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1. MOTIVATION .

We have discussed latent variable models such as mixture models, fac-
tor analysis and Bayesian exponential families. In these cases, the exact
posterior distribution of interest is easy to compute. Also, recall that we
already have discussed a general purpose algorithm for posterior inference,
theJunction Tree algorithm, which can be effectively applied to those mod-
els.

For more complex models, exact inference is not possible, because the
posterior cannot be computed. For instance, a small change in the functional
form of a conjugate prior to a non-conjugate prior, renders the posterior
computation intractable, even if the structure of the graphical model stays
the same (Figure 1).

2. APPROXIMATE POSTERIOR INFERENCE.

Consider the mixture model represented by the graphical model in Figure
2. This model is a generalized version of the Gaussian mixture model. Here
we have introduced the mixture component centers as random variables, and
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FIGURE 1. If the random variables in this model are nor-
mally distributed, we can compute posteriors analytically.
However, if the distribution ofη is not Gaussian, the poste-
rior is uncomputable.
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FIGURE 2. Mixture model with random cluster centers.

placed a prior on them. The generative process is characterized by:

µk ∼ N(0, λ) k = 1 . . .K,(1)

zn ∼Mult(π) n = 1 . . .N ,(2)

xn|zn, µ1:K ∼ N(µzn
, σ2).(3)

In the Bayesian setting, we are interested in estimating a posterior dis-
tribution of the mixture component centersµ1:K , instead of a single point
estimate. That is, our interest is the posterior distribution

p(µ1:K|x1:N ),(4)

which is not easy to compute. Let’s see why. Suppose that the parameterπ
is fixed andk = 3. In that case, the posterior of interest is

p(µ1, µ2, µ3|x1:N) =
p(µ1)p(µ2)p(µ3)

∏N

n=1 p(xn|µ1:3)
∫

µ1,µ2,µ3
p(µ1)p(µ2)p(µ3)

∏N

n=1 p(xn|µ1:3)
.(5)

The expression in the numerator can be calculated by

p(xn|µ1:3) =

3
∑

i=1

πip(xn|µi).(6)

On the other hand, the expression in the denominator can be rewritten as

p(x1:N) =

∫

µ1

∫

µ2

∫

µ3

p(µ1)p(µ2)p(µ3)

N
∏

n=1

3
∑

i=1

πip(xn|µi)(7)

which is difficult to compute due to the product of sums in the integral ar-
gument. Alternatively, we could expand the denominator by marginalizing
the mixture assignmentzn first:

p(x1:N) =
∑

z1:N

p(z1:N)

∫

µ1

∫

µ2

∫

µ3

p(µ1)p(µ2)p(µ3)

N
∏

n=1

p(xn|µzn
)(8)
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p(x1:N ) =
∑

z1:N

p(z1:N)





∫

µ1

p(µ1)
∏

{n,zn=1}

p(xn|µ1)





(9)

×





∫

µ2

p(µ2)
∏

{n,zn=2}

p(xn|µ2)









∫

µ3

p(µ3)
∏

{n,zn=3}

p(xn|µ3)



 .

Even though we can manage to compute each integral in the parenthesis,
the outter sum has3N terms. In general, we would haveKN terms, an
exponential number of terms that makes the computation infeasible. This
result suggests that performing exact inference in this model is not possible.
But we still have hope: we must find an approximate algorithm to compute
the posterior distribution of interest.

This is an example of a general rule of thumb:practical Bayesian mod-
els require approximate posterior inference.

3. SAMPLING .

In a general sampling setting, we have a target distributionp(x) which
cannot be computed. We will approximate it with a collectionof samples:

p(x) ≈
1

M

M
∑

i=1

δx(i)(x)(10)

wherex(i) are samples from the target distribution.
In the following, we will discuss two methods to obtain such samples:

rejection sampling andimportance sampling.

