# COS513: FOUNDATIONS OF PROBABILISTIC MODELS LECTURE 7

#### YUHUI LUO AND MASON SIMON

#### 1. LOCAL AND GLOBAL CONSISTENCY

**Local consistency** in a graphical model means that two neighboring nodes will have the same marginals. **Global consistency** means that two nodes anywhere in the graph have the same marginals.

For a junction tree, local consistency implies global consistency.

## 2. THE JUNCTION TREE ALGORITHM

### Theorem: Define

$$p(x) = \frac{\prod_{c \in \mathcal{C}} \Psi_c(x_c)}{\prod_{s \in \mathcal{C}} \Phi_s(x_s)},$$

where  $\Psi(x_c)$  are the clique potentials and  $\Phi(x_s)$  are the separator potentials. When the junction tree algorithm terminates, the potentials are equal to marginal probabilities. That is:

$$\Psi_c(x_c) = p(x_c)$$

and

$$\Phi_s(x_s) = p(x_s).$$

## **Proof:**

First, if  $\Psi_c(x_c) = p(x_c)$ , then  $\Phi_s(x_s) = p(x_s)$  by local consistency.

The remaining proof is by induction: We first assume that this holds for a tree of size N, where N represents the number of cliques. Now, consider a tree of size N + 1 as depicted in Figure 1.

The additional clique  $C^*$  is represented by the node on the left, which is split into two subsets:  $S^*$ , which are the elements shared with its neighbor, and R, which are the remaining elements. We further define T to be the elements included in the dashed box, which is basically everything except R and  $S^*$ .



FIGURE 1. A tree of size N + 1, formed by adding the node  $C^*$  to the tree T of size N

By the chain rule,

$$p(x) = p(x_R, x_{S^*}, x_T) = p(x_{S^*}, x_T)p(x_R|x_{S^*}, x_T)$$
$$= p(x_{S^*}, x_T)p(x_R|x_{S^*}).$$

The last line is obtained from the fact R and T are conditionally independent given  $S^*$  since they are separated by  $S^*$ . Now we look at:

$$p(x_T, x_{S^*}) = \sum_{x_R} p(x)$$
  
= 
$$\sum_{x_R} \frac{\prod_c \Psi_c(x_c)}{\prod_s \Phi_s(x_s)}$$
  
= 
$$\frac{\sum_{x_R} \Psi_{C^*}(x_{C^*})}{\Phi_{S^*}(x_{S^*})} \frac{\prod_{c \notin C^*} \Psi_c(x_c)}{\prod_{s \notin C^*} \Phi_s(x_s)}.$$

That final step followed because the only clique potential that depends on  $x_R$  is  $\Psi_{C^*}$ .

By local consistency:

$$\sum_{x_R} \Phi_{C^*}(x_{C^*}) = \Phi_{S^*}(x_S^*),$$

since everything that is in  $C^*$  except R is  $S^*$ . Because of that equality, the first fraction in  $p(x_T, x_{S^*})$  equals 1, so we're left with:

$$p(x_T, x_{S^*}) = \frac{\prod_{c \notin C^*} \Psi_c(x_c)}{\prod_{s \notin C^*} \Phi_s(x_s)}.$$

Note that  $x_R$  does not appear in that equation, so  $p(x_T, x_{S^*})$  does not depend on  $x_R$ . This implies that  $x_R$  will not send any messages into T. Because T is a graph of size N, the inductive hypothesis tells us that all of the clique potentials in T are marginals, i.e.  $\Psi_c(x_c) = p(x_c)$  for  $c \notin C^*$ .

Now we can compute  $\Phi_{S^*}(x_S^*)$  by marginalizing the other variables out of  $x_D$ :

$$\Phi_{S^*}(x_S^*) = \sum_{x_D \setminus x_{S^*}} \Psi_D(x_D)$$
$$= \sum_{x_D \setminus x_{S^*}} p(x_D)$$
$$= p(x_{S^*})$$

By the definition of the joint distribution,

$$p(x_R|x_{S^*}) = \frac{\Psi_{C^*}(x_{C^*})}{\Phi_{S^*}(x_{S^*})}$$
$$= \frac{\Psi_{C^*}(x_{C^*})}{p(x_{S^*})}$$
$$p(x_R|x_{S^*})p(x_{S^*}) = \Psi_{C^*}(x_{C^*})$$
$$p(x_R, x_{S^*}) = \Psi_{C^*}(x_{C^*})$$
$$p(x_{C^*}) = \Psi_{C^*}(x_{C^*}).$$

And that shows that the N + 1th clique  $(C^*)$ , and the separator between that clique and the tree of size N  $(S^*)$ , both have potentials which are marginals. By the inductive hypothesis, the tree T of size N already had clique and separator potentials which were marginals, so now every clique and separator in the new tree of size N + 1 has a potential which is a marginal. QED.

#### 3. How to build a Junction Tree

Now that you know the neat properties of the Junction Tree algorithm, you may wonder how to actually build a Junction Tree when given a graphical model. It's not hard.

- (1) Moralize your graph (if undirected).
- (2) Introduce evidence.
- (3) Triangulate (the Graph Eliminate algorithm from chapter 3 in ITGM will do this).
- (4) Construct the junction tree by choosing the spanning tree of this triangulated graph that maximizes the sum of sizes of the separator sets.

### 4. RECOMMENDED READING MATERIALS AND TOOLS

Here are a list of recommended reading materials and tools for the midterm report and final project.

- Machine Learning JMLR, NIPS, ICML, UAI, CVPR, EMNLP
- **Statistics** JASA, BA (Bayesian Analysis), AAS (Annals of Applied Statistics), AS (Annals of Statistics Theoretical)
- Books
  - Gelman: Bayesian Data Analysis, Hierarchical and Multi-Level Modeling
  - Tibshirani, Friedman, Hastie: Elements of Statistical Learning + online errata
  - Bishop: Pattern Recognition and Machine Learning + online errata
  - Manning and Schutze
  - Robert and Casella: MCMC
  - Mackay: Information Theory (free and online)
- Languages: C, Python (Cython), R (RCommander, RJava).

## 5. Frequently Asked Questions about R

Q: Can you make wonderful plots with R?

A: Yes, check out the R graph gallery.

Q: Is R's built-in text editor inferior to Notepad?

A: Yes, use a real text editor instead of that thing!

Q: "On the topic of R, is it easy to inject C code into the nuts...?" - Francisco Pereira

A: Yes, it is easy to call C code from R.