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1. THE BENEFITS OFJUNCTION TREE

Junction Tree gives us

• A factoral representation of the joint probability distribution
• Clique potentials that are marginals

2. CLIQUE TREES

Given a clique tree with cliquesC and separatorsS, the joint probability
distribution is defined as follows:

(1) p(x) =

∏
C ΨC(xC)∏
SΦS(xS)

whereΨC(xC) is the potential for a cliqueC, andΦS(xS) is the poten-
tial for a separatorS. After Junction Tree algorithm, the clique potential
ΨC(xC) becomes the marginal probability for cliqueC. Thus, we are able
to achieve a representation that is a product of marginals, and yet is also a
representation of the joint probability.

After we initialize maximal cliques, we first initialize theseparator poten-
tials to 1. The good thing is that we maintain global consistency by setting
separator potentials to one. The basic idea of Junction Treealgorithm is that
we adjust clique potentialsΨC(xC) to obtain marginals (local marginals),
and adjust separator potentialsΦS(xS) to maintain the joint probability dis-
tribution p(x).

3. LOCAL CONSISTENCY

3.1. Definition. In clique trees, cliques can overlap, so the same node can
appear in multiple neighboring cliques. If the clique potentials are marginals,
they have toagree on common nodes. In other words, common nodes
should have the same marginals.
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FIGURE 1. Clique tree
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3.2. Potential update (V → W). The local consistency is achieved by
exchange of information between neighboring cliques. Suppose that we
have two cliquesV and W and suppose thatV and W have non-empty
intersection S (see Figure 1). The cliquesV andW have potentialsΨV and
ΨW, andShas a potentialΦS that we initialize to one. The joint probability
distributionp(x) for this clique tree is as follows:

(2) p(x) =
ΨV · ΨW

ΦS

We first updateW based onV (Information is passedV → W).

(3) Φ∗
S =

∑

V\S

ΨV

(4) Ψ ∗
W =

Φ∗
S

ΦS
ΨW

Φ∗
S andΨ ∗

W are updated potentials forΦS andΨW
Claim: The joint probability distribution is invariant while updating po-

tentials (V → W).

p(x) =
Ψ ∗

W · Ψ ∗
V

Φ∗
S

(5)

=
Φ∗

S · ΨW · ΨV

ΦS · Φ∗
S

=
ΨV · ΨW

ΦS

The last line in (5) is equal to (2), which means that the jointprobability
distribution has not changed by the update.
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3.3. Potential update (W → V). Now we updateV based onW (Infor-
mation is passedW → V).

(6) Φ∗∗
S =

∑

W\S

Ψ ∗
W

(7) Ψ ∗∗
V =

Φ∗∗
S

Φ∗
S

Ψ ∗
V

(8) Ψ ∗∗
W = Ψ ∗

W

Like in (5), we can show that the joint probability distribution does not
change after this update.

3.4. Proof of local consistency.To prove that the clique tree has local
consistency, we have to show that nodes in the separatorS have the same
marginals.

∑

V\S

Ψ ∗∗
V =

Φ∗∗
S

Φ∗
S

·
∑

V\S

Ψ ∗
V(9)

=
Φ∗∗

S

Φ∗
S

· Φ∗
S

= Φ∗∗
S

∑

W\S

Ψ ∗∗
W =

∑

W\S

Ψ ∗
W(10)

= Φ∗∗
S

From (9) and (10), we can see that the following equation is satisfied.

(11)
∑

V\S

Ψ ∗∗
V ==

∑

W\S

Ψ ∗∗
W

We have shown that the potentialsΨ ∗∗
V andΨ ∗∗

W are consistent with respect
to their intersectionS; that is, they have the same marginals.
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FIGURE 2. Constructing a clique tree from a directional graph
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3.5. Directional graphs. By moralizing, we can construct clique trees from
directional graphs (See Figure 2).

The potentialsΨAB, ΨBC, andΦB are defined as followings:

ΨAB = p(A) · p(B|A)(12)

ΨBC = p(C|B)

ΦB = 1

Like in Section 3, to keep local consistency, we update the potentials
by exchange of information between neighboring cliques. First, we update
ΨBC based onΨAB.

