COS513: FOUNDATIONS OF PROBABILISTIC MODELS
LECTURE 10

MELISSA CARROLL, LINJIE LUO

1. BIAS-VARIANCE TRADE-OFF (CONTINUED FROM LAST LECTURB

If Vv = {(X,,Y,)} are observed data, the linear regression problem can
be modeled as:

1) Y| X0, B~ N(BX,,07%)

£X, is therefore true response mean, around which we expectthe o
served responsg, to vary according to the Gaussian noise term. Consider
a new inputX for which we estimated with the estimator?, which we
now view as a random variable, dependentomhe MSE (Mean Squared
Error) of the estimatop over the distributiorD of all inputs X for which
[ is the true estimated parameter is:

MSE(j) = Ep[(6X — 3X)?]
= [E[(3X)?] — (B[3X])?] + [(E[3X] - 5X)?]

EqQ. 2 is the sum of two terms that represent:

(1) E[(3X)?] — (E[$X])% the variance of the estimatat, i.e. how
sensitive the estimator is to randomness in the data.
(2) (E[3X] — BX)?* the squared bias of the estimator, i.e. how closely

~

[ approximates the true value of the parameter

An unbiased estimator is one for which the squared bias ®fnin Figure
1, we view the distribution ofX overD as a Normal distribution param-
eterized by the two MSE terms. For an unbiased estimatodigttiebution
is centered at the true valueX .

The Maximum Likelihood Estimate (MLE), or Least Squaresneate, is
an unbiased estimate. Tk&auss-Markov Theorem states that among all
unbiased estimates, MLE has the smallest variance. Therafave wish
to have an unbiased estimator, the best estimate we canectsdd& E. Our
intuition should be that we should always choose an unbiastahator. In-
deed, classical statistics dealt only with unbiased estirmaHowever, note
that the fact that an estimator is unbiased says nothingtabhewariance of

the estimator. Thus, for a given data¥xtthe error3X — X may in fact
1

(2)
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FIGURE 1. Distribution of unbiased estimator

be very large. Therefore, an estimator with slight bias Ioodlsvariance
will be preferable to an unbiased estimator with a very latg@ance. The
remainder of this lecture will discuss how modern statsséitows for this
tradeoff between bias and variance.

1.1. Regularization. In regression, this trade-off is made througgular-
ization, which:
e Involves placing a constraint gh
e Encourages “smaller” and “simpler” models because theespéc
values ofB considered is smaller.
e Intuitively, preventverfittingto the training data, leading to better
generalization.
¢ Aids model interpretation by producing “simpler” modelkifaugh
attempting to interpref weights should often be avoided).

2. RIDGE REGRESSION

The most popular form of regularized regressioRisige Regression,
which places a constraint on the sum of squares ofitiweights. Formally,
Ridge optimizes the Residual Sum of Squares (RSS) subjeatdostraint

ony 7, B}
N p

(3) min Y (yo — faa)* st > B <s
n=1 =1

We visualize the Ridge optimization in Figure 2. Assumeis a two-
dimensional vector, i.ep = 2. First, consider the RSS term in Eq. 3. The
MLE estimate? will lie at a point in the two-dimensional coefficient space.
The RSS at this point 5., (v, — 37x,)? . Likewise, all other pointg
in the coefficient space have an RS@L(% — BTxn)Q . In fact, for
all 3 other thang3, there will be an infinite set of points with the same RSS
as/3, and these points will lie on an ellipse. We can thus plot thetaurs
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FIGURE 2. lllustration of the Ridge regression optimiza-

tion whenp = 2. The concentric ellipses are contourstof
with equal RSS. Sphereconstrains the search space for
Ridge solves for the value gf with minimal RSS among all
£ values lying withins.

of RSS values emanating fromas nested ellipses. Since these contours
correspond to increasing RSS values, they also corresponttiteasing
biasesof their associated estimates.

