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The junction tree algorithm is the culmination of the way graph theory
and probability combine to form graphical models. After we discuss the
junction tree algorithm, we will move on to developing the models for data
analysis.

1. ALGORITHM OUTLINE

The junction tree algorithm has many different moving parts and we will
describe each one separately and all the pieces will come together by the
end.

The goal of the algorithm is to parameterize the model such that it is easy
to calculate marginals.

We start with a graphical model and then do the following steps:

(1) Moralize the graph
(2) Triangulate the graph
(3) Build a junction tree
(4) Apply the message passing algorithm

When this algorithm is done we are left with the quantities needed to
compute the desired marginals.

The idea behind the algorithm is to use independence properties of the
graph to decompose “general probability calculations” into a linked set of
local computations, along the lines of what we did in the elimination and
message passing algorithms, but here we are switching from an algebraic
process of inference to an inference data structure. This algorithm will work
with any model that is described by a graph.

Now we return to the graph we have looked at since the beginning (Fig. 1).
Remember, when we do elimination on this graph, we first moralize the
graph by connecting all unconnected parents. After this we make the graph
an undirected graph. After applying eliminate, we can construct the recon-
stituted graph (Fig. 2), which is triangulated, i.e. for any given cycle there
is an edge between any two non-successive nodes in the cycle.

Previously we used the elimination algorithm to obtain marginals. We
also employed the tree propagation algorithm to reuse intermediate factors
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FIGURE 1. The six-node example from previous lectures.
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FIGURE 2. Reconstituted graph.

in a tree graph. The junction tree allows us to reuse intermediate factors in
any graphical model.

The first step in moving beyond the elimination algorithm is to allocate
storage for the intermediate factors. Toward this end, we form a clique
tree out of the elimination cliques in the graph. Each intermediate factor is
associated with one of the cliques, so the clique tree represents the storage
we need to do elimination. Moreover, it illustrates the information flow of
the elimination procedure - we can follow what happens in elimination by
examining the clique tree. An example of a clique tree for our graph using
the elimination ordering {6,5,4,3,2,1} is shown in Fig. 3. At this point we
note that the clique tree depends on the chosen ordering.

We introduce the notion of a “separator set”, which is just the intersection
of two adjacent cliques. We show these sets in boxes separating two cliques
explicitly in Fig. 3. Note that members of separation sets correspond to the
parameters of the intermediate factors. For example, separation set {X1}
corresponds to the parameter X1 of the intermediate factor which arises
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FIGURE 3. A clique tree with separator sets using elimina-
tion ordering {6,5,4,3,2,1}.

after removing {X2}. Later we will define potentials on these separator
sets.

As a preview, we note that this tree in Fig. 3 has the junction tree prop-
erty: if a variable is in two cliques then it is in every clique along the path
connecting the two cliques.

2. CLIQUE POTENTIALS

Let G = {V , E} be a graphical model and let C be a set of cliques, where
a clique is a completely connected subset of the graph. Then for each c ∈
C, define a clique potential ψc(Xc). Define the joint probability as in the
undirected model:

(1) p(x) =
1

Z

∏
c∈C

ψc(Xc)

Define C to be the set of maximal cliques, meaning that no member of C is
a subset of another member of C.

Eventually, we will adjust the clique potentials, ψc’s, to be marginals, so
that we can answer general inferential questions about our model.

3. INITIALIZING CLIQUE POTENTIALS

The first step we do is to initialize the clique potentials.
We note now that the clique potential assigned to each clique is not nec-

essarily the same as the clique potential in the undirected graph. In the case
of the undirected graph, if the potentials that are defined on the undirected
graph are all on maximal cliques then the clique potentials are just the po-
tentials defined on the maximal cliques. If the potentials are not on maximal
cliques, then we let the clique potential equal the product of potentials on
subcliques, with the caveat that each potential can only be used once in
these definitions, so there will be no repetitions. This ensures that the joint
probability, the product of the clique potentials, is the same as the product
of the potentials. For example, in Fig. 4, if the potentials are defined on the
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pairwise cliques, then we can define the clique potentials as follows:

ψABC(A,B, C) = ψAB(A,B)ψBC(B,C)ψAC(A,C)(2)

ψBCD(B, C, D) = ψCD(C, D)ψBD(B,D)(3)

You can confirm that you must use each potential exactly once, otherwise
the joint will not be the same.

