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1. THE BENEFITS OFJUNCTION TREE

Junction Tree gives us

e A factoral representation of the joint probability distriiipn
e Clique potentials that are marginals

2. CLIQUE TREES

Given a clique tree with cliques and separators, the joint probability
distribution is defined as follows:

_ [1c Pc(xc)
Hs Ds(Xs)

where ¥c(Xc) is the potential for a cliqu€, and®s(xs) is the poten-
tial for a separatoS. After Junction Tree algorithm, the clique potential
¢ (Xc) becomes the marginal probability for cliq@ Thus, we are able
to achieve a representation that is a product of marginal$ yat is also a
representation of the joint probability.

After we initialize maximal cliques, we first initialize trseparator poten-
tials to 1. The good thing is that we maintain global consisyeby setting
separator potentials to one. The basic idea of Junctionalgeeithm is that
we adjust cligue potential®c (Xc) to obtain marginals (local marginals),
and adjust separator potentigg(xs) to maintain the joint probability dis-
tribution p(x).

(1) P(x)

3. LOCAL CONSISTENCY

3.1. Definition. In clique trees, cliques can overlap, so the same node can
appear in multiple neighboring cliques. If the clique pdi®is are marginals,
they have toagree on common nodes. In other words, common nodes

should have the same marginals.
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FIGURE 1. Clique tree
Yv O Yv

S

3.2. Potential update (v — W). The local consistency is achieved by
exchange of information between neighboring cliques. $sppthat we
have two cliquesv andW and suppose thaf and W have non-empty
intersection S (see Figure 1). The cligop¢saandW have potential$?y, and
Pw, andS has a potentiabg that we initialize to one. The joint probability
distribution p(x) for this clique tree is as follows:

Y- Pw
Ps

2 p(x) =

We first updateV based orV (Information is passef — W).

3) D= > W
V\S
(4) v = Loy
w =g Fw

&g and ¥y, are updated potentials fars and Py
Claim: The joint probability distribution is invariant while upting po-
tentials v — W).

(5) pP(x) = “or
D5 - Pw - Py
T &5 D
Py - Pw
= -

The last line in (5) is equal to (2), which means that the jpratbability
distribution has not changed by the update.
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3.3. Potential update W — V). Now we updateV based onVN (Infor-
mation is passew — V).

(6) DE =D Wy
W\S
@**

(7 V= o 7y

(8) Py = P,

Like in (5), we can show that the joint probability distribut does not
change after this update.

3.4. Proof of local consistency.To prove that the clique tree has local
consistency, we have to show that nodes in the sepatitave the same
marginals.

ksk ¢** *
© >y
V\S S WwW\s
¢**
-5
Qg
_<p§*

(10) > =Dy

W\S W\S
S

From (9) and (10), we can see that the following equationtisfeed.

(11) > wr==> Wy

V\S W\S

We have shown that the potentiditg* and 3/ are consistent with respect
to their intersectiors, that is, they have the same marginals.
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FIGURE 2. Constructing a clique tree from a directional graph

Moralize It
Clique tree
B

3.5. Directional graphs. By moralizing, we can construct clique trees from
directional graphs (See Figure 2).
The potentialg?a, ¥sc, and®p are defined as followings:

(12) Yag = P(A) - p(B|A)
¥sc = p(C|B)
g =1

Like in Section 3, to keep local consistency, we update therls
by exchange of information between neighboring cliquesstFive update
Ygc based orPag.

(13) ®5 = > p(@a B)

= p(B)
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B
(14 vge =22 pCIB)
= p(B, C)
(15) ¥as = P(A, B)

Now, we see that the clique potentials have become marginbbpili-
ties. The backward phase in this caB&(— AB) is vacuous.

3.6. Introducing evidence. Now consider the case in which evidence is
observed. Suppose that all nodes are binary and we are dieesvidence
(A =1)inFigure 2. We have

(16) of = p(A=1,B)
Performing the updateXB — BC) yields

(17) Y8c = P(A=1,B)- p(C|B)
— p(A=1,B,0C)

Once again the backward pag§ — AB) is vacuous in this case. Thus
our potentials are as follows

(18) ¥xh = p(A=1,B)
o5 = p(A=1,B)
Ysc=pP(A=1,B,C)

We see that we have obtained marginals as before, and eeidgnesent
in all terms. The potentials are unnormalized marginalsniNdizing gives
us conditionalgp(B|A = 1), p(B|A=1),andp(B,C|A=1).

4. MULTIPLE OVERLAPPING CLIQUES

4.1. Message passing protocolSo far we have been looking at clique
trees with only one separator set. In practice, we would wargxpand
our algorithm to more complicated clique trees. Then, wetraddress the
following three questions.

(1) How do we construct appropriate clique tree?

(2) How to perform multiple updates without ruining locahsistency?

(3) Prove that the resultingg and ¥ are marginals as in the case with
one separator set.
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Lets first focus on question (2), consider the following akgree, in figure
3.

FIGURE 3. Cligue tree with explicit representation of the sepasato
‘ 0 s “

In figure 3, as discussed in the previous sectassing a messadmm
Vv to p consists the following steps.

V—> W=

(1) Updated; from ¥,
(2) Update?,, from @Z and®s

However, we must decide when a given cligue is allowed to passs-
sage to one of its neighbors. This problem is solved by thesagEspassing
protocol.

Message passing protocol A clique can send a message to a neighbor
clique only when it has received messages from its othehbeit.

We claim that the message passing protocol maintains locelistency.
To examine the correctness of the message passing pratoosider when
w has received messages from all its neighbors D1 and D2 ,sasehiding
a message passing from w to v.

There can be two cases to consider,

e Case 1, v has received messages from its other neighborsaasnd h
sent a message to w. Local consistency is ok, since no oth&r me
sages will be sent.

e Case 2, v has not yet sent a message to w. When message passing w
to v createsp;, later v will pass a message to w thus creat?y .

This message utilizes the stored margi#dlso that consistency is
maintained.
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4.2. Junction tree. So far we have seen that given a clique tree and us-
ing the message passing protocol we can achieve local temsysbetween
clique potentials. However, although we have shown thattbesage pass-
ing protocol enforces local consistency, there is no guaraaof global con-
sistency. Global consistency we define as, for any two nodes sharing the
same variables, the marginal should be the same.

For example, Consider the graphical model in figure 4.(a)egpalrticular
choice of clique tree is shown in figure 4.(b).

FIGURE 4. (a) An undirected graphical model and (b) a cor-
responding clique tree.

(@) (b)

We cannot guarantee global consistency because C occun®imeighboring
cligues. More formally, no guarantee thatiy @cp = > A @Pac. In or-
der to guarantee global consistency, we must limit ourseloea subset of
clique trees called Junction trees.

Junction tree properties. For every pair of cliques v and w, all cliques on
the unique path between v and w contaiao w.

We claim that on Junction trees, local consistency implleba consis-
tency. If a node A appears in two cliques in a Junction treen ttliques
along the path are pair wise consistent with respect to A ddedal con-
sistency, then they must also be jointly consistent witpeesto A.

One step further, in a Junction tree not only do we want glabalis-
tency, but also marginals on clique potentials. More fotypal

Theorem. Let p(x) be represented by clique potentials and separater p
tentials on a Junction tree. When the Junction tree algamitierminates,
the potentials are local marginal probabilities.

Pc(Xc) = p(xc)

Ps(Xs) = p(xs)
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We will prove this theorem next lecture.



