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1. GENERALIZED LINEAR MODELS

We have known that Generalized Linear Models (GLM’s) are a general
category of models that includes linear regression and linear classification
models as special cases. In Fig. 1, the relationships between the variables
in a GLM are illustrated where the GLM makes the following assumptions
regarding the form of the conditional probability distribution p(y|x):

• The observed input x is assumed to enter into the model via a linear
combination βTx.

• The observed output y is assumed to be characterized by an expo-
nential family distribution with conditional mean µ.

• The conditional mean µ is represented as a function f(βTx) of the
linear combination βTx of the observed input x. f is named as the
response function.

• The natural parameter η can be mapped from the conditional mean
µ as a function η = ψ(µ).
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FIGURE 1. Relationships between the variables in a GLM model.

1.1. Overdispersed GLM’s. Within the GLM framework, it is convenient
to work with a slight variation on the exponential family theme. The overdis-
persed GLM is one variation based on the original GLM which is given by

p(y|η) = h(y, δ) exp

{
ηTy − a(η)

δ

}
(1)
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The distribution in this form is called in the overdispersed exponential fam-
ily.

Many exponential family distributions, including the Gaussian and the
gamma, are naturally expressed in this form. As an example, we can fit the
linear regression into the overdispersed setting. The linear regression model
is expressed as

p(y|x) =
1√

2πσ2
exp

{
−(y − βTx)2

2σ2

}
(2)

We can rewrite equation (2) as

p(y|x) =
1√

2πσ2
exp

{
−y2 + 2y(βTx)− (βTx)2

2σ2

}
(3)

=
exp

{
− y2

2σ2

}
√

2πσ2
exp

{
2y(βTx)− (βTx)2

2σ2

}

=
exp

{
− y2

2σ2

}
√

2πσ2
exp

{
y(βTx)− 1

2
(βTx)2

σ2

}
Therefore, fitting linear regression model into the overdispersed GLM

(assuming η = βTx here), we have

h(y, δ) =
exp

{
− y2

2σ2

}
√

2πσ2
, a(η) =

η2

2
, δ = σ2 f, ψ : Identity.

1.2. Two choices in a GLM. There are two principal choices in the speci-
fication when setting up a GLM:

(1) The choice of the exponential family distribution of the observed
output y.

(2) The choice of the response function f .

The choice of the distribution is strongly constrained by the nature of
the observed data y. For example, we might use Poisson distribution to
model y if it is discrete, and use gamma distribution if it is real positive. For
multi-class classification, we might used multinomial/categorical distribu-
tion. Therefore, the choice of the response function is the principal degree
of freedom in the specification of a GLM.

The natural parameter η can be expressed as η = ψ(f(βTx)). Suppose
f = ψ−1, then we have,

f = ψ−1 ⇒ η = βTx(4)
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In this case, f is called the canonical response function. It should be clear
that the use of canonical response function passes a sanity check automati-
cally with respect to the range constraints. To see this, note that

(5) f(η) = ψ−1(η) = a′(η) = E[Y |η].
Thus, f(η) is equal to the conditional mean of the exponential family distri-
bution in which η is the natural parameter.

Also the canonical response function is uniquely associated with a given
exponential family distribution. It also needs to be emphasized that the
canonical response function is not necessarily the best choice in all situa-
tions. Indeed, different choices of the response function can be appropriate
in different situations, reflecting different underlying assumptions about the
way that the data generated.

1.3. Example: logistic regression. If the observed output y ∈ {0, 1}, then
linear regression does not make sense at all! In this case, we assume that y
follows Bernoulli distribution, i.e.

p(y|π) = πy(1− π)1−y(6)

where π is the mean. Equation (6) can be rewritten as

p(y|π) = exp

{
log

(
π

1− π

)
y + log(1− π)

}
(7)

Fitting equation (7) into the exponential family distribution, we have

η = ψ(π) = log

(
π

1− π

)
.(8)

By inverting the relationship between η and π, we have

π = ψ−1(η) =
1

1 + e−η
(9)

which is the logistic function. Fig. 2 illustrates the curve of the logistic
function.

The response function is also called link function. Again, noncanonical
links are also possible. For example, let Φ be the probit function (inverse
cumulative density function associated with the standard normal distribu-
tion), we can use

y = Φ−1(βTx)

as our response function.
Motivation: In logistic regression, data points far away from the bound-

ary don’t matter or matter very little. This is similar to the Supporting Vec-
tor Machine (SVM), where only data points near the margin matter. Hence,
you can get similar predictions from SVM and logistic regression. The lo-
gistic model can also be motivated as an approximation of the step function.
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FIGURE 2. Logistic function.

Note that, in the multinomial distribution, β is a matrix, x ia a vector,
βTx, µ and η are vectors of the same size, f and ψ are functions mapping
from a vector into another vector.