A B

C D

FIGURE 4. A four-node model which we assume is param-
eterized with pairwise potentials ψAB, ψAC , ψBC , ψBD and
ψCD.

To initialize the clique potentials for directed graphs, first moralize the
graph. If we do this to the graph in Fig. 1 then we get the graph shown in
Fig. 2. The maximal cliques are: {x2, x5, x6}, {x2, x4}, {x1, x3}, {x1, x2},
{x3, x5}. Then we define the clique potentials to be the product of con-
ditional probabilities such that each conditional probability only involves
nodes that are in the maximal clique this potential is being defined on and
such that each conditional probability is assigned to exactly one clique po-
tential. We can define the clique potentials as follows for the graph in Fig. 1:

ψ24(x2, x4) = p(x4|x2)

ψ12(x1, x2) = p(x1)p(x2|x1)

ψ13(x1, x3) = p(x3|x1)

ψ35(x3, x5) = p(x5|x3)

ψ256(x2, x5, x6) = p(x6|x2, x5)(4)

To summarize, we initialize clique potentials with original undirected po-
tentials or with conditional probabilities tables from the moralized graph.

4. EVIDENCE

Suppose nodes are divided into subsets H and E, where E contains evi-
dence nodes and H contains everything else. How do we compute p(xH |xE)?
As it turns out, this problem is no different in principle from the calculation
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of marginal probabilities from (1). The following trick will do the job: we
add δ(xE, xE) to one clique potential containing E, where xE is observed
value. Then computing the right hand side of (1) we will get p(xH , xE).
The only nuance is that the normalization constant Z remains without δ’s
since it is a property of the distribution and does not depend on evidence.
Let us now focus on computing clique potentials.

5. COMPUTING CLIQUE POTENTIALS

Our goal is to compute the marginal p(xF ) for F ⊆ C, C ∈ C. The junc-
tion tree algorithm uses information flow in the graph to adjust the clique
potentials to give this marginal probability. When the algorithm terminates,
we’ll have ψC(xC) = p(xC) (or p(xC , xE) if we have evidence).

Let us consider the Markov chain example in Fig. 5.

A B C

FIGURE 5. A three-node model we use to illustrate local consistency.

The clique potentials for this model are given by:

ψAB(A,B) = p(A)p(B|A) = p(A,B)

ψBC(B, C) = p(C|B)

(5)

Clique potential ψAB already corresponds to the marginal probability p(A,B).
We want to make ψBC a marginal as well. Naively, we sum out A from ψAB:

∑
A

ψAB = p(B)(6)

Further, multiplying ψBC by this p(B) gives the new ψBC :

ψBC = p(C|B)p(B) = p(B,C)(7)

Now, both clique potentials are marginals. But here is the problem: we
messed up the joint (1)!

The junction tree algorithm will solve this problem. It manipulates the
clique potentials to be marginals, but at the same time it does not alter the
joint distribution. Moreover, it maintains both local and global consistency.

Local consistency means that the neighboring clique potentials agree
when the marginal of their common node is calculated from either of them.
For example, in Fig. 5 suppose we adjusted the clique potentials ψAB and
ψBC to be p(A,B) and p(B,C). Local consistency means that when we
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sum out A from ψAB it gives the same p(B) as when we sum out C from
ψBC . Global consistency means that any two cliques containing the same
node will agree on the marginal of that node.

6. SEPARATOR SETS

To maintain the joint p(x) like the junction tree algorithm does, we extend
our representation to include separator sets, and we define potentials on
these separator sets:

(8) p(x) =

∏
c∈C ψc(Xc)∏
s∈S ψs(Xs)

Here S includes all separator sets and ψs(Xs) are separator potentials. The
idea is to adjust the clique potentials to obtains marginals, and to adjust the
ψs’s to maintain the joint, p(x).

For example, extended representation for the Markov chain in Fig. 5 is:

p(A,B,C) = p(A)p(B|A)p(C|B) = p(A,B)p(C|B) =
p(A,B)p(C, B)

p(B)
,

where the numerator, p(B), is a separator potential.
We can find this extended representation for any probability distribution.

(1) It includes all distributions in Eq. (1).
(2) It contains no others distributions.


