remark 3.5. When designingBk, there is a trade-off between how big one’s
moves tend to be and how likely one is to accept each move, both of which
can affect the speed of convergence.
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3.3. Gibbs sampling. Again we are working with K components X =
{X1, . . . , XK}. At each iteration, if we are at state x, we draw the compo-
nents for the next state like this:

• x1 according to X1|x2, . . . , xK ,
• x2 according to X2|x1, x3, . . . , xK ,
• . . .
• xK according to XK |x1, . . . , xK−1.

Note that we only need to be able to compute the distribution of one
component conditioned on all the other components (in a graphical model,
this corresponds to one variable conditioned on its Markov blanket).