Now consider the constraint term in Eq. 3.7, 57 is a measure of the
Euclidean distance from the origin t and the constraint s dictates the
radius of the circle in whichv is constrained to lie. Thus, when we solve
Eq. 3, we are seeking the val@evithin the sphere of radiuswith minimal
RSS, i.e. the point in sphekethat lies on the contour ellipse closesto
This point will be a unique point at which the edgesafouches a contour
ellipse, i.e. the point on sphereclosest tos. Because we have limited
the range ofs values being considered, thvarianceof our estimate will
necessarily be smaller than when considering the full rarigevalues. If
3 lies within s, the Ridge estimate is equivalent to the MLE. In all other
cases, however, the resulting estimate will have highes thian the MLE
but smaller variance, which is precisely the effect we askisg. Ass is
increased, the estimate bias will decrease but the variaiiaacrease, and
vice versa.
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We can solve for the estimaté® directly with the following con-
strained optimization, wherg represents a complexity parameter, some-
times called the Ridge, dr, Penalty:

N p
A 1
4 ridge _ : ~(y,, — T . 2 Y 2
(4) o0 = argmin 3 5 — ) £ 236

The1/2 is added for mathematical convenience when minimizing Eq. 4
There are two nice things about Eq. 4:

e For a fixed value of\, this equation is convex and therefore easy to
minimize, which is the major reason why Ridge is the most jepu
regularization technique for regression.

e There is essentially a one-to-one mapping betweeamd s, such
that when\ increasess effectively decreases. (Note: technically
this mapping depends on the the number of data paWhtsuch
that asV increasess effectively increases to accomodate the larger
dataset. This subtlety is important when considering Bayeln-
ear regression.)

3. CHOOSING A VIA CROSSVALIDATION

Despite these niceties, by introducihgwe have added an additional pa-
rameter to be optimized. So how do we solve for the optintalA first
inclination might be to simply use MLE, just like we do with Unfortu-
nately, since MLE seeks to minimize the RSS, the optimalevédu \ will
always bd), rendering useless our attempts at regularization. aélyt by
regularizing, we are hoping to improve tgeneralizatiorof our model to
other dataset¥. Thus, a natural way to optimizeis to train models with
different values of\ and evaluate the error of these models on a different
dataset we believe to be drawn from the same distributiomeddtaset used
for training our modeldeneralization erro). This procedure is commonly
used in model-fitting and is calledross-validation The cross-validation
procedure is as follows:

(1) Choose candidate values for
(2) Divide the datd X,,, Y;,) into K folds.
(3) For each fold: and candidate:
o Estimates; % on out-of-fold samples, i.e.
x, €5 ={1..K},j#k.
e Compute generalization error on in-fold samples:
enr = (Y — Bryw,)? for nin fold k.
At this point, we have evaluated the eredor every data point
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FIGURE 3. Bayesian view of regression, withas a prior on
6. MAP estimation under this model is equivalent to Ridge
Regression.

n in the data, where our estimate was computed based on data
not includingn.
e Finally, select\ = argmin, % Zivzl €n -

Note that cross-validation, while helping solve for onegpaeter, intro-
duces another parameter in its pla¢é: In Elements of Statistical Learn-
ing, Hastie et al. conclude, after a discussion about thsitbaty of cross-
validation to the choice of<, that one should simply choose the value
K = 5folds. A student also raises a cautionary note about crakgdation:
avoid x,, being too systematically similar to the data points in offoéats,
or the effects of overfitting to the training data may go umnsest. Shuffling
the examples to remove systematic biases is often warranted

4. BAYESIAN LINEAR REGRESSION

Bayesian Linear Regression is closely related to Ridgd|westrated in

Figure 3.
As in our previous probabilistic view of linear regression:
(5) Ynltn, B ~ N(B" 20, 0%)

However, note that we have now placed a prior on the coefigjghe
(fixed) parameteh:

(6) Bi ~ N(0,1/2X)
Consider the MAP (maximum a posteriori) estimatioamder this model:
(7) @MAP = arg mﬁaX{ 1OgP(6‘x1:N7y1:Na)‘)}

Noting that because we are only considering the max, nozatadn con-
stants don’t matter, and we obtain, via the re-ordered atudén

B = argmax { log(P (yu.x|erv, 8 HP B}
(8)
= argmax {log P(y1.n|z1:7, B) + Zlog P(3iN)}
=1
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Recall that, given Eq. 5:

1 1 -
P(yin|zin, B) = W exp { ) Z(yn - ﬁTan)Q}

n=1

(9)
1

G| )

Again, noting that normalization constants do not matterhave that:
(10)  argmax {log Pyx|zy. )} = argmax {-RSY0)}

Given Eq. 6:

(11) P(Gi|A) =

)
\V/2m /A P 2

Thus, given Equations 10 and 11 and again ignoring constaasthave:
p

12 GMAP — —RSYp) — A 2

(12) 7 = axgmax { ~ RSS) =23 7}

where the variance of is A\/2. Note that Eq. 12 takes the same form
as Ridge regression. Therefore, MAP under the Bayesian Invatle a
prior on 5 of \ is equivalent to performing Ridge regression with penalty
parameten.