1.4. MLE of β. Consider an IID data set, D = {(xn, yn)}N
n=1. The MLE

of β is

(10) β = arg max
β

log p(y1:N |x1:N , β) = arg max
β

l(β,D)

where l(β,D) is the log likelihood function given the data set D and β. We
restricted ourselves to scalar y in order to simplify the representation. It
is straightforward to generalize to nonscalar case. But still, we keep each
element in x as a vector.

Define ηn to be the per-observation natural parameter, i.e.

(11) ηn = ψ(f(βTxn)).

We obtain the following log likelihood:

l(β,D) = log
N∏

n=1

h(yn) exp(ηnyn − a(ηn))

=
N∑

n=1

log h(yn) +
N∑

n=1

(ηnyn − a(ηn)).



COS 513:FOUNDATIONS OF PROBABILISTIC MODELING LECTURE 12 5

Taking its gradient with respect to β yields:

∇βl(β,D) =
N∑

n=1

dl

dηn

∇βηn

=
N∑

n=1

(yn − a′(ηn))∇βηn.

According to Eq. (11), the gradient of ηn with respect to β is:

(12) ∇βηn = ψ′(f(βTxn))f ′(βTxn)xn.

Define µn be the mean response given xn, i.e.

(13) µn = E[Y |Xn] = f(βTxn).

Note that, the mean response µn can also be computed as

µn = a′(ηn).

Assume f = ψ−1 is the canonical response function, then ηn = βTxn.
The log likelihood function now becomes

(14) l(β,D) =
N∑

n=1

log h(yn) +
N∑

n=1

βTxnyn −
N∑

n=1

a(βTxn).

From this, the gradient of the log likelihood function with respect to β be-
comes

∇βl(β,D) =
N∑

n=1

ynxn −
N∑

n=1

µnxn

=
N∑

n=1

(yn − µn)xn.(15)

The terms (yn − µn) is called fitted residuals. In linear regression, µn =
βTxn. Eq. (15) has the appealing feature that the parameter vector and the
fitted residuals are on the same scale.

2. SUFFICIENCY

2.1. Definition. A statistic is a function of an observation. It is also de-
scribed as a function of random variables. For the sake of discussion here,
we let x be a random variable and t(x) be a statistic.

Suppose the distribution of x depends on a parameter θ, then t(x) is
sufficient for θ if there’s no information in the random variable x regard-
ing θ beyond t(x). If we are making inferences about θ, all we need to
know is t(x). Sufficiency characterzes what is essential in a data set, or
alternatively, what is inessential and can be thrown away.
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2.2. Two approaches. Sufficiency is defined in different ways in the Bayesian
and frequentist frameworks.

In the Bayesian notion, we treat θ as a random variable, and it is natural
to consider conditional independent relationships regarding θ. Here, t(x)
being a sufficient statistic for θ implies

(16) θ ⊥ x|t(x) =⇒ p(θ|t(x), x) = p(θ|t(x)).

In the frequentist notion, θ is treated as a label rather than a random vari-
able. t(x) being a sufficient statistic implies that the conditional distribution
of x given t(x) does not depend on θ, i.e.

(17) p(x|t(x), θ) = p(x|t(x)).

This is equivalent to saying x ⊥ θ|t(x).
We can see that the Bayesian notion and the frequentist notion are really

the same thing. Both the Bayesian and frequentist definitions of sufficiency
imply a factorization of p(x|θ) as:

(18) p(x|θ) = g(t(x), θ)h(x, t(x)).

For example, in the exponential family distribution,

(19) p(x|η) = h(x)︸︷︷︸
h(x,t(x))

exp(ηT t(x)− a(η))︸ ︷︷ ︸
g(t(x),η)

,

which has a one-to-one correspondence with (18). This is why we call t(x)
a sufficient statistic in the exponential family distribution.

2.3. MLE of an exponential family. Consider an IID data setD = {xn}N
n=1,

where xn come from the same exponential family. The joint density is ob-
tained by taking the product of the individual density:

p(x1:N |η) =
N∏

n=1

h(xn) exp(ηT t(xn)− a(η))

= (
N∏

n=1

h(xn)) exp(ηT

N∑
n=1

t(xn)−Na(η))(20)
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is itself in the exponential family with parameters:

h̃(x1:N) =
N∏

n=1

h(xn),

ã(η) = Na(η),

η̃ = η,

t̃(x1:N) =
N∑

n=1

t(xn).

We can see that the sufficient statistic for the joint density is sum of the
individual sufficient statistics. Therefore, we only need to keep track of the
sum of the individual sufficient statistics

∑N
n=1 t(xn). The individual data

points can be thrown away.
For the univariate normal distribution, the sufficient statistic is the pair

(
∑N

n=1 xn,
∑N

n=1 x
2
n). For the Bernoulli distribution, the sufficient statistic

is
∑N

n=1 xn.