4. REJECTION SAMPLING .

Assume we can compute the target distributionp(x) but cannot sample
from it. However, suppose we can sample from a proposal function q(x)
defined over the same sample space. Additionally, letq be such that there
exists someC for which the following holds:

p(x) ≤ C · q(x)(11)

The rejection sampling algorithm is described in Algorithm1.
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rejection interval

acceptance interval

Cq(x)

p(x)

x(i) ∼ q(x)

FIGURE 3. Sampling fromp(x), with a proposal function
q(x). First, we samplex(i) from the proposal distribution
q(x). Second, we obtainu from a uniform in the interval
(0, 1). Lastly, we acceptx(i) if u falls in the normalized
“acceptance interval”.

Input: target distributionp(x), proposal distributionq(x)
Output: M samples fromp(x)
i = 1;
repeat

x(i) ∼ q(x);
u ∼ Unif(0, 1);

if u <
p(x(i))

Cq(x(i))
then

acceptx(i);
incrementi

end
until i = M ;

Algorithm 1: Rejection Sampling

Note that a good sampler tends to have a low scaling factorC. The bigger
C is, the larger the rejection area is.

5. IMPORTANCE SAMPLING .

The Importance sampling algorithm provides a method to compute sam-
ples from an expectation

E[f(x)] =

∫

x

f(x)p(x)dx.(12)

Suppose we can computep(x) and we can sample from a proposal dis-
tribution q(x), which has the same support asp(x). The expectation in
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Equation 12 can be formulated as:

E[f(x)] =

∫

x

f(x)
p(x)q(x)

q(x)
dx(13)

≈
1

M

∑

i

f(x(i))w(x(i))(14)

wherex(i) ∼ q(x) andw(x(i)) = p(x(i))

q(x(i))
is the sample-specific weight.

The criteria to assess if a proposal distributionq is appropiately chosen
can be:

• It is easy to sample fromq.
• q is close top.

A nice feature of the importance sampling algorithm is that samples can
be reused with different target distributionsp. However, the downside is
that it performs poorly when the sample space is high dimensional.

Finally, note that the two sampling methods described aboveassume that
p(x) can be computed. In practice, it is not always possible to calculatep(x)
exactly. Some alternative sampling methods that circumvent that restriction
are provided by the MCMC techniques described in the following.

6. MARKOV CHAIN MONTE CARLO (MCMC).

The MCMC sampling methods scale well with the dimensionality. In
such sampling techniques, we only need to know the target distributionp(x)
up to a constant:

p(x) = p̃(x)/Z ←− normalization factor(15)

During the MCMC sampling procedure, we are going to draw a sequence
of statesx(t), wherex is a configuration of our set of random variables. The
proposal distributionq depends on the previous statex(t), which is denoted
by q(x|x(t)).

The overall sampling procedure is composed by two steps:

• Draw a samplex∗ from the proposal
• “Accept” according to a possibly random criterion

6.1. Metropolis algorithm. The Metropolis algorithm was introduced in
1953. The procedure assumes a symmetric proposalq(x1|x2) = q(x2|x1).
A candidate samplex∗ is drawn fromq, and accepted with probability

A
(

x∗, x(t)
)

= min

(

1,
p(x∗)

p(x(t))

)

= min

(

1,
p̃(x∗)

p̃(x(t))

)

.(16)
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Notice that since we only need to compute the ratiop(x∗)

p(x(t))
, we can work

directly with p̃ instead. Thus, we do not need to obtain the normalization
constantZ since it will be canceled out.

If the candidate is accepted, we setx(t+1) = x∗, otherwise we set the new
state tox(t+1) = x(t).

An important property of the Metropolis algorithm is that aslong as
q(x1|x2) > 0 for all (x1, x2), the empirical distributionpM(x(t)) converges
to p(x) ast→∞ andM →∞.

MCMC algorithms define a Markov chain onX whose stationary distri-
bution isp(x).

The general procedure to obtain independent samples fromp is
• Run the Markov chain for a long time.
• Collect samples at some time lag.