Φ∗
B =

∑

a

p(a, B)(13)

= p(B)
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Ψ ∗
BC =

p(B)

1
· p(C|B)(14)

= p(B, C)

Ψ ∗
AB = p(A, B)(15)

Now, we see that the clique potentials have become marginal probabili-
ties. The backward phase in this case (BC → AB) is vacuous.

3.6. Introducing evidence. Now consider the case in which evidence is
observed. Suppose that all nodes are binary and we are given the evidence
(A = 1) in Figure 2. We have

Φ∗
B = p(A = 1, B)(16)

Performing the update (AB → BC) yields

Ψ ∗
BC = p(A = 1, B) · p(C|B)(17)

= p(A = 1, B, C)

Once again the backward pass (BC → AB) is vacuous in this case. Thus
our potentials are as follows

Ψ ∗∗
AB = p(A = 1, B)(18)

Φ∗∗
B = p(A = 1, B)

Ψ ∗∗
BC = p(A = 1, B, C)

We see that we have obtained marginals as before, and evidence is present
in all terms. The potentials are unnormalized marginals. Normalizing gives
us conditionalsp(B|A = 1), p(B|A = 1), andp(B, C|A = 1).

4. MULTIPLE OVERLAPPING CLIQUES.

4.1. Message passing protocol.So far we have been looking at clique
trees with only one separator set. In practice, we would wantto expand
our algorithm to more complicated clique trees. Then, we must address the
following three questions.

(1) How do we construct appropriate clique tree?
(2) How to perform multiple updates without ruining local consistency?
(3) Prove that the resultingΦ andΨ are marginals as in the case with

one separator set.
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Lets first focus on question (2), consider the following clique tree, in figure
3.

FIGURE 3. Clique tree with explicit representation of the separators

C1

V

D1

W

C2
D2

S

In figure 3, as discussed in the previous section,passing a messagefrom
v to p consists the following steps.

v → w ≡

(1) UpdateΦ∗
s from Ψv

(2) UpdateΨw from Φ∗
s andΦs

However, we must decide when a given clique is allowed to passa mes-
sage to one of its neighbors. This problem is solved by the message passing
protocol.

Message passing protocol. A clique can send a message to a neighbor
clique only when it has received messages from its other neighbors.

We claim that the message passing protocol maintains local consistency.
To examine the correctness of the message passing protocol,consider when
w has received messages from all its neighbors D1 and D2, and is sending
a message passing from w to v.

There can be two cases to consider,

• Case 1, v has received messages from its other neighbors and has
sent a message to w. Local consistency is ok, since no other mes-
sages will be sent.

• Case 2, v has not yet sent a message to w. When message passing w
to v createsΦ∗

s , later v will pass a message to w thus creatingΦ∗∗
s .

This message utilizes the stored marginalΦ∗
s so that consistency is

maintained.
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4.2. Junction tree. So far we have seen that given a clique tree and us-
ing the message passing protocol we can achieve local consistency between
clique potentials. However, although we have shown that themessage pass-
ing protocol enforces local consistency, there is no guarantee of global con-
sistency.Global consistency we define as, for any two nodes sharing the
same variables, the marginal should be the same.

For example, Consider the graphical model in figure 4.(a) anda particular
choice of clique tree is shown in figure 4.(b).

FIGURE 4. (a) An undirected graphical model and (b) a cor-
responding clique tree.
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We cannot guarantee global consistency because C occurs in 2non-neighboring
cliques. More formally, no guarantee that

∑
D ΦC D =

∑
A ΦAC. In or-

der to guarantee global consistency, we must limit ourselves to a subset of
clique trees called Junction trees.

Junction tree properties. For every pair of cliques v and w, all cliques on
the unique path between v and w contain v∪ w.

We claim that on Junction trees, local consistency implies global consis-
tency. If a node A appears in two cliques in a Junction tree, then cliques
along the path are pair wise consistent with respect to A due to local con-
sistency, then they must also be jointly consistent with respect to A.

One step further, in a Junction tree not only do we want globalconsis-
tency, but also marginals on clique potentials. More formally,

Theorem. Let p(x) be represented by clique potentials and separator po-
tentials on a Junction tree. When the Junction tree algorithm terminates,
the potentials are local marginal probabilities.

ΨC(xC) = p(xC)

ΦS(xS) = p(xS)
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We will prove this theorem next lecture.