Note that as\ increases, the more the MAP estimate diverges from the
MLE, and vice versa. In effect, the R§§H term corresponds to the influ-
ence of the data on the model, while thg"?_, 3? term corresponds to the
influence of the prior, i.e. making the variance of the estexsaaller is, in
effect, indicating an increasing certainty titat= 0. As with all Bayesian
models, as the influence of the prior increases, the influehdke data
decreasesA controls this data versus prior tradeoff. As previouslyeaiot
unlike A\, s grows with the size of the data. Given enough data, the influ-
ence of the data will eventually overwhelm the influence ef phior, and
the spheres will grow so large as to encompags making the MAP esti-
mate equivalent to MLE. Note that we outlined a proceduresftimating
A via cross-validation, but a true Bayesian would of courseenéit A in
such a way, because doing so involves using the data twice.
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FIGURE 4. lllustration of the LASSO optimization when
p = 2. The concentric ellipses are contourstofvith equal
RSS. Polygors constrains the search space forLASSO
solves for the value off with minimal RSS among alb
values lying withins, which will lie on a “corner” ofs.

5. LASSO

Consider the following alternative regularization, whigstimatess by
minimizing RSS subject to ah, norm constraind_?_, |5;]:

N p
(13) min Yy (y, — T2,)? st D |G <s
n=1 =1

This form of regularization is known as thé\ SSO (Least Absolute Shrink-
age and Selection Operator):

R N q P
(14) [3lasse = arg mﬁin { ; é(yn - 5T$n)2 + A 221 |@\}

In Figure 4, we visualize the LASSO optimization just as wettlie Ridge
optimization.

As with Ridge, the optimab will lie on the periphery ofs at the point
closest tos. Although difficult to visualize in 2 dimensions, in higher d
mensionality, the RSS contours will touch a (multi-dimemsil) “corner”
of s first (unlike with Ridge), implying that at least one coefict is0. The
only exception is when the contours touch at a 45 degree aimgdying
colinearity in the features. Therefore, LASSO zeros outesawefficients
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(particularly in higher dimensions) and findsparsesolution. Note that
Eq. 14 is still convex, since any penalty norm-= 1 is convex.
Why would we want a sparse solution?

¢ In many regression applications, it is known that only a stilo$
the features/variables will be relevant.

e A naive approach to finding this relevant subset is to trintng
models with all possible subsets, which is of course inatalet

e By setting some coefficients th LASSO is in effect performing a
form of feature selection, by choosing which inputs makefiedi
ence in solving the problem.

e Therefore LASSO is performing subset selection yet is coiael
thus easy to optimize.

e In some cases, it can be shown that LASSO is “sparsistenthan
it will find the true relevant subset.

e Narrowing the subset of variables makes interpreting theffieo
cients easier.

e Sparse solutions are best if the number of variables is mreztey
than the number of data point8,> N.

5.1. Bayesian Interpretation. From our discussion of the correspondence
between MAP estimation in Bayesian linear regression anigdiit was
shown that the Ridge penalty is equivalent to assuming aseauprior on
G, i.e. B; ~ N. LASSO has a similar Bayesian interpretation: the LASSO
(L) penalty is equivalent to assuming a Laplace distributibp @alues,
i.e. (i) oc exp{A|5;]} -

Note: Park and Casella discuss a Bayesian approach togtiain. ASSO:
Park and Casella (2008). The Bayesian LASSO. JASA 103(482).

6. LARS

LARS (Least Angle Regression) is an efficient algorithm for sadvine
LASSO. It computes the entire regularization path, or optisolution for
each possible number of features, in one pass, allowinggtmal size of
the diamond to be easily determined using cross-validatidmch is not
very expensive. This one-pass regularization path disgasevhat makes
the LARS + LASSO combination very popular.

Efron, B., Johnstone, I., Hastie, T. and Tibshirani, R. @0Qeast angle
regression. Annals of Statistics.



