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MIXTURE MODELS

Mixture models are a type of latent variable models. They can be used for
expressing complicated densities that cannot be described by an exponential
family distribution, or to cluster data points.

Beware that fitting a latent variable model will always find structure,
whether there is it or not. The decision on the number of clusters is of
the realm of model selection, is problem dependent and requires external
validation criteria.

There is a connection between mixture models and kernel density esti-
mation. The latter can be seen as a mixture model, with as many distribu-
tions as data points. In fact kernel density estimation can be a good starting
method to have an idea of the shape of the distribution of the data.

As an example, contemplate the data points xn, n = 1, . . . , N in figure
1

FIGURE 1. Mixture of three Gaussians

We can assume them to belong to one of the K different Gaussian dis-
tributions with means µ1:K and the same covariance matrix. Then we can
model our sample with a probabilistic generative process using the graphi-
cal model depicted in figure 2:
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FIGURE 2. Mixture GM

The variable zn is a multinomial latent variable which determines the
mean xn is centered around. zn has parameter π = (π1, . . . , πK ) (the mix-
ture proportions) where πi , i = 1, . . . , K is the probability of drawing xn
from the i-th cluster. In our notation zn is an indicator vector, of length K ,
where zi

n = 1 if xn belongs to the i-th cluster and 0 otherwise.
Given this graphical model the joint probability distribution of the sample

factorizes as

p(x1:N , z1:N |π, µ1:K ) =

N∏
n=1

p(zn|π)p(xn|zn, µ1:K ).

In our interest to do ML estimation on the parameters of the model, we
need to obtain the marginal probability of the data given the parameters. To
do so it is necessary to marginalize out unobserved variables, which in our
case are the cluster assignments:

p(x1:N |π, µ1:K ) =

N∏
n=1

∑
z

p(zn|π)p(xn|zn, µ1:K ).

The log likelihood is given by:

l(π, µ1:K |x1:N ) =

∑
n

log
∑

z

p(zn|π)p(xn|zn, µ1:K )

=

∑
n

log

[∑
z

(∏
i

π
zi

n
i

)(∏
i

p(xn|µi )
zi

n

)]
Notice that because we had to marginalize out latent variables the sum is
inside the logarithm, which makes the maximization problem cumbersome.
We could simply use a black-box algorithm for optimization. However, we
can exploit characteristics of the log likelihood, and we do so by deriving
the expectation-maximization algorithm.

The Expectation-Maximization (EM) Algorithm. The EM algorithm is a
general purpose strategy for finding MLE’s in latent variable models, many
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algorithms are just instations of it. It is usually credited to Dempster et al.
(1977).

Assume we can observe the latent variables. Then we can work with the
complete log likelihood and we could write

log p(x1:N , z1:N |µ1:K , π) =

N∑
n=1

(
log

∏
i

π
zi

n
i + log

∏
i

p(x |µi )
zi

n

)

=

N∑
n=1

( k∑
i=1

zi
n log πi +

k∑
i=1

zi
n log p(xn|µi )

)
and we could find

π̂ =

N∑
n=1

zn

N

as the ML estimator for the mixture proportions (note that this is a vector
and so we drop the superscript i).

Then we could also derive

µ̂i =

∑
n zi

nxn∑
n zi

n

In reality though, we cannot observe zn . To circumvent this, in EM we
start with some idea of where the µ1:K are and replace the grouping zi

n
with the expected posterior grouping E

[
zi

n|xn, µ1:K , π
]
. We then reesti-

mate where the groups are based on the expected posterior groupings, and
we iterate between one step and the other.

Therefore, we have
• E-step: Replace zi

n with

E
[
zi

n|xn, µ1:K , π
]

= p(zi
n = 1|xn, µ1:K , π)

∝ p(zi
n = 1|π)p(xn|µi )

∝ πi p(xn|µi )

• M-step: Calculate the new MLEs from the new zi
n’s.

This reminds us of the K -means algorithm, where we start picking K
initial means at random and assign our sample points to the closest mean.
We then re-estimate the means of the groups, and iterate between these two
steps. The EM algorithm differs from this in that it makes “soft assign-
ments” of data points. In other words, it does not calculate which mean
each point corresponds to, but the probability that the point corresponds to
each of the different means.
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There is a problem with EM: since the problem is not convex, it will
find a local maximum of log likelihood but we are not guaranteed to find
a global maximum. Thus, it is advisable to run the algorithm starting in
different places and then compare the solutions to see which one is the best.

THE GENERAL EM ALGORITHM

The EM algorithm can be used in more diverse settings than the one
described in the previous section. It is a versatile algorithm that we use
when our graphical models have latent variables.

As before, it has two parts: the E-step and the M-step. The E-step fills
in the values of latent variables via the posteriors and the M-step fits the
parameters to match the filled in values through ML estimation. We iterate
both steps until our likelihood stabilizes.

Call the sample data x1:N , the hidden variables z1:N , and the parameters
θ . Then if zn were observed, we could split the log likelihood maximization
problem as

θ̂ = arg max
θ

log p(z|θ) + log p(x |z, θ)

but since zn are not observed in reality, we have

θ̂ = arg max
θ

log
∑

z

p(x, z|θ)

which is usually hard to handle.
We now recall that if λ ∈ (0, 1) and φ is a concave function, then Jensen’s

inequality tells us

λφ(x) + (1 − λ)φ(y) ≤ φ(λx + (1 − λ)y)

FIGURE 3. Jensen’s inequality
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or, in general, that E [φ(X)] ≤ φ(E [X ]). With the help from this in-
equality, we will bound the marginal likelihood (which is hard to evalu-
ate) with the expected complete likelihood (which we can compute). Let
l(θ |x) = log p(x |θ), then

l(θ |x) = log
∑

z

p(x, z|θ)

= log
∑

z

p(x, z|θ)
q(z)
q(z)

= log Eq

[
p(x, z|θ)

q(z)

]
≥ Eq

[
log p(x, z|θ)

]
− Eq

[
log q(z)

]
=: L(q, θ)

where we call L the EM objective function.
The M-step will then consist of finding

θ (t+1)
= arg max

θ
L(q(t+1), θ)

and the E-step will consist of optimizing

q(t+1)
= arg max

q
L(q, θ (t)) = p(z|x, θ (t)).

Notice the last equality in the previous equation, it is true because the max-
imum is achieved when q = p(z|x, θ (t)) which means that the bound is
tight. The end result of this is

l(θ (t+1)
|x) = L(q(t+1), θ (t+1))

≥ L(q(t), θ (t+1))

≥ L(q(t), θ (t)) = l(θ (t)
|x)

Therefore at every step of the EM algorithm we are climbing uphill the
log likelihood.


